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Chapter 1

Introduction

Quantum mechanics describes the behavior of particles at atomic and subatomic
scales. It is the quantum version of Newton’s classical mechanics and reduces to
this theory when ~ is sent to zero. Of course, Planck’s quantum is a fundamental
constant of Nature that is indeed non-zero. This has consequences not only for
mechanics but for all of physics. In particular, Maxwell’s theory of classical elec-
trodynamics also needs to be modified by incorporating the principles of quantum
physics. It turned out that this is a rather nontrivial enterprise which kept people
like Feynman, Schwinger, and Tomonaga busy for some time after world war II.
Their success was awarded with the Nobel prize for quantum electrodynamics
(QED) — the quantum field theory that describes the electromagnetic interac-
tions of electrons and positrons resulting from the exchange of photons. The
fundamental degrees of freedom in QED are fields — not particles. In partic-
ular, photons — the elementary particles of light — emerge as quantum states
of Maxwell’s electromagnetic field. Similarly, electrons and positrons emerge as
quanta of the 4-component spinor field that Dirac first introduced. In quantum
field theory, particles result as quantized field fluctuations.

The most important feature of field theory is locality. The field degrees of
freedom located at a given point of space are coupled only to the field values at
infinitesimally neighboring points. The principle of locality is also at the heart
of relativity theory which is inconsistent with instantaneous nonlocal interac-
tion over a finite distance. Unifying relativity and quantum physics therefore
naturally leads to quantum field theory; it cannot be achieved within quantum
mechanics alone. In relativity theory, particle interactions cannot be described by
instantaneous potentials but must be mediated locally. This is possible if there
are physical degrees of freedom everywhere is space. These degrees of freedom
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8 CHAPTER 1. INTRODUCTION

are nothing but the field values. Quantum field theory has enormously advanced
our understanding of physics. It was originally developed to describe elementary
particles but it is equally useful in condensed matter physics. In fact, it is ex-
tremely useful for describing any local interaction of many degrees of freedom at
microscopic scales.

Our present understanding of fundamental physics is based on the field con-
cept. At each point of space there is a set of field degrees of freedom whose
fluctuations lead to the propagation of a variety of elementary particles. Each
particle has its own field: the photon, the electron and positron, the gluons, the
quarks and anti-quarks, the W- and Z-bosons, the neutrinos and anti-neutrinos,
etc. These various fields are distinguished by their transformation properties un-
der a variety of symmetries: space-time rotations, parity P , charge conjugation
C, gauge transformations, etc. In fact, the various quantum field theories are
characterized by their symmetry properties. For example, QED is a gauge the-
ory with the Abelian gauge group U(1)em which respects the symmetries C and
P . Quantum chromodynamics (QCD) is the quantum field theory that describes
the strong interactions between quarks and anti-quarks mediated by the exchange
of gluons. Its structure is similar to the one of QED. QCD is a gauge theory with
non-Abelian gauge group SU(3)c which also respects the symmetries C and P .
Both QED and QCD are incorporated in the standard model of particle physics
which summarizes all we know about the fundamental forces of electromagnetism,
as well as the weak and strong interactions (but not gravity). The standard model
is a gauge theory with the non-Abelian gauge group SU(3)c ⊗ SU(2)L ⊗ U(1)Y
which, however, strongly violates parity P and charge conjugation C. Even the
combined symmetry CP is weakly broken. Unlike QED and QCD, the standard
model is a so-called chiral gauge theory in which left- and right-handed particles
carry different charges.

The quantization of field theories is a highly non-trivial issue. After all, quan-
tum field theories are quantum systems with infinitely many degrees of freedom
— a given number per space point. This enormity of degrees of freedom gives rise
to ultraviolet divergences which must be regularized and renormalized. Learning
field theory is a non-trivial and sometimes rather technical task, which will, how-
ever, throw you right in the middle of current research in particle and condensed
matter physics. Quantum field theory is such a powerful tool that it is indispens-
able in these fields of physics. You simply need to master quantum field theory
if you want to understand — let alone contribute to — these very exciting fields
of current research. It will naturally take a while before you can call yourself a
quantum field theorist. It requires some time and a lot of hard work, but the
awards are plenty. At the end of your studies you will have a basis for under-



9

standing all that is currently known about the microscopic quantum world. The
regularization of chiral gauge theories like the standard model is a topic of cur-
rent research. For example, only a few years ago, Lüscher from CERN achieved
a breakthrough by quantizing a chiral gauge theory beyond perturbation theory.
Naturally, when learning quantum field theory, we will start with much simpler
field theories than the full standard model, or even QED. In fact, we will start
with a simple relativistic theory of a scalar field. Scalar fields play an important
role in both particle and condensed matter physics. The yet to be discovered
Higgs particle — a corner stone of the standard model — is described by a scalar
field. Similarly, scalar fields are used to describe Cooper pairs in superconductors
or the order parameter in superfluid helium. Later we will move on to fermionic
fields as well as to gauge fields. Even at the end of the course, we will not have
reached the quantization of non-Abelian gauge theories like QCD or the standard
model. However, by then you will hopefully have a solid basis in quantum field
theory, which will allow you to proceed to these more advanced topics whenever
a research project requires it.
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Chapter 2

From Mechanics to Quantum

Field Theory

This chapter provides a brief summary of the mathematical structure of quan-
tum field theory. Classical field theories are discussed as a generalization of point
mechanics to systems with infinitely many degrees of freedom — a given number
per space point. Similarly, quantum field theories are just quantum mechani-
cal systems with infinitely many degrees of freedom. In the same way as point
mechanics systems, classical field theories can be quantized with path integral
methods. The quantization of field theories at finite temperature leads to path
integrals in Euclidean time. This provides us with an analogy between quantum
field theory and classical statistical mechanics. We also mention the lattice regu-
larization which has recently provided a mathematically satisfactory formulation
of the standard model beyond perturbation theory.

2.1 From Point Mechanics to Classical Field Theory

Point mechanics describes the dynamics of classical nonrelativistic point particles.
The coordinates of the particles represent a finite number of degrees of freedom.
In the simplest case — a single particle moving in one spatial dimension — we
are dealing with a single degree of freedom: the x-coordinate of the particle.
The dynamics of a particle of mass m moving in an external potential V (x) is
described by Newton’s equation

m∂2
t x = ma = F (x) = −dV (x)

dx
. (2.1.1)
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12 CHAPTER 2. FROM MECHANICS TO QUANTUM FIELD THEORY

Once the initial conditions are specified, this ordinary second order differential
equation determines the particle’s path x(t), i.e. its position as a function of time.
Newton’s equation results from the variational principle to minimize the action

S[x] =

∫

dt L(x, ∂tx), (2.1.2)

over the space of all paths x(t). The action is a functional (a function whose
argument is itself a function) that results from the time integral of the Lagrange
function

L(x, ∂tx) =
m

2
(∂tx)

2 − V (x). (2.1.3)

The Euler-Lagrange equation

∂t
δL

δ(∂tx)
− δL

δx
= 0, (2.1.4)

is nothing but Newton’s equation.

Classical field theories are a generalization of point mechanics to systems with
infinitely many degrees of freedom — a given number for each space point ~x. In
this case, the degrees of freedom are the field values φ(~x), where φ is some generic
field. In case of a neutral scalar field, φ is simply a real number representing one
degree of freedom per space point. A charged scalar field, on the other hand,
is described by a complex number and hence represents two degrees of freedom
per space point. The scalar Higgs field φa(~x) (with a ∈ {1, 2}) in the standard
model is a complex doublet, i.e. it has four real degrees of freedom per space
point. An Abelian gauge field Ai(~x) (with a spatial direction index i ∈ {1, 2, 3})
— for example, the photon field in electrodynamics — is a neutral vector field
with 3 real degrees of freedom per space point. One of these degrees of freedom
is redundant due to the U(1)em gauge symmetry. Hence, an Abelian gauge field
has two physical degrees of freedom per space point which correspond to the two
polarization states of the massless photon. Note that the time-component A0(~x)
does not represent a physical degree of freedom. It is just a Lagrange multiplier
field that enforces the Gauss law. A non-Abelian gauge field Aa

i (~x) is charged and
has an additional index a. For example, the gluon field in chromodynamics with
a color index a ∈ {1, 2, ..., 8} represents 2 × 8 = 16 physical degrees of freedom
per space point, again because of some redundancy due to the SU(3)c color gauge
symmetry. The field that represents the W - and Z-bosons in the standard model
has an index a ∈ {1, 2, 3} and transforms under the gauge group SU(2)L. Thus,
it represents 2 × 3 = 6 physical degrees of freedom. However, in contrast to the
photon, the W - and Z-bosons are massive due to the Higgs mechanism and have
three (not just two) polarization states. The extra degree of freedom is provided
by the Higgs field.
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The analog of Newton’s equation in field theory is the classical field equation of
motion. For example, for a neutral scalar field this is the Klein-Gordon equation

∂µ∂
µφ = −dV (φ)

dφ
. (2.1.5)

Again, after specifying appropriate initial conditions it determines the classical
field configuration φ(x), i.e. the values of the field φ at all space-time points
x = (t, ~x). Hence, the role of time in point mechanics is played by space-time in
field theory, and the role of the point particle coordinates is now played by the
field values. As before, the classical equation of motion results from minimizing
the action

S[φ] =

∫

d4x L(φ, ∂µφ). (2.1.6)

The integral over time in eq.(2.1.2) is now replaced by an integral over space-
time and the Lagrange function of point mechanics gets replaced by the Lagrange
density function (or Lagrangian)

L(φ, ∂µφ) =
1

2
∂µφ∂

µφ− V (φ). (2.1.7)

A simple interacting field theory is the φ4 theory with the potential

V (φ) =
m2

2
φ2 +

λ

4!
φ4. (2.1.8)

Here m is the mass of the scalar field and λ is the coupling strength of its self-
interaction. Note that the mass term corresponds to a harmonic oscillator po-
tential in the point mechanics analog, while the interaction term corresponds to
an anharmonic perturbation. As before, the Euler-Lagrange equation

∂µ
δL

δ(∂µφ)
− δL

δφ
= 0, (2.1.9)

is the classical equation of motion, in this case the Klein-Gordon equation. The
analogies between point mechanics and field theory are summarized in table 2.1.

2.2 The Path Integral in Real Time

The quantization of field theories is most conveniently performed using the path
integral approach. Here we first discuss the path integral in quantum mechanics
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Point Mechanics Field Theory

time t space-time x = (t, ~x)

particle coordinate x field value φ

particle path x(t) field configuration φ(x)

action S[x] =
∫

dt L(x, ∂tx) action S[φ] =
∫

d4x L(φ, ∂µφ)

Lagrange function Lagrangian
L(x, ∂tx) = m

2 (∂tx)
2 − V (x) L(φ, ∂µφ) = 1

2∂µφ∂
µφ− V (φ)

equation of motion field equation

∂t
δL

δ(∂tx) − δL
δx = 0 ∂µ

δL
δ(∂µφ) − δL

δφ = 0

Newton’s equation Klein-Gordon equation

∂2
t x = −dV (x)

dx ∂µ∂
µφ = −dV (φ)

dφ

kinetic energy m
2 (∂tx)

2 kinetic energy 1
2∂µφ∂

µφ

harmonic oscillator potential m
2 ω

2x2 mass term m2

2 φ
2

anharmonic perturbation λ
4!x

4 self-interaction term λ
4!φ

4

Table 2.1: The dictionary that translates point mechanics into the language of

field theory.

— quantized point mechanics — using the real time formalism. A mathematically
more satisfactory formulation uses an analytic continuation to so-called Euclidean
time. This will be discussed in the next section.

The real time evolution of a quantum system described by a Hamilton oper-
ator H is given by the time-dependent Schrödinger equation

i~∂t|Ψ(t)〉 = H|Ψ(t)〉. (2.2.1)

For a time-independent Hamilton operator the time evolution operator is given
by

U(t′, t) = exp(− i

~
H(t′ − t)), (2.2.2)

such that
|Ψ(t′)〉 = U(t′, t)|Ψ(t)〉. (2.2.3)

Let us consider the transition amplitude 〈x′|U(t′, t)|x〉 of a nonrelativistic point
particle that starts at position x at time t and arrives at position x′ at time t′.
Using

〈x|Ψ(t)〉 = Ψ(x, t) (2.2.4)

we obtain

Ψ(x′, t′) =

∫

dx 〈x′|U(t′, t)|x〉Ψ(x, t), (2.2.5)
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i.e. 〈x′|U(t′, t)|x〉 acts as a propagator for the wave function. The propagator is
of physical interest because it contains information about the energy spectrum.
When we consider propagation from an initial position x back to the same position
we find

〈x|U(t′, t)|x〉 = 〈x| exp(− i

~
H(t′ − t))|x〉

=
∑

n

|〈x|n〉|2 exp(− i

~
En(t′ − t)). (2.2.6)

We have inserted a complete set,
∑

n |n〉〈n| = 1, of energy eigenstates |n〉 with

H|n〉 = En|n〉. (2.2.7)

Hence, according to eq.(2.2.6), the Fourier transform of the propagator yields the
energy spectrum as well as the energy eigenstates 〈x|n〉.

Inserting a complete set of position eigenstates we arrive at

〈x′|U(t′, t)|x〉 = 〈x′| exp(− i

~
H(t′ − t1 + t1 − t))|x〉

=

∫

dx1〈x′| exp(− i

~
H(t′ − t1))|x1〉

× 〈x1| exp(− i

~
H(t1 − t))|x〉

=

∫

dx1〈x′|U(t′, t1)|x1〉〈x1|U(t1, t)|x〉. (2.2.8)

It is obvious that we can repeat this process an arbitrary number of times. This
is exactly what we do in the formulation of the path integral. Let us divide the
time interval [t, t′] into N elementary time steps of size ε such that

t′ − t = Nε. (2.2.9)

Inserting a complete set of position eigenstates at the intermediate times ti, i ∈
{1, 2, ..., N − 1} we obtain

〈x′|U(t′, t)|x〉 =

∫

dx1

∫

dx2...

∫

dxN−1〈x′|U(t′, tN−1)|xN−1〉...

× 〈x2|U(t2, t1)|x1〉〈x1|U(t1, t)|x〉. (2.2.10)

In the next step we concentrate on one of the factors and we consider a single
nonrelativistic point particle moving in an external potential V (x) such that

H =
p2

2m
+ V (x). (2.2.11)
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Using the Baker-Campbell-Haussdorff formula and neglecting terms of order ε2

we find

〈xi+1|U(ti+1, ti)|xi〉 = 〈xi+1| exp(− iεp2

2m~
) exp(− iε

~
V (x))|xi〉

=
1

2π

∫

dp〈xi+1| exp(− iεp2

2m~
)|p〉〈p| exp(− iε

~
V (x))|xi〉

=
1

2π

∫

dp exp(− iεp2

2m~
) exp(− i

~
p(xi+1 − xi))

× exp(− iε
~
V (xi)). (2.2.12)

The integral over p is ill-defined because the integrand is a very rapidly oscillating
function. To make the expression well-defined we replace the time step ε by ε−ia,
i.e. we go out into the complex time plane. After doing the integral we take the
limit a→ 0. Still one should keep in mind that the definition of the path integral
required an analytic continuation in time. One finds

〈xi+1|U(ti+1, ti)|xi〉 =

√

m

2πi~ε
exp(

i

~
ε[
m

2
(
xi+1 − xi

ε
)2 − V (xi)]). (2.2.13)

Inserting this back into the expression for the propagator we obtain

〈x′|U(t′, t)|x〉 =

∫

Dx exp(
i

~
S[x]). (2.2.14)

The action has been identified in the time continuum limit as

S[x] =

∫

dt [
m

2
(∂tx)

2 − V (x)]

= lim
ε→0

∑

i

ε[
m

2
(
xi+1 − xi

ε
)2 − V (xi)]. (2.2.15)

The integration measure is defined as

∫

Dx = lim
ε→0

√

m

2πi~ε

N ∫

dx1

∫

dx2...

∫

dxN−1. (2.2.16)

This means that we integrate over the possible particle positions for each inter-
mediate time ti. In this way we integrate over all possible paths of the particle
starting at x and ending at x′. Each path is weighted with an oscillating phase
factor exp( i

~
S[x]) determined by the action. The classical path of minimum ac-

tion has the smallest oscillations, and hence the largest contribution to the path
integral. In the classical limit ~ → 0 only that contribution survives.
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2.3 The Path Integral in Euclidean Time

As we have seen, it requires a small excursion into the complex time plane to
make the path integral mathematically well-defined. Now we will make a big
step into that plane and actually consider purely imaginary so-called Euclidean
time. The physical motivation for this, however, comes from quantum statistical
mechanics. Let us consider the quantum statistical partition function

Z = Tr exp(−βH), (2.3.1)

where β = 1/T is the inverse temperature. It is mathematically equivalent to
the time interval we discussed in the real time path integral. In particular, the
operator exp(−βH) turns into the time evolution operator U(t′, t) if we identify

β =
i

~
(t′ − t). (2.3.2)

In this sense the system at finite temperature corresponds to a system propagating
in purely imaginary (Euclidean) time. By dividing the Euclidean time interval
into N time steps, i.e. by writing β = Na/~, and again by inserting complete
sets of position eigenstates we now arrive at the Euclidean time path integral

Z =

∫

Dx exp(−1

~
SE [x]). (2.3.3)

The action now takes the Euclidean form

SE[x] =

∫

dt [
m

2
(∂tx)

2 + V (x)]

= lim
a→0

∑

i

a[
m

2
(
xi+1 − xi

a
)2 + V (xi)]. (2.3.4)

In contrast to the real time case the measure now involves N integrations

∫

Dx = lim
a→0

√

m

2π~a

N ∫

dx1

∫

dx2...

∫

dxN . (2.3.5)

The extra integration over xN = x′ is due to the trace in eq.(2.3.1). Note that
there is no extra integration over x0 = x because the trace implies periodic
boundary conditions in the Euclidean time direction, i.e. x0 = xN .

The Euclidean path integral allows us to evaluate thermal expectation values.
For example, let us consider an operator O(x) that is diagonal in the position
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state basis. We can insert this operator in the path integral and thus compute
its expectation value

〈O(x)〉 =
1

Z
Tr[O(x) exp(−βH)] =

1

Z

∫

Dx O(x(0)) exp(−1

~
SE [x]). (2.3.6)

Since the theory is translation invariant in Euclidean time one can place the
operator anywhere in time, e.g. at t = 0 as done here. When we perform the low
temperature limit, β → ∞, the thermal fluctuations are switched off and only
the quantum ground state |0〉 (the vacuum) contributes to the partition function,
i.e. Z ∼ exp(−βE0). In this limit the path integral is formulated in an infinite
Euclidean time interval, and describes the vacuum expectation value

〈O(x)〉 = 〈0|O(x)|0〉 = lim
β→∞

1

Z

∫

Dx O(x(0)) exp(−1

~
SE [x]). (2.3.7)

It is also interesting to consider 2-point functions of operators at different in-
stances in Euclidean time

〈O(x(0))O(x(t))〉 =
1

Z
Tr[O(x) exp(−Ht)O(x) exp(Ht) exp(−βH)]

=
1

Z

∫

Dx O(x(0))O(x(t)) exp(−1

~
SE [x]). (2.3.8)

Again, we consider the limit β → ∞, but we also separate the operators in time,
i.e. we also let t→ ∞. Then the leading contribution is |〈0|O(x)|0〉|2. Subtracting
this, and thus forming the connected 2-point function, one obtains

lim
β,t→∞

〈O(x(0))O(x(t))〉 − |〈O(x)〉|2 = |〈0|O(x)|1〉|2 exp(−(E1 − E0)t). (2.3.9)

Here |1〉 is the first excited state of the quantum system with an energy E1. The
connected 2-point function decays exponentially at large Euclidean time separa-
tions. The decay is governed by the energy gap E1 − E0. In a quantum field
theory E1 corresponds to the energy of the lightest particle. Its mass is deter-
mined by the energy gap E1 − E0 above the vacuum. Hence, in Euclidean field
theory particle masses are determined from the exponential decay of connected
2-point correlation functions.

2.4 Spin Models in Classical Statistical Mechanics

So far we have considered quantum systems both at zero and at finite tempera-
ture. We have represented their partition functions as Euclidean path integrals
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over configurations on a time lattice of length β. We will now make a completely
new start and study classical discrete systems at finite temperature. We will see
that their mathematical description is very similar to the path integral formu-
lation of quantum systems. Still, the physical interpretation of the formalism is
drastically different in the two cases. In the next section we will set up a dictio-
nary that allows us to translate quantum physics language into the language of
classical statistical mechanics.

For simplicity, let us concentrate on simple classical spin models. Here the
word spin does not mean that we deal with quantized angular momenta. All
we do is work with classical variables that can point in specific directions. The
simplest spin model is the Ising model with classical spin variables sx = ±1.
(Again, these do not represent the quantum states up and down of a quantum
mechanical angular momentum 1/2.) More complicated spin models with an
O(N) spin rotational symmetry are the XY model (N = 2) and the Heisenberg
model (N = 3). The spins in the XY model are 2-component unit-vectors,
while the spins in the Heisenberg model have three components. In all these
models the spins live on the sites of a d-dimensional spatial lattice. The lattice
is meant to be a crystal lattice (so typically d = 3) and the lattice spacing has a
physical meaning. This is in contrast to the Euclidean time lattice that we have
introduced to make the path integral mathematically well-defined, and that we
finally send to zero in order to reach the Euclidean time continuum limit. The
Ising model is characterized by its classical Hamilton function (not a quantum
Hamilton operator) which simply specifies the energy of any configuration of
spins. The Ising Hamilton function is a sum of nearest neighbor contributions

H[s] = J
∑

〈xy〉

sxsy − µB
∑

x

sx, (2.4.1)

with a ferromagnetic coupling constant J < 0 that favors parallel spins, plus a
coupling to an external magnetic field B. The classical partition function of this
system is given by

Z =

∫

Ds exp(−H[s]/T ) =
∏

x

∑

sx=±1

exp(−H[s]/T ). (2.4.2)

The sum over all spin configurations corresponds to an independent summation
over all possible orientations of individual spins. Thermal averages are computed
by inserting appropriate operators. For example, the magnetization is given by

〈sx〉 =
1

Z

∏

x

∑

sx=±1

sx exp(−H[s]/T ). (2.4.3)
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Similarly, the spin correlation function is defined by

〈sxsy〉 =
1

Z

∏

x

∑

sx=±1

sxsy exp(−H[s]/T ). (2.4.4)

At large distances the connected spin correlation function typically decays expo-
nentially

〈sxsy〉 − 〈s〉2 ∼ exp(−|x− y|/ξ), (2.4.5)

where ξ is the so-called correlation length. At general temperatures the cor-
relation length is typically just a few lattice spacings. When one models real
materials, the Ising model would generally be a great oversimplification, because
real magnets, for example, not only have nearest neighbor couplings. Still, the
details of the Hamilton function at the scale of the lattice spacing are not always
important. There is a critical temperature Tc at which ξ diverges and univer-
sal behavior arises. At this temperature a second order phase transition occurs.
Then the details of the model at the scale of the lattice spacing are irrelevant for
the long range physics that takes place at the scale of ξ. In fact, at their critical
temperatures some real materials behave just like the simple Ising model. This is
why the Ising model is so interesting. It is just a very simple member of a large
universality class of different models, which all share the same critical behavior.
This does not mean that they have the same values of their critical temperatures.
However, their magnetization goes to zero at the critical temperature with the
same power of Tc − T , i.e. their critical exponents are identical.

2.5 Quantum Mechanics versus Statistical Mechanics

We notice a close analogy between the Euclidean path integral for a quantum me-
chanical system and a classical statistical mechanics system like the Ising model.
The path integral for the quantum system is defined on a 1-dimensional Euclidean
time lattice, just like an Ising model can be defined on a d-dimensional spatial
lattice. In the path integral we integrate over all paths, i.e. over all configurations
x(t), while in the Ising model we sum over all spin configurations sx. Paths are
weighted by their Euclidean action SE[x] while spin configurations are weighted
with their Boltzmann factors depending on the classical Hamilton function H[s].
The prefactor of the action is 1/~, and the prefactor of the Hamilton function is
1/T . Indeed ~ determines the strength of quantum fluctuations, while the tem-
perature T determines the strength of thermal fluctuations. The kinetic energy
1
2((xi+1 − xi)/a)

2 in the path integral is analogous to the nearest neighbor spin
coupling sxsx+1, and the potential term V (xi) is analogous to the coupling µBsx
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Quantum mechanics Classical statistical mechanics

Euclidean time lattice d-dimensional spatial lattice

elementary time step a crystal lattice spacing

particle position x classical spin variable s

particle path x(t) spin configuration sx

path integral
∫

Dx sum over configurations
∏

x

∑

sx

Euclidean action SE[x] classical Hamilton function H[s]

Planck’s constant ~ temperature T

quantum fluctuations thermal fluctuations

kinetic energy 1
2(xi+1−xi

a )2 neighbor coupling sxsx+1

potential energy V (xi) external field energy µBsx

weight of a path exp(− 1
~
SE[x]) Boltzmann factor exp(−H[s]/T )

vacuum expectation value 〈O(x)〉 magnetization 〈sx〉
2-point function 〈O(x(0))O(x(t))〉 correlation function 〈sxsy〉

energy gap E1 − E0 inverse correlation length 1/ξ

continuum limit a→ 0 critical behavior ξ → ∞

Table 2.2: The dictionary that translates quantum mechanics into the language

of classical statistical mechanics.

to an external magnetic field. The magnetization 〈sx〉 corresponds to the vacuum
expectation value of an operator 〈O(x)〉 and the spin-spin correlation function
〈sxsy〉 corresponds to the 2-point correlation function 〈O(x(0))O(x(t))〉. The in-
verse correlation length 1/ξ is analogous to the energy gap E1 − E0 (and hence
to a particle mass in a Euclidean quantum field theory). Finally, the Euclidean
time continuum limit a→ 0 corresponds to a second order phase transition where
ξ → ∞. The lattice spacing in the path integral is an artifact of our mathemat-
ical description which we send to zero while the physics remains constant. In
classical statistical mechanics, on the other hand, the lattice spacing is physical
and hence fixed, while the correlation length ξ goes to infinity at a second order
phase transition. All this is summarized in the dictionary of table 2.2.

2.6 The Transfer Matrix

The analogy between quantum mechanics and classical statistical mechanics sug-
gests that there is an analog of the quantum Hamilton operator in the context
of classical statistical mechanics. This operator is the so-called transfer matrix.
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The Hamilton operator induces infinitesimal translations in time. In classical
statistical mechanics, on the other hand, the analog of continuous time is a 1-
dimensional spatial lattice. Hence, the transfer matrix cannot induce infinitesimal
space translations. Instead it induces translations by the smallest possible dis-
tance — namely by one lattice spacing. For a quantum mechanical system the
transfer matrix transports us by one lattice spacing in Euclidean time, and it is
given by

T = exp(−a
~
H). (2.6.1)

Now we want to construct the transfer matrix for the 1-dimensional Ising model
without an external magnetic field. The corresponding partition function is given
by

Z =
∏

x

∑

sx=±1

exp(βJ
∑

x

sxsx+1). (2.6.2)

The transfer matrix obeys

Z = TrTN , (2.6.3)

where N is the number of lattice points, and its matrix elements are given by the
Boltzmann factor corresponding to a nearest neighbor pair by

〈sx+1|T |sx〉 = exp(βJsxsx+1). (2.6.4)

This is a 2 × 2 matrix. The eigenvalues of the transfer matrix can be written as
exp(−E0) and exp(−E1). The energy gap then determines the inverse correlation
length as

1/ξ = E1 − E0. (2.6.5)

It is instructive to compute ξ as a function of β to locate the critical point of the
1-d Ising model.

Here we will do the corresponding calculation for the 1-d xy-model. In the xy-
model the spins are unit vectors (cosϕx, sinϕx) in the xy-plane that are attached
to the points x of a d-dimensional lattice. Here we consider d = 1, i.e. we study
a chain of xy-spins. The standard Hamilton function of the xy-model is given by

H[ϕ] = J
∑

〈xy〉

(1 − cos(ϕx+1 − ϕx)). (2.6.6)

In complete analogy to the Ising model the transfer matrix is now given by

〈ϕx+1|T |ϕx〉 = exp(−βJ(1 − cos(ϕx+1 − ϕx)), (2.6.7)
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which is a matrix with an uncountable number of rows and columns, because there
is a continuum of values for ϕx and ϕx+1. Still, we can ask about the eigenvalues
of this matrix. For this purpose we consider the Fourier representation

〈ϕx+1|T |ϕx〉 =
∑

m∈Z

〈ϕx+1|m〉 exp(−βJ)Im(βJ)〈m|ϕx〉, (2.6.8)

where
〈ϕx|m〉 = exp(imϕx), (2.6.9)

are the eigenvectors of the transfer matrix. The eigenvalues are given in terms of
modified Bessel functions

exp(−Em) = exp(−βJ)Im(βJ). (2.6.10)

The energy gap between the ground state and an excited state is given by

Em − E0 = log
I0(βJ)

Im(βJ)
, (2.6.11)

which is nonzero for finite β. In the zero temperature limit β → ∞ we have

I0(βJ)

Im(βJ)
∼ 1 +

m2

2βJ
, (2.6.12)

such that
ξ = 1/(E1 − E0) ∼ 2βJ → ∞. (2.6.13)

Hence, there is a critical point at zero temperature. In the language of quantum
mechanics this implies the continuum limit of a Euclidean lattice theory corre-
sponding to a quantum mechanical problem. In the continuum limit the energies
corresponding to the eigenvalues of the transfer matrix take the form

Em − E0 ∼ m2

2βJ
. (2.6.14)

These energies are in lattice units (the lattice spacing was put to 1). Hence, to
extract physics we need to consider energy ratios and we find

Em − E0

E1 − E0
∼ m2. (2.6.15)

These are the appropriate energy ratios of a quantum rotor — a particle that
moves on a circle. Indeed the xy-spins describe an angle, which can be interpreted
as the position of the quantum particle. Also the eigenvectors of the transfer
matrix are just the energy eigenfunctions of a quantum rotor. Hence, we just
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solved the Schrödinger equation with a discrete Euclidean time step using the
transfer matrix instead of the Hamilton operator. The fact that energy ratios
approach physically meaningful constants in the continuum limit is known as
scaling. Of course, the discretization introduces an error as long as we are not in
the continuum limit. For example, at finite β the energy ratio is

Em

E1
=

log(I0(βJ)/Im(βJ)

log(I0(βJ)/I1(βJ)
, (2.6.16)

which is different from the continuum answer m2. This cut-off effect due to a
finite lattice spacing is known as a scaling violation.

2.7 Lattice Field Theory

So far we have restricted ourselves to quantum mechanical problems and to clas-
sical statistical mechanics. The former were defined by a path integral on a 1-d
Euclidean time lattice, while the latter involved spin models on a d-dimensional
spatial lattice. When we quantize field theories on the lattice, we formulate
the theory on a d-dimensional space-time lattice, i.e. usually the lattice is 4-
dimensional. Just as we integrate over all configurations (all paths) x(t) of a
quantum particle, we now integrate over all configurations φ(x) of a quantum
field defined at any Euclidean space-time point x = (~x, x4). Again the weight
factor in the path integral is given by the action. Let us illustrate this for a free
neutral scalar field φ(x) ∈ R. Its Euclidean action is given by

SE[φ] =

∫

d4x [
1

2
∂µφ∂µφ+

m2

2
φ2]. (2.7.1)

Interactions can be included, for example, by adding a λ
4!φ

4 term to the action.
The Feynman path integral for this system is formally written as

Z =

∫

Dφ exp(−SE[φ]). (2.7.2)

(Note that we have put ~ = c = 1.) The integral is over all field configurations,
which is a divergent expression if no regularization is imposed. One can make
the expression mathematically well-defined by using dimensional regularization
of Feynman diagrams. This approach is, however, limited to perturbation the-
ory. The lattice allows us to formulate field theory beyond perturbation theory,
which is very essential for strongly interacting theories like QCD, but also for the
standard model in general. For example, due to the heavy mass of the top quark,
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the Yukawa coupling between the Higgs and top quark field is rather strong. The
above free scalar field theory, of course, does not really require a nonperturbative
treatment. We use it only to illustrate the lattice quantization method in a simple
setting. On the lattice the continuum field φ(x) is replaced by a lattice field Φx,
which is restricted to the points x of a d-dimensional space-time lattice. From
now on we will work in lattice units, i.e. we put a = 1. The above continuum
action can be approximated by discretizing the continuum derivatives such that

SE[Φ] =
∑

x,µ

1

2
(Φx+µ̂ − Φx)

2 +
∑

x

m2

2
Φ2

x. (2.7.3)

Here µ̂ is the unit vector in the µ-direction. The integral over all field configu-
rations now becomes a multiple integral over all values of the field at all lattice
points

Z =
∏

x

∫ ∞

−∞
dΦx exp(−SE [Φ]). (2.7.4)

For a free field theory the partition function is just a Gaussian integral. In fact,
one can write the lattice action as

SE[Φ] =
1

2

∑

x,y

ΦxMxyΦy, (2.7.5)

where the matrix M describes the couplings between lattice points. Diagonalizing
this matrix by a unitary transformation U one has

M = U†DU . (2.7.6)

Introducing

Φ′
x = UxyΦy (2.7.7)

one obtains

Z =
∏

x

∫

dΦ′
x exp(−1

2

∑

x

Φ′
xDxxΦ′

x) = (2π)N/2detD−1/2, (2.7.8)

where N is the number of lattice points.

To extract the energy values of the corresponding quantum Hamilton operator
we need to study the 2-point function of the lattice field

〈ΦxΦy〉 =
1

Z

∫

DΦ ΦxΦy exp(−SE [Φ]). (2.7.9)
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This is most conveniently done by introducing a source field in the partition
function, such that

Z[J ] =

∫

DΦ exp(−SE[Φ] +
∑

x

JxΦx). (2.7.10)

Then the connected 2-point function is given by

〈ΦxΦy〉 − 〈Φ〉2 =
∂2 logZ[J ]

∂Jx∂Jy
|J=0. (2.7.11)

The Boltzmann factor characterizing the problem with the external sources is
given by the exponent

1

2
ΦMΦ − JΦ =

1

2
Φ′MΦ′ − 1

2
JM−1J. (2.7.12)

Here we have introduced
Φ′ = Φ −M−1J. (2.7.13)

Integrating over Φ′ in the path integral we obtain

Z[J ] = (2π)N/2detD−1/2 exp(
1

2
JM−1J), (2.7.14)

and hence

〈ΦxΦy〉 =
1

2
M−1

xy . (2.7.15)

It is instructive to invert the matrix M by going to Fourier space, i.e. by writing

Φx =
1

(2π)d

∫

B
ddp Φ(p) exp(ipx). (2.7.16)

The momentum space of the lattice is given by the Brillouin zone B =] − π, π]d.
For the 2-point function in momentum space one then finds

〈Φ(−p)Φ(p)〉 = [
∑

µ

(2 sin(pµ/2))
2 +m2]−1. (2.7.17)

This is the lattice version of the continuum propagator

〈Φ(−p)Φ((p)〉 = (p2 +m2)−1. (2.7.18)

From the lattice propagator we can deduce the energy spectrum of the lattice the-
ory. For this purpose we construct a lattice field with definite spatial momentum
~p located in a specific time slice

Φ(~p)t =
∑

x

Φ~x,t exp(−i~p · ~x), (2.7.19)
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and we consider its 2-point function

〈Φ(−~p)0Φ(~p)t〉 =
1

2π

∫ π

−π
dpd〈Φ(−p)Φ(p)〉 exp(ipdt). (2.7.20)

Inserting the lattice propagator of eq.(2.7.17) one can perform the integral. One
encounters a pole in the propagator when pd = iE with

(2 sinh(E/2))2 =
∑

i

(2 sin(pi/2))
2 +m2. (2.7.21)

The 2-point function then takes the form

〈Φ(−~p)0Φ(~p)t〉 = C exp(−Et), (2.7.22)

i.e. it decays exponentially with slope E. This allows us to identify E as the
energy of the lattice scalar particle with spatial momentum ~p. In general, E
differs from the correct continuum dispersion relation

E2 = ~p2 +m2. (2.7.23)

Only in the continuum limit, i.e. when E, ~p and m are small in lattice units, the
lattice dispersion relation agrees with the one of the continuum theory.
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Chapter 3

Classical Scalar Field Theory

Scalar fields play an important role in various areas of physics. For example, the
Higgs field of the standard model of particle physics is a scalar field that gives rise
to the spontaneous breakdown of the SU(2)L⊗U(1)Y gauge group to the U(1)em
gauge group of electromagnetism. This is how particles obtain their masses in the
standard model. The lightest strongly interacting particle is the pion that arises
in QCD. The pion is a so-called pseudo-Goldstone boson associated with the
spontaneous breakdown of the approximate global chiral symmetry of QCD. In
chiral perturbation theory, a technique developed by Gasser and Leutwyler, the
pion is described by a scalar field. Furthermore, scalar fields are used to describe
Cooper pairs of electrons in the condensed matter physics of superconductors.
In that case, the scalar field dynamics leads to the spontaneous breaking of the
U(1)em gauge symmetry itself. Besides being physically relevant, scalar fields are
simpler to handle theoretically than fermion fields or gauge fields. This is the main
reason why we begin our investigation of quantum field theory using scalar fields.
It should be mentioned that there are reasons to believe that truly elementary
scalar fields may not even exist. For example, the scalar field describing Cooper
pairs is composed of electron fields. Similarly, at a more fundamental level the
pion field of chiral perturbation theory is composed of quark-, antiquark-, and
gluon fields. It is likely that the Higgs field of the standard model is also not
truly fundamental. Since the Higgs particle has not yet been observed, this is
remains an open question.

29
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3.1 Scalar Fields

Scalar fields transform trivially under space-time transformations. In particular,
they are invariant under Lorentz transformations. As a consequence, unlike vector
fields, scalar fields do not carry any Lorentz indices. Still, scalar fields may
transform non-trivially under certain internal symmetries. Such symmetries give
rise to conserved charges which could be coupled to gauge fields. The simplest
scalar field is neutral and has no additional indices. It is simply described by a
single real number per space-time point x. A charged scalar field, such as the
one representing a Cooper pair of electrons, is described by a complex number
per space-time point. The scalar Higgs field of the standard model is a complex
doublet. It is described by two complex (or alternatively four real) numbers per
space-time point. Finally, the pion field of chiral perturbation theory has three
internal degrees of freedom. It is described by a special unitary 2 × 2 matrix
U(x) ∈ SU(2) (i.e. with determinant 1) per space-time point x.

Let us consider an N -component scalar field φi(x) with i ∈ {1, 2, ..., N}. A
neutral scalar field corresponds to N = 1, while a charged scalar field corresponds
to N = 2. In case of the standard model Higgs field one has N = 4. The
Lagrangian of the corresponding scalar field theory is given by

L(φ, ∂µφ) =
1

2

N
∑

i=1

∂µφ
i∂µφi − V (φ). (3.1.1)

Here

V (φ) =
m2

2
φ2 +

λ

4!
φ4, φ(x)2 =

N
∑

i=1

φi(x)2, (3.1.2)

is a scalar potential that contains the so-called bare mass m of the field as well as
the bare coupling constant λ of its self-interaction. Bothm and λ get renormalized
in the quantized theory. At this point we consider the theory at the classical level.
The classical equation of motion for scalar field theory is given by

∂µ
δL
δ∂µφi

− δL
δφi

= ∂µ∂
µφi +

dV (φ)

dφi
= ∂µ∂

µφi +m2φi +
λ

3!
φ2φi = 0. (3.1.3)

The classical vacuum configuration, i.e. the configuration of lowest energy, is
simply given by φi(x) = 0. Due to the uncertainty principle, the vacuum of scalar
quantum field theory (i.e. its ground state) cannot just be given by φi(x) = 0.
This is in complete analogy to an anharmonic oscillator with potential V (x) =
1
2mω

2x2 + λ
4!x

4. While the energy of the classical oscillator is minimized for
x = 0, the quantum ground state contains quantum fluctuations around the
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classical vacuum. For example, for the harmonic oscillator (with λ = 0) these
fluctuations are described by a Gaussian wave function. Let us also look for
non-zero solutions of the equation of motion from above. Due to the nonlinearity
of the equations this is a non-trivial task. The situation simplifies significantly
when we ignore the self-interaction of the scalar field and put λ = 0. The classical
equation of motion of the resulting free field theory

∂µ∂
µφi +m2φi = ∂2

t φ
i − ∆φi +m2φi = 0, (3.1.4)

is known as the Klein-Gordon equation. It admits simple plane-wave solutions

φi(x) = φi
0 exp(i(~k · ~x− ωt)), (3.1.5)

which obey the relativistic dispersion relation

ω2 = k2 +m2. (3.1.6)

Here E = ~ω and ~p = ~~k can be identified as the energy and the momentum of
a relativistic free particle with energy-momentum relation

E2 = p2c2 + (mc2)2. (3.1.7)

Since we have put ~ = c = 1 this is completely consistent with the previous
equation. In particular, the parameter m in the Lagrangian can be identified as
the mass of the resulting free particle. It should be pointed out that the Klein-
Gordon equation admits solutions for both positive and negative energies. Upon
quantization, the latter give rise to anti-particles.

3.2 Noether’s Theorem

The Lagrangian of scalar field theory has an O(N) symmetry, i.e. it is invariant
against rotations

φ(x)′ = Oφ(x). (3.2.1)

Here O is an N × N orthogonal rotation matrix, i.e. OTO = OOT = 1. In
components the previous equations take the form

φi(x)′ =

N
∑

j=1

Oijφ
j(x),

N
∑

j=1

OT
ijOjk =

N
∑

j=1

OjiOjk = δik. (3.2.2)

Symmetries are always important because they give rise to conserved quantum
numbers. It should be noted that the O(N) symmetry of our scalar field theory
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is global, i.e. the symmetry transformations O do not depend on space or time.
This is in contrast to gauge theories in which symmetries are realized locally.
Gauge theories have conserved charges. For example, electric charge is conserved
both in classical and in quantum electrodynamics. In classical electrodynamics
charge conservation is encoded in the continuity equation ∂µj

µ = 0 for the elec-
tromagnetic current jµ(x) = (ρ(x),~j(x)). Here ρ(x) and ~j(x) are the charge and
current densities, respectively.

The O(N) symmetry of scalar field theory also gives rise to a conserved cur-
rent. In order to derive this current we now consider local O(N) transformations

φ(x)′ = O(x)φ(x). (3.2.3)

Interestingly, the potential contribution to the Lagrangian V (φ) is invariant even
against these local O(N) transformations. This follows simply from

φ(x)′2 = φ(x)O(x)TO(x)φ(x) = φ(x)2. (3.2.4)

Next we will compute the variation of the kinetic contribution to the Lagrangian
with respect to infinitesimal local O(N) transformations

O(x) = 1 + ǫ(x). (3.2.5)

The orthogonality of O(x) implies

O(x)TO(x) = [1 + ǫ(x)T ][1 + ǫ(x)] ≈ 1 + ǫ(x) + ǫ(x)T = 1 ⇒
ǫ(x)T = −ǫ(x). (3.2.6)

The infinitesimally transformed scalar field takes the form

φ(x)′ = [1 + ǫ(x)]φ(x), (3.2.7)

and hence
∂µφ(x)′ = ∂µφ(x) + ∂µǫ(x)φ(x) + ǫ(x)∂µφ(x). (3.2.8)

Consequently, one now obtains

∂µφ
′∂µφ′ = ∂µφ∂

µφ+ ∂µφ∂
µǫφ+ ∂µφǫ∂µφ

+ φ∂µǫ
T∂µφ+ ∂µφǫ

T∂µφ

= ∂µφ∂
µφ+ ∂µφ∂

µǫφ− φ∂µǫ∂
µφ, (3.2.9)

and the variation of the action under local infinitesimal O(N) transformations
takes the form

S[φ′] − S[φ] =

∫

d4x [L(φ′, ∂µφ
′) − L(φ, ∂µφ)] =

−
∫

d4x

N
∑

i,j=1

∂µǫijj
µij =

∫

d4x

N
∑

i,j=1

ǫij∂µj
µij , (3.2.10)
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with the O(N) Noether current given by

jµij = φi∂µφj − φj∂µφi. (3.2.11)

Indeed, the current is conserved, i.e. ∂µj
µij = 0, as a consequence of the classical

equations of motion. This follows directly from

∂µj
µij = ∂µ[φi∂µφj − φj∂µφi] = φi∂µ∂

µφj − φj∂µ∂
µφi

= −φidV (φ)

dφj
+ φj dV (φ)

dφi

= φi[m2φj +
λ

3!
φ2φj ] − φj [m2φi +

λ

3!
φ2φi] = 0. (3.2.12)

Note that the derivation of current conservation is similar to the one for the
probability current in ordinary quantum mechanics.
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Chapter 4

Canonical Quantization of a

Scalar Field

Canonical quantization of field theory is a rather tedious approach. Therefore we
will concentrate on the path integral for the rest of this course. However, canon-
ical quantization has the advantage that it is rather similar to Schrödinger’s
approach to quantum mechanics which we are very familiar with. Here we con-
sider the canonical quantization of a free 1-component scalar field, which is fairly
easy to carry out. The complications of canonical quantization versus the path
integral show up only when interactions are included.

4.1 From the Lagrange to the Hamilton Density

Let us consider a 1-component real scalar field φ(x) with the Lagrange density

L(φ, ∂µφ) =
1

2
∂µφ∂

µφ− m2

2
φ2. (4.1.1)

The canonically conjugate momentum to the field φ(x) is given by

Π(x) =
δL

δ∂0φ(x)
= ∂0φ(x), (4.1.2)

which is just the time-derivative of φ(x). The classical Hamilton density is given
by

H(φ,Π) = Π∂0φ− L =
1

2
Π2 +

1

2
∂iφ∂iφ+

m2

2
φ2. (4.1.3)
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Here the index i runs over the spatial directions only. The classical Hamilton
function is the spatial integral of the Hamilton density

H[φ,Π] =

∫

d3x H(φ,Π) =

∫

d3x (
1

2
Π2 +

1

2
∂iφ∂iφ+

m2

2
φ2). (4.1.4)

The Hamilton function is a functional of the classical field φ(~x) and its canonically
conjugate momentum field Π(~x). Upon quantization the Hamilton function will
turn into the Hamilton operator of the corresponding quantum field theory.

4.2 Commutation Relations for Scalar Field Opera-

tors

In the canonical quantization of field theory the field values and their conjugate
momenta become operators acting in a Hilbert space. As we discussed before, the
field value φ(~x) is analogous to the particle coordinate ~x in quantum mechanics.
Similarly, Π(~x) is analogous to the momentum ~p of the particle. In quantum
mechanics position and momentum do not commute

[xi, pj ] = i~δij , [xi, xj] = [pi, pj ] = 0. (4.2.1)

Similarly, (now putting ~ = 1) one postulates the following commutation relations
for the field operators φ(~x) and Π(~y)

[φ(~x),Π(~y)] = iδ(~x − ~y), [φ(~x), φ(~y)] = [Π(~x),Π(~y)] = 0. (4.2.2)

It is important to note that these commutation relations are completely local.
In particular, fields at different points in space commute with each other. In
quantum mechanics the momentum operator is represented as the derivative with
respect to the position

pi =
~

i

∂

∂xi
. (4.2.3)

Similarly, the field operator Π(~x) can be written as

Π(~x) = −i ∂

∂φ(~x)
, (4.2.4)

i.e. as a derivative with respect to the field value.
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4.3 Hamilton Operator in Scalar Quantum Field The-

ory

After turning the classical fields into operators it is straightforward to turn the
classical Hamilton function H[φ,Π] into the quantum Hamilton operator

H =

∫

d3x
1

2
(Π2 + ∂iφ∂iφ+m2φ2). (4.3.1)

At this level it should be obvious that quantum field theory is really just quantum
mechanics with infinitely many degrees of freedom (in this case one for each point
~x in space).

As usual, solving this quantum theory amounts to diagonalizing the Hamil-
tonian. For this purpose it is convenient to go to momentum space. Hence, we
introduce Fourier transformed fields

φ̃(~p) =

∫

d3x φ(~x) exp(−i~p · ~x), Π̃(~p) =

∫

d3x Π(~x) exp(−i~p · ~x). (4.3.2)

Note that, unlike φ(~x) and Π(~x), φ̃(~p) and Π̃(~p) are not Hermitean but obey

φ̃(~p)† = φ̃(−~p), Π̃(~p)† = Π̃(−~p). (4.3.3)

Using the commutations relations for φ(~x) and Π(~y) one derives the commutation
relations between φ̃(~p) and Π̃(~q) as

[φ̃(~p), Π̃(~q)] = i(2π)3δ(~p + ~q), [φ̃(~p), φ̃(~q)] = [Π̃(~p), Π̃(~q)] = 0. (4.3.4)

Similarly, one can now write the Hamilton operator as

H =
1

(2π)3

∫

d3p
1

2
(Π̃†Π̃ + (~p2 +m2)φ̃†φ̃). (4.3.5)

This Hamiltonian is reminiscent of the one for the harmonic oscillator with ω =
√

~p2 +m2 playing the role of the frequency. This suggests to introduce creation
and annihilation operators a(~p)† and a(~p) as

a(~p) =
1√
2
[
√
ωφ̃(~p) +

i√
ω

Π̃(~p)], a(~p)† =
1√
2
[
√
ωφ̃(~p)† − i√

ω
Π̃(~p)†], (4.3.6)

which obey the commutation relations

[a(~p), a(~q)†] =
i

2
[Π̃(~p), φ̃(−~q)] − i

2
[φ̃(~p), Π̃(−~q)] = (2π)3δ(~p − ~q),

[a(~p), a(~q)] = [a(~p)†, a(~q)†] = 0. (4.3.7)



38 CHAPTER 4. CANONICAL QUANTIZATION OF A SCALAR FIELD

In terms of these operators, the Hamiltonian takes the form

H =
1

(2π)3

∫

d3p
√

~p2 +m2(a(~p)†a(~p) +
1

2
V ). (4.3.8)

The volume factor arises from

δ(~p) =
1

(2π)3

∫

d3x exp(−i~p · ~x) ⇒ (2π)3δ(~0) =

∫

d3x 1 = V. (4.3.9)

4.4 Vacuum and Particle States

In analogy to a single harmonic oscillator, the vacuum state |0〉 of the scalar field
theory is determined by

a(~p)|0〉 = 0, (4.4.1)

for all ~p. The vacuum is indeed an eigenstate of the Hamiltonian from above with
the energy

E =
1

(2π)3
1

2
V

∫

d3p
√

~p2 +m2. (4.4.2)

The volume factor represents a harmless infrared divergence. It is natural in a
field theory that the energy of the vacuum is proportional to the spatial volume.
However, even the energy density

E

V
=

1

(2π)3
1

2

∫

d3p
√

~p2 +m2 =
1

4π2

∫ ∞

0
dp p2

√

~p2 +m2, (4.4.3)

is still divergent in the ultraviolet. This is a typical short-distance (i.e. high-
momentum) divergence of field theory. The theory must be regularized in order
to make the vacuum energy density finite. This can be achieved, for example, by
introducing a momentum cut-off Λ. The regularized vacuum energy density

ρ =
E

V
=

1

4π2

∫ Λ

0
dp p2

√

~p2 +m2 ∼ Λ4, (4.4.4)

of course, again diverges in the limit Λ → ∞. The vacuum energy of field theory
gives rise to one of the greatest mysteries in physics — the cosmological constant
problem. When one couples classical gravity, i.e. Einstein’s general relativity, to
quantum field theory, the vacuum energy manifests itself as a cosmological con-
stant. Recent observations have shown that the cosmological constant in Nature
is extremely small but still positive. This leads to an accelerated expansion of the
Universe, instead of the deceleration expected for a matter-dominated Universe.
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Understanding the origin of the vacuum energy density is one of the most chal-
lenging questions in physics today. A naive consideration from field theory would
perhaps identify the cut-off Λ with the Planck scale MP = 1/

√
G ≈ 1018GeV,

at which quantum effects of gravity become important. Here G is Newton’s con-
stant. Hence, a naive field theoretical estimate of the cosmological constant is
about

ρtheory ≈M4
P . (4.4.5)

The observed cosmological constant, on the other hand, is

ρobservation ≈ (10−3eV)4, (4.4.6)

such that
ρtheory

ρobservation
≈ 10120. (4.4.7)

This is presumably the greatest discrepancy between theory and observation ever
encountered in all of physics. To explain this discrepancy is the essence of the
cosmological constant problem.

From a pure particle physics point of view, i.e. ignoring the gravitational
effect of the vacuum energy, the divergence of ρ is rather harmless. In particular,
the energies of particles (which are excitations above the vacuum) are differences
between the energy of an excited state and the ground state (the vacuum). In
these energy differences the divergent factor drops out. In particular, the single
particle states of the theory are given by

|~p〉 = a(~p)†|0〉, (4.4.8)

with an energy
E(~p) = ω =

√

~p2 +m2. (4.4.9)

This is indeed the energy of a free particle with rest mass m and momentum ~p.
More precisely, E(~p) is the finite energy difference between the divergent energy
of the excited state and the ground state. Multi-particle states can be obtained
by acting with more than one particle creation operator on the vacuum state.
For example, the 2-particle states are obtained as

|~p1, ~p2〉 = a(~p1)
†a(~p2)

†|0〉, (4.4.10)

Since [a(~p1)
†, a(~p2)

†] = 0 one finds

|~p2, ~p1〉 = |~p1, ~p2〉, (4.4.11)

i.e. the 2-particle state is symmetric under particle permutation. The same is
true for multi-particle states. This shows that the scalar particles of our field
theory are indeed indistinguishable identical bosons.
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4.5 The Momentum Operator

Let us also consider the momentum operator of our theory. Energy and momen-
tum are components of the so-called energy-momentum tensor

θµν = ∂µφ∂νφ− gµνL. (4.5.1)

The Hamilton density from before is given by

H = θ00 = ∂0φ∂0φ− g00L = Π2 − L. (4.5.2)

Similarly, the momentum density is given by

P = θ0i = ∂0φ∂iφ− g0iL = Π∂iφ. (4.5.3)

Accordingly, in quantum field theory, a Hermitean momentum operator is con-
structed as

Pi =

∫

d3x
1

2
(Π∂iφ+ ∂iφΠ)

=
1

(2π)3

∫

d3p ipi
1

2
(Π̃(~p)φ̃(−~p) + φ̃(−~p)Π̃(~p))

=
1

(2π)3

∫

d3p pia(~p)
†a(~p). (4.5.4)

The vacuum |0〉 is an eigenstate of the momentum operator with eigenvalue ~0.
Hence, as one would expect, the vacuum has zero momentum and is, consequently,
translation invariant. The single particle states are again eigenstates,

~P |~p〉 = ~p|~p〉, (4.5.5)

which shows that ~p is indeed the momentum of the particle.



Chapter 5

Path Integral for Scalar Field

Theory

As we have seen, the quantum mechanical path integral is particularly well de-
fined in Euclidean time. Even the path integral in Minkowski real-time requires
an infinitesimal excursion into the complex time plane. In addition, the Euclidean
path integral is intimately related to quantum statistical mechanics. Hence, we
now consider quantum field theory in the framework of the Euclidean path in-
tegral. This has the additional advantage that this formulation also works be-
yond perturbation theory. In particular, lattice field theory is also formulated in
Euclidean time. Just like the paths of a particle contributing to the quantum
mechanical path integral in Euclidean time, Euclidean fields themselves are not
directly physical objects. Instead they just serve as integration variables which
allow us to derive physical quantities such as particle masses and coupling con-
stants. There is a rigorous connection between the Euclidean time path integral
and the real world. In particular, it yields the same physical results as the path
integral formulated in Minkowski space-time. However, one should not confuse
the Euclidean field configurations with time-evolutions of physical fields in real
time.

5.1 From Minkowski to Euclidean Space-Time

Let us start from the Lagrangian of a scalar field in Minkowski space-time

L(φ, ∂µφ) =
1

2
∂µφ∂

µφ− V (φ) =
1

2
(∂tφ∂tφ− ∂iφ∂iφ) − V (φ), (5.1.1)

41



42 CHAPTER 5. PATH INTEGRAL FOR SCALAR FIELD THEORY

which gives rise to the action

S[φ] =

∫

dtd3x L(φ, ∂µφ). (5.1.2)

The path integral in Minkowski space-time is given by the formal expression

Z =

∫

Dφ exp(iS[φ]). (5.1.3)

We now analytically continue the time coordinate to purely imaginary values

x4 = it. (5.1.4)

The Lagrangian then takes the form

L(φ, ∂µφ) = −[
1

2
(∂4φ∂4φ+ ∂iφ∂iφ) + V (φ)] = −[

1

2
∂µφ∂µφ+ V (φ)]. (5.1.5)

In Euclidean space-time the distinction between co- and contra-variant indices
is no longer necessary because the metric is simply given by gµν = δµν . Due to
the time-integration the action picks up an additional factor i and now takes the
form

S[φ] = i

∫

d4x [
1

2
∂µφ∂µφ+ V (φ)], (5.1.6)

where d4x = dx4d
3x. The path integral in Euclidean time now takes the form

Z =

∫

Dφ exp(−SE[φ]), (5.1.7)

with the Euclidean action given by

SE[φ] =

∫ β

0
dx4

∫

d3x [
1

2
∂µφ∂µφ+ V (φ)]. (5.1.8)

We have introduced a finite extent β = 1/T of the periodic Euclidean time dimen-
sion, which puts the field theory at the finite temperature T . The path integral
Z is nothing but the corresponding partition function of quantum statistical me-
chanics. It should be noted that, as it stands, the path integral Z is a highly
divergent formal expression which needs to be regularized and properly renormal-
ized. We have already seen how this can be done nonperturbatively by using the
lattice regularization. While it is unavoidable in nonperturbative calculations,
for perturbative calculations the lattice regularization is not the most convenient
choice. It is much simpler to use dimensional regularization, i.e. an analytic con-
tinuation in the dimension of space-time. This is what we will concentrate on in
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what follows. From now on we will keep the space-time dimension d as a contin-
uous complex parameter. Then the formal expression for the Euclidean action
reads

SE[φ] =

∫

ddx [
1

2
∂µφ∂µφ+ V (φ)], (5.1.9)

and the corresponding partition function — including an external field j(x) —
takes the form

Z[j] =

∫

Dφ exp(−SE[φ] +

∫

ddx jφ). (5.1.10)

Of course, one should not forget that this approach is limited to perturbation
theory, and does not define quantum field theory nonperturbatively.

5.2 Euclidean Propagator and Contraction Rule

In Euclidean field theory, physical information is extracted from n-point correla-
tion functions, which correspond to vacuum expectation values of time-ordered
products of field operators

〈0|Tφ(x1)φ(x2)...φ(xn)|0〉 =
1

Z

∫

Dφ φ(x1)φ(x2)...φ(xn) exp(−SE[φ]). (5.2.1)

For example, the 2-point function can be obtained as

〈0|Tφ(x1)φ(x2)|0〉 =
1

Z

∫

Dφ φ(x1)φ(x2) exp(−SE [φ])

=
1

Z

d2Z[j]

dj(x1)dj(x2)
|j=0. (5.2.2)

In complete analogy to the lattice calculation discussed before, for a free scalar
field one obtains

Z[j] = Z exp[
1

2

∫

ddxddy j(x)G(x − y)j(y)], (5.2.3)

where G(x) is the Euclidean propagator. In momentum space it takes the form

G(p) =

∫

ddx G(x) exp(−ipx) =
1

p2 +m2
. (5.2.4)

For a free field the n-point functions are simply related to the 2-point function.
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For example, the 4-point function takes the form

〈0|Tφ(x1)φ(x2)φ(x3)φ(x4)|0〉 =

1

Z

∫

Dφ φ(x1)φ(x2)φ(x3)φ(x4) exp(−SE [φ]) =

1

Z

d4Z[j]

dj(x1)dj(x2)dj(x3)dj(x4)
|j=0. (5.2.5)

Using eq.(5.2.3) one finds

〈0|Tφ(x1)φ(x2)φ(x3)φ(x4)|0〉 = G(x1 − x2)G(x3 − x4) +

G(x1 − x3)G(x2 − x4) +G(x1 − x4)G(x2 − x3). (5.2.6)

In a Feynman diagram the propagators are represented as lines connecting the
external points xi. This is an example of a general contraction rule for n-point
functions with even n (the n-point functions for odd n simply vanish)

〈0|Tφ(x1)φ(x2)...φ(xn)|0〉 =
∑

contractions

G(xi1 − xi2)G(xi3 − xi4)...G(xin−1
− xin).

(5.2.7)
The sum extends over all partitions of the indices 1, 2, ..., n into pairs (i1, i2),
(i3, i4), ..., (in−1, in). There are (n− 1)!! = 1 · 3 · 5 · ... · (n− 1) such pairings. For
n = 4 there are indeed (4 − 1)!! = 1 · 3 = 3 contractions.

5.3 Perturbative Expansion of the Path Integral

Let us divide the Euclidean action into a free and an interacting part

SE [φ] = Sf [φ] + Si[φ] (5.3.1)

with

Sf [φ] =

∫

ddx
1

2
[∂µφ∂µφ+m2φ2], (5.3.2)

and

Si[φ] =

∫

ddx
1

4!
φ4. (5.3.3)

The interaction term makes it impossible to compute the full path integral an-
alytically because it is no longer Gaussian. In perturbation theory one assumes
that the coupling constant λ is small and one expands

exp(−SE[φ]) = exp(−Sf [φ])[1 + Si[φ] +
1

2
Si[φ]2 + ...]. (5.3.4)
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Inserting this expansion into the path integral, the expression for the n-point
function takes the form

〈0|Tφ(x1)φ(x2)...φ(xn)|0〉 =
1

Z

∫

Dφ φ(x1)φ(x2)...φ(xn) ×
∞
∑

k=0

λk

(4!)kk!

∫

ddv1d
dv2...d

dvk φ(v1)
4φ(v2)

4...φ(vk)4 exp(−Sf [φ]). (5.3.5)

This expression is similar to the one for the n-point function in the free theory.
However, in addition to the external points x1, x2, ..., xn, we now also have k
internal points v1, v2, ..., vk whose positions are independently integrated over all
of space-time and which are known as interaction vertices. These are the points
at which the field φ experiences its self-interaction.

As before, we can apply the contraction rule. However, we now have four
fields φ(vi) at each interaction vertex. Correspondingly, there are now contrac-
tions that connect a vertex back to itself via a propagator G(vi − vi) = G(0). In
a Feynman diagram such propagators appear as internal lines, while the prop-
agators connected to external points xi are denoted as external lines. In four
dimensions the propagator at zero distance G(0) is an ultraviolet divergent quan-
tity. This divergence is regularized by analytically continuing the dimension of
space-time.

5.4 Dimensional Regularization

Let us consider the propagator in d-dimensional space-time

G(x) =
1

(2π)d

∫

ddp
exp(ipx)

p2 +m2
. (5.4.1)

Using

1

p2 +m2
=

∫ ∞

0
exp(−t(p2 +m2)), (5.4.2)
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we can write

G(x) =
1

(2π)d

∫ ∞

0
exp(−tm2)

∫

ddp exp(ipx− tp2)

=
1

(2π)d

∫ ∞

0
exp(−tm2 − x2

4t
)

∫

ddq exp(−tq2)

=
1

(4π)d/2

∫ ∞

0
t−d/2 exp(−tm2 − x2

4t
)

=
1

(2π)d/2
md−2(m|x|)1−d/2K1−d/2(m|x|). (5.4.3)

Here Kν(z) is a Bessel function. For |x| 6= 0 the propagator is finite for any value
of d. However, for |x| = 0 we have

G(0) =
1

(4π)d/2

∫ ∞

0
t−d/2 exp(−tm2) =

1

(4π)d/2
md−2Γ(1 − d

2
), (5.4.4)

which diverges for d = 2, 4, 6, ... but is regular for other values of the space-time
dimension. It should be noted that the above integral over t converges only for
d < 2. However, the result of the integral can still be analytically continued to
general d, except to even integer dimensions. Near d = 4 the Γ-function takes
the form

Γ(1 − d

2
) =

2

d− 4
− Γ′(1) − 1 + O(d− 4), (5.4.5)

which reveals the ultraviolet singularity as a pole in the space-time dimension at
d = 4. Of course, the analytic continuation in the space-time dimension is just
a mathematical trick that makes the propagator well-defined in the ultraviolet
limit. Unlike the lattice regularization, dimensional regularization is difficult to
interpret physically. Still, it is a rather elegant way to make the formal expressions
of continuum field theory mathematically well-defined — at least in perturbation
theory. Furthermore, it yields the same results in the perturbative continuum
limit as e.g. the lattice regularization or other regularization schemes, but is much
easier to handle. It is remarkable and reassuring that the physics is ultimately
regularization-independent.

5.5 The 2-Point Function to Order λ

We will now use perturbation theory to evaluate the 2-point function to order λ.
One obtains

〈0|Tφ(x1)φ(x2)|0〉 =
1

Z

∫

Dφ φ(x1)φ(x2)[1 − λ

4!

∫

ddv1 φ(v)4] exp(−Sf [φ]).

(5.5.1)
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Also the partition function itself must be expanded accordingly, i.e.

Z =

∫

Dφ [1 − λ

4!

∫

ddv φ(v)4] exp(−Sf [φ]), (5.5.2)

which implies

〈0|Tφ(x1)φ(x2)|0〉 =
1

Zf

∫

Dφ φ(x1)φ(x2) exp(−Sf [φ])

− 1

Zf

∫

Dφ φ(x1)φ(x2)
λ

4!

∫

ddv φ(v)4 exp(−Sf [φ])

+
1

Zf

∫

Dφ λ

4!

∫

ddv φ(v)4 exp(−Sf [φ])

× 1

Zf

∫

Dφ φ(x1)φ(x2) exp(−Sf [φ]). (5.5.3)

Here

Zf =

∫

Dφ exp(−Sf [φ]), (5.5.4)

is the partition function of the free theory. The first term in eq.(5.5.3) is the
free propagator, and the other terms are corrections of order λ. Let us use
the contraction rule to evaluate these terms. In the second term φ(x1) can be
contracted either with φ(x2) or with one of the factors in φ(v)4, for which there
are four possibilities. Hence, we obtain

1

Zf

∫

Dφ φ(x1)φ(x2)

∫

ddv φ(v)4 exp(−Sf [φ]) =

G(x1 − x2)
1

Zf

∫

Dφ
∫

ddv φ(v)4 exp(−Sf [φ]) +

∫

ddv G(x1 − v)
1

Zf

∫

Dφ φ(x2)φ(v)3 exp(−Sf [φ]). (5.5.5)

In the last term there are three ways to contract φ(x2) with one of the factors in
φ(v)3 such that

1

Zf

∫

Dφ φ(x2)φ(v)3 exp(−Sf [φ]) = 3G(v − x2)G(0). (5.5.6)

Similarly, by putting x2 = v in this expression, we obtain

1

Zf

∫

Dφ φ(v)4 exp(−Sf [φ]) = 3G(0)2. (5.5.7)
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Inserting these relations into eq.(5.5.5) one finds

1

Zf

∫

Dφ φ(x1)φ(x2)

∫

ddv φ(v)4 exp(−Sf [φ]) =

3G(x1 − x2)G(0)2
∫

ddv 1 + 3G(0)

∫

ddv G(x1 − v)G(v − x2). (5.5.8)

Similarly, the last term in eq.(5.5.3) gives rise to

1

Zf

∫

Dφ
∫

ddv φ(v)4 exp(−Sf [φ]) ×

1

Zf

∫

Dφ φ(x1)φ(x2) exp(−Sf [φ]) = 3G(x1 − x2)G(0)2
∫

ddv 1. (5.5.9)

It should be noted that, like another term obtained before, this term is infrared
divergent, i.e. it goes to infinity with the space-time volume

∫

ddv 1. However,
the two infrared divergent terms cancel. Both terms arise from so-called vacuum
bubble diagrams. In those diagrams there are pieces completely disconnected
from any external point xi. In that case, the integral over the corresponding
vertex vk is unsuppressed and diverges with the space-time volume. One can prove
that the contributions of vacuum bubbles to general n-point functions always
cancel. We will not present the formal proof for this, but we will use this result
and always drop vacuum bubble diagrams.

Putting everything together, one thus obtains

〈0|Tφ(x1)φ(x2)|0〉 = G(x1 − x2) −
λ

2
G(0)

∫

ddv G(x1 − v)G(v − x2). (5.5.10)

The integral over v corresponds to a convolution in coordinate space, which after
a Fourier transform turns into a simple product in momentum space. Hence, in
momentum space the previous equation takes the form

G′(p) =
1

p2 +m2
− λ

2
G(0)

1

(p2 +m2)2
+ O(λ2) =

1

p2 +m′2
+ O(λ2). (5.5.11)

Here G′(p) is the full propagator to order λ and m′ is the mass also corrected to
that order. One reads off

m′2 = m2 +
λ

2
G(0) = m2 +

λ

2

1

(4π)d/2
md−2Γ(1 − d

2
). (5.5.12)
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5.6 Mass Renormalization

We have seen that the mass m of the free scalar particle changes to m′ when the
φ4 interaction is taken into account at leading order in λ. Although eq.(5.5.12)
yields a finite value for m′ for almost all values of d, m′ still diverges when one
approaches the physical space-time dimension d = 4. This is a manifestation of
the ultraviolet divergences of field theory which, unlike infrared divergences, do
not simply cancel. In particular, as it stands, the expression form′ still diverges in
the physical limit. To cure this problem, in addition to regularizing the ultraviolet
divergence (in this case, by an analytic continuation in the dimension of space-
time), we must now renormalize the bare mass parameter m. As we have seen,
in the presence of the φ4 interaction, to order λ, the physical mass is now m′

and no longer m. Hence, m′ is physical and should thus be finite, while m is a
so-called bare (i.e. unrenormalized) parameter that appears in the Lagrangian,
but has no direct physical meaning. Renormalization of the mass means that we
let the unphysical bare parameter m depend on the cut-off parameter (i.e. in this
case on d − 4) such that the physical renormalized mass m′ remains fixed. In
particular, we now put

m2 = m′2 − λ

2
G(0) = m′2 − λ

2

1

(4π)d/2
m′d−2Γ(1 − d

2
)

= m′2 − λ

2

1

(4π)d/2
m′d−2[

2

d− 4
− Γ′(1) − 1 + O(d− 4)], (5.6.1)

which means that m depends on d. In particular, now m2 diverges (it has a pole
at d = 4) while the physical mass m′ remains finite.

At the end we have traded an unphysical bare parameter m for a physical
mass m′. However, the theory itself does not predict the physical value of the
mass. Just as we could choose any value of m in the free theory, we can now
choose any value of m′ for the interacting theory.

5.7 Connected and Disconnected Diagrams

It is useful to classify Feynman diagrams according to their topology. An n-
point function 〈0|Tφ(x1)φ(x2)...φ(xn)|0〉 is represented by diagrams with n ex-
ternal points xi, a number k of internal vertices at points vi, and a number
of propagators represented by lines connecting the points. There is one line
emanating from each external point and there are four lines running into each
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vertex. Vertices that are not connected directly or indirectly to any external
points belong to vacuum bubbles. Feynman diagrams that contain vacuum bub-
bles cancel and thus need not be considered. In the following we limit ourselves
to diagrams without vacuum bubbles. Such diagrams decompose into various
connected pieces. A connected piece is characterized by the set of external points
that it contains. Those are connected to each other by propagators either di-
rectly or indirectly via some vertices. All vertices belong to some connected
piece, otherwise there would be vacuum bubbles. A Feynman diagram that con-
tains more than one connected piece is called disconnected. The contribution of
such a diagram to the n-point function factorizes into contributions from each
individual connected piece. Hence, the problem of computing a general n-point
function reduces to the evaluation of connected diagrams. For example, the 2-
point function 〈0|Tφ(x1)φ(x2)|0〉 automatically receives contributions from con-
nected diagrams only. The 4-point function 〈0|Tφ(x1)φ(x2)φ(x3)φ(x4)|0〉, on the
other hand, gets contributions from various connected pieces corresponding to the
partitions [(x1, x2), (x3, x4)], [(x1, x3), (x2, x4)], [(x1, x4), (x2, x3)], as well as from
contributions in which all four external points are connected with each other.

A useful category of connected diagrams are the 1-particle irreducible ones.
Those remain connected when any single propagator line in the diagram is cut.
Diagrams that fall apart into two disconnected pieces under the cutting operation
are 1-particle reducible. The full 2-point function gets contributions from chains
of 1-particle irreducible subgraphs connected by single propagators. These terms
build a geometric series. The first term of the series is the free propagator (p2 +
m2)−1. The second term contains the remaining 1-particle irreducible diagrams
and takes the form −(p2 +m2)−1Σ(p2)(p2 +m2)−1, where Σ(p2) is the so-called
self-energy. The third term is given by (p2 +m2)−1Σ(p2)(p2 +m2)−1Σ(p2)(p2 +
m2)−1, etc., such that the full propagator is given by

G′(p) =
1

p2 +m2
− 1

p2 +m2
Σ(p2)

1

p2 +m2

+
1

p2 +m2
Σ(p2)

1

p2 +m2
Σ(p2)

1

p2 +m2
− ...

=
1

p2 +m2

1

1 + Σ(p2)/(p2 +m2)
=

1

p2 +m2 + Σ(p2)
. (5.7.1)

One can now read off the physical mass m′ of the particle from the value p2 =
−m′2 for which the full propagator has a pole, i.e.

m′2 = m2 + Σ(−m′2). (5.7.2)
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The perturbative calculation from before implies

Σ(p2) =
λ

2

1

(4π)d/2
md−2Γ(1 − d

2
) + O(λ2). (5.7.3)

The full propagator can be expanded around the pole at p2 = −m′2 and one
obtains

G′(p) =
Z

p2 +m′2
, (5.7.4)

where Z is the residue of the pole. Expanding

Σ(p2) = Σ(−m′2) + (p2 +m′2)Σ′(−m′2) + ... (5.7.5)

one identifies

Z =
1

1 − Σ′(−m′2)
. (5.7.6)

The factor
√
Z is known as the wave function renormalization constant.

5.8 Feynman Rules for φ4 Theory

It is convenient to consider the Fourier transform of the n-point function

∫

ddx1d
dx2...d

dxn 〈0|Tφ(x1)φ(x2)...φ(xn)|0〉

× exp[i(p1x1 + p2x2 + ...+ pnxn)] =

(2π)dδ(p1 + p2 + ...+ pn)Γ(p1, p2, ..., pn). (5.8.1)

The δ-function results from translation invariance. Dropping Feynman diagrams
containing vacuum bubbles or disconnected pieces, in perturbation theory one
then obtains

(2π)dδ(p1 + p2 + ...+ pn)Γ(p1, p2, ..., pn) =

1

Zf

∫

Dφ φ̃(p1)φ̃(p2)...φ̃(pn) exp(−Sf [φ]) ×
∞
∑

k=0

(−λ)k

(4!)kk!

∫

ddv1d
dv2...d

dvk φ(v1)
4φ(v2)

4...φ(vk)4. (5.8.2)

Here φ̃(p) is the Fourier transform of the field φ(x). Since we are interested
in connected diagrams only, we must contract a field φ̃(p) carrying an external
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momentum p with a field φ(v) at an internal vertex v. The resulting contraction
takes the form

1

Zf

∫

Dφ φ̃(p)φ(v) exp(−Sf [φ]) =
exp(ipv)

p2 +m2
. (5.8.3)

In addition, the remaining fields φ(vi) must be contracted among themselves,
which implies

1

Zf

∫

Dφ φ(vi)φ(vj) exp(−Sf [φ]) =
1

(2π)d

∫

ddq
exp(−iq(vi − vj))

p2 +m2
. (5.8.4)

The momentum q associated with the internal line connecting the vertices vi and
vj must be integrated over. After performing the contractions, the positions of
the vertices vi appear only in exponential factors. Hence, when one integrates
over vi one generates a δ-function for the four momenta flowing into that vertex.

These observations lead to the following Feynman rules for the evaluation of
connected n-point functions in a φ4 theory:

• Consider all pairwise contractions in the product of internal and external
fields φ̃(p1)φ̃(p2)...φ̃(pn)φ(v1)

4φ(v2)
4...φ(vk)4 that lead to a connected Feynman

diagram. Each diagram has a multiplicity factor that counts the number of
pairings leading to the same topology of the diagram. Also one must take into
account the factor 1/k!.

• Write down a propagator (p2
i +m2)−1 for each oriented external line.

• Associate a momentum qi with each oriented internal line and write down
a factor (q2i +m2)−1.

• Write down a momentum conserving δ-function (2π)dδ(q1 + q2 + q3 + q4)
for each vertex vi taking into account the orientation of the internal or external
lines. To each vertex is also associated a factor −λ/4!.

• Finally, integrate the resulting expression over all internal momenta, i.e.
write

∫

ddq1...d
dqI/(2π)Id.

The number I of internal lines can be determined as follows. There are four
lines emanating from each vertex, n of which are external. Each internal line
connects two vertices and thus

I =
1

2
(4k − n). (5.8.5)

There are I integrations and k δ-functions. However, one of the δ-functions
reflects translation invariance and will remain in the final result. Hence, only k−1
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δ-functions can be used to perform some integrations trivially. The remaining

l = I − (k − 1) = k + 1 − n

2
(5.8.6)

integrations determine the number of loops l in the diagram. The number of loops
increases with the order k of the expansion and also depends on the number of
external momenta n of the n-point function. For example, at order λ (i.e. for
k = 1) a 2-point function (with n = 2) receives a 1-loop contribution, while at the
same order a 4-point function has no contributions from loop diagrams. Diagrams
without loops (i.e. with l = 0) are called tree diagrams. The main difficulty in
evaluating Feynman diagrams is to perform the loop-integrations over internal
momenta. While tree diagrams are easy to evaluate, multi-loop diagrams are
much harder to deal with.

5.9 The 4-Point Function to Order λ2

Let us begin with something simple, the tree diagram for the 4-point function.
There is just one vertex and all four external momenta flow into that vertex.
There are four possible contractions for the external line with momentum p1,
three remaining possible contractions for the external line with momentum p2,
two remaining possible contractions for the external line with momentum p3, and
finally only one possible contraction for the external line with momentum p4.
Hence, the multiplicity factor is 4 × 3 × 2 = 4!. Following the Feynman rules we
obtain

(2π)dδ(p1 + p2 + p3 + p4)Γ(p1, p2, p3, p4) =

4!
1

(p2
1 +m2)(p2

2 +m2)(p2
3 +m2)(p2

4 +m2)
×

(−λ)

4!
(2π)dδ(p1 + p2 + p3 + p4), (5.9.1)

such that

Γ(p1, p2, p3, p4) = − λ

(p2
1 +m2)(p2

2 +m2)(p2
3 +m2)(p2

4 +m2)
. (5.9.2)

In the next order k = 2 we need to study the 1-loop diagrams. Now there are
two vertices. If all external lines would flow into the same vertex, the diagram
would be disconnected. Hence, either three or two external lines may run into
the same vertex. First, we consider the case where the external line with the
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momentum p1 runs into one vertex and the other external lines (with momenta
p2, p3, and p4) run into the other vertex. There are 8 possible contractions for
the first external line with momentum p1. Then there are 4 × 3 × 2 possible
contractions of the three other external lines at the other vertex. Finally, there
are 3 contractions for an internal line with momentum q1 connecting the two
vertices and one remaining internal line with momentum q2 leading from the first
vertex back to itself. Hence, the total multiplicity factor is 8×4×3×2×3 = (4!)2.
Following the Feynman rules one obtains the contribution

1

(2π)2d

∫

ddq1d
dq2 (4!)2

1

2!

1

(p2
1 +m2)(p2

2 +m2)(p2
3 +m2)(p2

4 +m2)
×

1

(q21 +m2)(q22 +m2)

(−λ)2

(4!)2
(2π)2dδ(p1 − q2)δ(q2 + p2 + p3 + p4) =

λ2G(0)/2

(p2
1 +m2)2(p2

2 +m2)(p2
3 +m2)(p2

4 +m2)
(2π)dδ(p1 + p2 + p3 + p4). (5.9.3)

The integration over q2 was performed trivially using a δ-function while the inte-
gration over the loop-momentum q1 gives the divergent (but dimensionally reg-
ularized) factor G(0). Similar expressions exist for diagrams where the loop is
attached to the external lines with momenta p2, p3, and p4. These four 1-loop di-
agrams just give rise to the renormalization of the mass of the incoming particles.
Together with the tree diagram they lead to

Γ(p1, p2, p3, p4) = − λ

(p2
1 +m′2)(p2

2 +m′2)(p2
3 +m′2)(p2

4 +m′2)
. (5.9.4)

However, this is not the full answer to order λ2. We also need to take into
account the 1-loop diagrams where two external lines run into the same vertex.
Then there are again 8 possible contractions for the external line with momentum
p1. If the external line with momentum p2 runs into the same vertex there are
3 remaining possible contractions. The external line with momentum p3 has 4
possible contractions at the other vertex, and the external line with momentum
p4 has 3 remaining contractions also at that other vertex. Finally there are
2 possible contractions for internal lines with momenta q1 and q2 connecting
the two vertices. Hence, the total multiplicity factor for this diagram is again
8 × 3 × 4 × 3 × 2 = (4!)2. The Feynman rules lead to the expression

1

(2π)2d

∫

ddq1d
dq2 (4!)2

1

2!

1

(p2
1 +m2)(p2

2 +m2)(p2
3 +m2)(p2

4 +m2)
×

1

(q21 +m2)(q22 +m2)

(−λ)2

(4!)2
(2π)2dδ(p1 + p2 − q1 − q2)δ(q1 + q2 + p3 + p4) =

λ2J(s)/2

(p2
1 +m2)2(p2

2 +m2)(p2
3 +m2)(p2

4 +m2)
(2π)dδ(p1 + p2 + p3 + p4), (5.9.5)
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where

J(p2) =
1

(2π)d

∫

ddq
1

(q2 +m2)((p − q)2 +m2)
. (5.9.6)

We have introduced the so-called Mandelstam variable s = (p1 + p2)
2. There

are two other diagrams with similar topology which depend on the Mandelstam
variables t = (p1 + p3)

2 and u = (p1 + p4)
2. The total contribution to the 4-point

function at the order λ2 takes the form

Γ(p1, p2, p3, p4) = − λ− λ2[J(s) + J(t) + J(u)]/2

(p2
1 +m′2)(p2

2 +m′2)(p2
3 +m′2)(p2

4 +m′2)
. (5.9.7)

5.10 Dimensional Regularization of J(p2)

Just like G(0), J(p2) is divergent in four space-time dimensions and must be
regularized. As before we choose dimensional regularization. In order to evaluate
the corresponding integral we use a trick due to Feynman and Schwinger

1

AB
=

∫ 1

0
dτ

1

[(1 − τ)A+ τB]2
, (5.10.1)

and we write

J(p2) =
1

(2π)d

∫

ddq
1

(q2 +m2)((p − q)2 +m2)

=
1

(2π)d

∫ 1

0
dτ

∫

ddq
1

[(1 − τ)(q2 +m2) + τ((p− q)2 +m2)]2
,

=

∫ 1

0
dτ

1

(2π)d

∫

ddq̃
1

(q̃2 + m̃2)2
. (5.10.2)

In the last step we have shifted the integration variable from q to q̃ = q− τp and
we have introduced m̃2 = m2 − τ(1 − τ)p2. Also using

1

(q̃2 + m̃2)2
=

∫ ∞

0
dt t exp(−t(q′2 +m′2)), (5.10.3)

and performing the d-dimensional Gaussian integral

1

(2π)d

∫

ddq̃ exp(−tq̃2) = (4πt)−d/2, (5.10.4)

one obtains

J(p2) =

∫ 1

0
dτ

∫ ∞

0
dt (4πt)−d/2t exp(−tm̃2)

=
Γ(2 − d

2 )

(4π)d/2

∫ 1

0
dτ m̃d−4 = − 1

8π2(d− 4)
+ ... (5.10.5)
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The expression has a pole at d = 4. The ellipses indicate the remaining finite
piece. It should be noted that the divergent piece is independent of p2.

5.11 Renormalization of the Coupling Constant

Since the divergence of the 4-point function is momentum-independent, it can
be absorbed into a redefinition (a renormalization) of the coupling constant λ.
The coupling depends on the momenta of the interacting particles. Hence, in
order to define the physical coupling in a unique way one must specify a so-called
renormalization condition. The specific form of the renormalization condition is
entirely a matter of convention. It is conventional to define the physical coupling
at the center of the so-called Mandelstam triangle

s = t = u =
4

3
m′2, (5.11.1)

where m′ is the physical renormalized mass. We define the finite part of the
function J(p2) as

J̃(p2) = J(p2) − J(
4

3
m′2), (5.11.2)

and we obtain

Γ(p1, p2, p3, p4) = − λ′ − λ′2[J̃(s) + J̃(t) + J̃(u)]/2

(p2
1 +m′2)(p2

2 +m′2)(p2
3 +m′2)(p2

4 +m′2)
, (5.11.3)

where the physical renormalized coupling constant is given by

λ′ = λ− 3

2
J(

4

3
m′2)λ2 + O(λ3). (5.11.4)

The cut-off is now removed by demanding that the physical coupling constant λ′

remains fixed at the value that describes experiments, while the bare coupling
λ diverges. It is remarkable that the renormalizations of m and λ are sufficient
to make all higher n-point functions finite without further adjustments. In other
words, after fixing the renormalized mass and coupling at their physical values m′

and λ′, all other results of the theory are completely fixed. This implies a large
predictive power of the theory. Just like the classical φ4 theory, the corresponding
quantum field theory has only two free parameters. Quantum field theories with
a finite number of such parameters are called renormalizable.
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5.12 Renormalizable Scalar Field Theories

Let us consider a scalar field theory in d space-time dimensions with a general
polynomial self-interaction potential

V (φ) =
∑

p

gpφ
p. (5.12.1)

The corresponding Euclidean action takes the form

S[φ] =

∫

ddx [
1

2
∂µφ∂µφ+ V (φ)]. (5.12.2)

Since the action enters the Boltzmann factor exp(−S[φ]) in the path integral as an
exponent, it must be dimensionless. Consequently, the field φ has the dimension

dφ =
d− 2

2
. (5.12.3)

For example, in d = 2 a scalar field is dimensionless (dφ = 0), while in d = 4 it
has the dimension of a mass (dφ = 1). Similarly, the coupling constant gp has
the dimension

dgp = d− pdφ = d(1 − p

2
) + p. (5.12.4)

For example, the φ2 term has dimension dg2
= 2 irrespective of the dimension

d. Of course, the prefactor g2 = 1
2m

2 of this term is indeed given by the mass
squared of the scalar particle. It will turn out that theories containing couplings
with negative mass dimension (i.e. dgp < 0) are not renormalizable. Hence,
renormalizability requires

d(1 − p

2
) + p ≥ 0 ⇒ p ≤ 2d

d− 2
. (5.12.5)

As a result, in d = 2 space-time dimensions any polynomial potential (p ≤ ∞)
leads to a renormalizable scalar field theory. In d = 3, on the other hand, renor-
malizability requires p ≤ 6, and in d = 4 dimensions p ≤ 4. In d = 6 we have
p ≤ 3, i.e. a φ3 interaction is formally still renormalizable. However, in the ab-
sense of a stabalizing φ4 term, such a theory has an unstable vacuum and is thus
inconsistent. Consequently, in more than d = 4 dimensions, renormalizable scalar
field theories are necessarily trivial, i.e. they are free field theories because the
potential is limited to at most quadratic terms, which lead to simple Gaussian
integrals.

Let us now derive eq.(5.12.5) by analyzing the degree of divergence of Feyn-
man diagrams. For this purpose we choose a more physical regularization than
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dimensional regularization, which is nothing more (and nothing less) than a very
neat mathematical device. The most natural physical regularization is the one
using a space-time lattice. Here we choose something that is more easy to handle
in the calculation of Feynman diagrams, namely a regularization using a momen-
tum cut-off Λ. In this regularization the integrals over internal momenta qi are
limited to |q| ≤ Λ.

Let us consider a connected Feynman diagram for an n-point function in a
d-dimensional scalar field theory with general polynomial self-interactions. There
are n external lines, kp vertices of type p > 2 (with p lines emanating from them),
and I internal lines. The total number of vertices is k =

∑

p kp and the total
number of lines emanating from these vertices is

∑

p kpp. Hence, the number of
internal lines is given by

I =
1

2
(
∑

p

kpp− n). (5.12.6)

As before, each vertex is associated with a momentum-conserving δ-function,
and, as a manifestation of translation invariance, there is one remaining overall
δ-function. Hence, again there are

l = I − k + 1 (5.12.7)

non-trivial loop integrations. Each integration over an internal line momentum qi
contains a measure factor qd−1

i , and each internal line propagator takes the form
(q2i + m2)−1. We are interested in an upper limit on the degree of ultraviolet
divergence of the Feynman diagram. Hence, we neglect m2 in the propagator
(whoose ultraviolet contributions are dominated by q2i ≈ Λ2) and we replace the
propagator by q−2

i . The so-called superficial degree of divergence is then given
by

δ = dl − 2I =
d− 2

2
(
∑

p

kpp− n) − d
∑

p

kp + d. (5.12.8)

The integral in the corresponding Feynman diagram is convergent if δ < 0, i.e. if

∑

p

[kp(
d− 2

2
p− d)] <

d− 2

2
n− d. (5.12.9)

In order to prevent the superficial degree of divergence to become arbitrarily large
for a large number kp of vertices, i.e. in order for a theory to be renormalizable,
one needs

d− 2

2
p− d ≤ 0 ⇒ p ≤ 2d

d− 2
. (5.12.10)

This is just the condition of eq.(5.12.5). Theories for which p < 2d/(d− 2) for all
vertices are called super-renormalizable. For example, φ4 theory (with p = 4) is
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super-renormalizable in d = 3 space-time dimensions. In four dimensions φ4 the-
ory is still renormalizable because then p = 2d/(d− 2). In a renormalizable (but
not super-renormalizable) theory Feynman diagrams are superficially divergent
if

d− 2

2
n ≤ d. (5.12.11)

For example, in d = 4, 2- and 4-point functions are divergent, but all higher
n-point functions are convergent, while in d = 3 dimensions 6-point functions are
still divergent.
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Chapter 6

Canonical Quantization of

Electrodynamics

In order to get a good intuitive understanding of photons, we first consider the
canonical quantization of the free electromagnetic field. Interactions with scalar
fields will be discussed in the next chapter using the Euclidean path integral.

6.1 From the Lagrange to the Hamilton Density

Let us consider the Lagrange density of the free electromagnetic field

L(Aµ) = −1

4
FµνF

µν , (6.1.1)

where the field strength tensor is given by

Fµν = ∂µAν − ∂νAµ. (6.1.2)

The field strength (and thus the action) is invariant against Abelian gauge trans-
formation

A′
µ = Aµ + ∂µϕ. (6.1.3)

In order to isolate the physical gauge invariant degrees of freedom of the gauge
field we fix the gauge by choosing A0(x) = 0. This leaves a remnant invariance
against time-independent (but still space-dependent) gauge transformations. In
particular, after a time-independent gauge transformation we still have

A′
0 = A0 + ∂0ϕ = A0 = 0. (6.1.4)

61



62CHAPTER 6. CANONICAL QUANTIZATION OF ELECTRODYNAMICS

It is convenient to fix the remnant gauge freedom by choosing the Coulomb gauge

∂iAi = 0, (6.1.5)

at an initial instance of time. Then the electric and magnetic field strengths are
given by

Ei = Fi0 = ∂iA0 − ∂0Ai, Bi =
1

2
εijkFjk = εijk∂jAk, (6.1.6)

and the Lagrange density takes the form

L(Ai) =
1

2
(EiEi −BiBi). (6.1.7)

The canonically conjugate momentum to the vector potential Ai(x) is given by

Πi(x) =
δL

δ∂0Ai(x)
= ∂0Ai(x) = Ei(x), (6.1.8)

which is just the electric field. The classical Hamilton density is given by

H(Ai,Πi) = Πi∂
0Ai − L =

1

2
(ΠiΠi +BiBi) =

1

2
(EiEi +BiBi). (6.1.9)

The classical Hamilton function is the spatial integral of the Hamilton density

H[Ai, Ei] =

∫

d3x H(Ai, Ei) =

∫

d3x
1

2
[E2

i + (εijk∂jAk)
2]. (6.1.10)

The Hamilton function is a functional of the classical field Ai(~x) and its canoni-
cally conjugate momentum field Πi(~x) = Ei(~x). Upon quantization the Hamilton
function will turn into the Hamilton operator of the corresponding quantum field
theory.

As in the canonical quantization of scalar fields we now postulate commutation
relations between the gauge field variables Ai(x) and their canonically conjugate
momenta Πi(x) = Ei(x)

[Ai(~x), Ej(~y)] = iδijδ(~x − ~y), [Ai(~x), Aj(~y)] = [Ei(~x), Ej(~y)] = 0. (6.1.11)

Again, these commutation relations are completely local, i.e. fields at different
points in space commute with each other. The field operator Ei(~x) takes the
form

Ei(~x) = −i ∂

∂Ai(~x)
. (6.1.12)
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6.2 The Hamilton Operator for the Photon Field

We now turn the classical Hamilton functionH[Ai, Ei] into the Hamilton operator

H =

∫

d3x
1

2
[E2

i + (εijk∂jAk)
2]. (6.2.1)

In order to diagonalize the Hamiltonian it is convenient to go to momentum
space. We introduce Fourier transformed fields

Ãi(~p) =

∫

d3x Ai(~x) exp(−i~p · ~x), Ẽi(~p) =

∫

d3x Ei(~x) exp(−i~p · ~x), (6.2.2)

which obey
Ãi(~p)

† = Ãi(−~p), Ẽi(~p)
† = Ẽi(−~p). (6.2.3)

The corresponding commutations relations take the form

[Ãi(~p), Ẽi(~q)] = i(2π)3δijδ(~p + ~q), [Ãi(~p), Ãj(~q)] = [Ẽi(~p), Ẽi(~q)] = 0, (6.2.4)

and the Hamilton operator can be written as

H =
1

(2π)3

∫

d3p
1

2
[Ẽ†

i Ẽi + (εijkpjÃ
†
k)(εilmplÃm)]. (6.2.5)

It is important to note that one must also respect the Coulomb gauge constraint
∂iAi = 0 which in momentum space takes the form

piÃi = 0. (6.2.6)

Hence, the direction of Ãi must be perpendicular to the direction of the momen-
tum pi. For example, when the momentum points in the z-direction, i.e. when
~p = (0, 0, p), there are two linearly independent modes Ãx and Ãy, corresponding
to the two polarization states of an electromagnetic wave or a photon. Using the
gauge constraint we can write

(εijkpjÃ
†
k)(εilmplÃm) = (δjlδkm − δjmδkl)pjplÃ

†
kÃm) = ~p2Ã†

kÃk. (6.2.7)

Hence, keeping in mind that their are only two physical transverse degrees of
freedom for the electromagnetic field, the Hamiltonian takes the form

H =
1

(2π)3

∫

d3p
1

2
(Ẽ†

i Ẽi + ~p2Ã†
i Ãi). (6.2.8)

It should be noted that, for a given momentum ~p, the sum over i is restricted to
the two polarization directions perpendicular to ~p.
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In complete analogy to the canonical quantization of a scalar field, using
ω = |~p|, we now introduce creation and annihilation operators ai(~p)

† and ai(~p) as

ai(~p) =
1√
2
[
√
ωÃi(~p)+

i√
ω
Ẽi(~p)], ai(~p)

† =
1√
2
[
√
ωÃi(~p)

†− i√
ω
Ẽi(~p)

†], (6.2.9)

which obey the commutation relations

[ai(~p), aj(~q)
†] =

i

2
[Ẽi(~p), Ãj(−~q)] −

i

2
[Ãi(~p), Ẽj(−~q)] = (2π)3δijδ(~p − ~q),

[ai(~p), aj(~q)] = [ai(~p)
†, aj(~q)

†] = 0. (6.2.10)

In terms of these operators, the Hamiltonian takes the form

H =
1

(2π)3

∫

d3p |~p|(ai(~p)
†ai(~p) + V ). (6.2.11)

Here V is the spatial volume. Again, the sum over i is restricted to the two
polarization directions perpendicular to the momentum vector ~p.

6.3 Vacuum and Photon States

In complete analogy to the case of a scalar field, the vacuum state of the electro-
magnetic field is determined by

ai(~p)|0〉 = 0, (6.3.1)

for all ~p and all polarizations i. The vacuum is an eigenstate of the Hamiltonian
from above with the energy

E =
1

(2π)3
V

∫

d3p |~p|. (6.3.2)

As usual, the volume factor represents a harmless infrared divergence which dis-
appears when one considers the vacuum energy density

ρ =
E

V
=

1

(2π)3

∫

d3p |~p| =
1

2π2

∫ ∞

0
dp p3. (6.3.3)

As for the scalar field, the vacuum energy is still divergent in the ultraviolet.
When we use a momentum cut-off, the energy density diverges as ρ ∼ Λ4.
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The energies of photons are differences between the energy of an excited state
and the vacuum. In these energy differences the divergent factor drops out. The
single photon states are given by

|~p, i〉 = ai(~p)
†|0〉, (6.3.4)

with an energy
E(~p) = ω = |~p|. (6.3.5)

This is the energy of a free particle with vanishing rest mass and momentum ~p.
Multi-photon states are obtained by acting with more than one creation operator
on the vacuum state. The 2-photon states are obtained as

|~p1, i, ~p2, j〉 = ai(~p1)
†aj(~p2)

†|0〉, (6.3.6)

Since [ai(~p1)
†, aj(~p2)

†] = 0 one has

|~p2, j, ~p1, i〉 = |~p1, i, ~p2, j〉, (6.3.7)

which shows that photons are bosons.

6.4 Electromagnetic Momentum Operator

Let us also consider the momentum operator of our theory. The energy-momen-
tum tensor of the electromagnetic field takes the form

θµν = F ρ
µFνρ − gµνL. (6.4.1)

The Hamilton density from before is given by

H = θ00 = F0iF0i − g00L = E2
i − L =

1

2
(EiEi +BiBi). (6.4.2)

The momentum density is given by

P = θ0i = F0jFij − g0iL =
1

2
εijkEjBk. (6.4.3)

Accordingly, the Hermitean momentum operator of the photon field theory is
given by

~P =

∫

d3x
1

2
~E × ~B. (6.4.4)

One can show that
~P =

1

(2π)3

∫

d3p ~p ai(~p)
†ai(~p). (6.4.5)
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As expected, the vacuum |0〉 is an eigenstate of the momentum operator with
eigenvalue ~0. The single photon states are again eigenstates,

~P |~p, i〉 = ~p|~p, i〉, (6.4.6)

which shows that ~p is indeed the momentum of the photon.



Chapter 7

Path Integral for Scalar

Electrodynamics

In this chapter we consider the perturbative quantization of scalar electrodynam-
ics using the path integral in Euclidean space-time. This theory describes the
interactions of a complex (i.e. 2-component) scalar field with itself and with the
electromagnetic field. Scalar QED can be used to describe the physics of su-
perconductors with the scalar field representing the Cooper pairs consisting of
two electrons. In particle physics the more relevant theory is spinor QED — the
theory describing the interactions between electrons, positrons, and photons. At
first, in order to avoid extra complications due to the fermionic nature of elec-
trons and positrons (which are described by the Dirac equation), we concentrate
on scalar quantum electrodynamics. As in the case of φ4 theory we consider the
phase in which the symmetry is unbroken.

7.1 Gauge Fixing and Photon Propagator

The Euclidean action of the free electromagnetic field is given by

SE[A] =

∫

ddx
1

4
FµνFµν , (7.1.1)

where the field strength is given by

Fµν = ∂µAν − ∂νAµ. (7.1.2)

67
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Both the field strength and the action are invariant under gauge transformations

A′
µ = Aµ + ∂µϕ. (7.1.3)

The path integral in Euclidean time now takes the form

Z =

∫

DA exp(−SE[A]). (7.1.4)

Again, this formal expression must be properly defined by imposing an appro-
priate regularization. In addition, in a perturbatively quantized gauge theory
one must also fix the gauge. Otherwise there would be a divergence result-
ing from path integration over infinitely many gauge copies with the same Eu-
clidean action. Without gauge fixing the photon propagator would take the form
(p2δµν − pµpν)

−1. This is expression is a singular matrix (with an infinite eigen-
value) in the space of Lorentz indices because

(p2δµν − pµpν)pµ = 0. (7.1.5)

In the perturbative path integral quantization of non-Abelian gauge theories
gauge fixing is a non-trivial issue. Interestingly, when non-Abelian gauge the-
ories are quantized nonperturbatively, using a space-time lattice, gauge fixing is
not even necessary. Still, even on the lattice, the quantization of (non-compact)
Abelian gauge theories does require gauge fixing. Fortunately, in Abelian gauge
theories gauge fixing is much easier to implement than in non-Abelian gauge the-
ories. In contrast to canonical quantization were we chose the Coulomb gauge, in
the path integral quantization it is easier to work with a Lorentz-covariant gauge
such as the Landau gauge

∂µAµ = 0. (7.1.6)

The gauge fixing is incorporated as an additional term in the Euclidean action
which then becomes

SE[A] =

∫

ddx [
1

4
FµνFµν +

1

2α
(∂µAµ)2]. (7.1.7)

In the limit α → 0 only those gauge fields that satisfy the Landau gauge fixing
condition have a finite action and thus contribute to the path integral. However,
we’ll keep the gauge fixing parameter α as an arbitrary free constant. As we’ll
see, physical results are independent of α.

In momentum space the Euclidean action takes the form

SE [A] =
1

(2π)d

∫

ddp
1

2
Aµ[p2δµν − pµpν(1 − 1

α
)]Aν , (7.1.8)



7.2. FEYNMAN RULES FOR SCALAR QED 69

from which we read off the photon propagator [p2δµν − pµpν(1 − 1/α)]−1. This
expression is no longer singular unless α → ∞. A particularly simple situation
emerges in the so-called Feynman gauge, α = 1, for which the photon propagator
reduces to δµνp

−2.

7.2 Feynman Rules for Scalar QED

Let us now couple the electromagnetic field to charged matter described by a
complex scalar field φ = φ1 + iφ2. The total Euclidean action of scalar QED
takes the form

SE [φ,A] =

∫

ddx [
1

4
FµνF

µν +
1

2α
(∂µAµ)2 +

1

2
Dµφ

∗Dµφ+ V (φ), (7.2.1)

where the covaraint derivative is given by

Dµφ(x) = (∂µ − ieAµ(x))φ(x), (7.2.2)

and the potential for the scalar self-interaction takes the familiar form

V (φ) =
1

2
m2|φ|2 +

λ

4!
|φ|4. (7.2.3)

Since we now have both scalar fields and gauge fields we can consider mixed
n-point functions consisting of nφ scalar fields and nγ photon fields. The corre-
sponding n-point function is given by

〈0|Tφ(x1)...φ(xnφ
)Aµ1

(x′1)...Aµnγ
(x′nγ

)|0〉 =

1

Z

∫

DφDA φ(x1)...φ(xnφ
)Aµ1

(x′1)...Aµnγ
(x′nγ

) exp(−S[φ,A]).

(7.2.4)

Again, it is natural to consider the Fourier transform of the n-point function
∫

ddx1...d
dxnφ

ddx′1...d
dx′nγ

〈0|Tφ(x1)...φ(xnφ
)Aµ1

(x′1)...Aµnγ
(x′nγ

)|0〉

× exp[i(p1x1...+ pnφ
xnφ

)] exp[i(p′1x
′
1...+ p′nγ

x′nγ
)] =

(2π)dδ(p1 + ...+ pnφ
+ p′1 + ...+ p′nγ

)Γµ1...µnγ
(p1, ..., pnφ

, p′1, ..., p
′
nγ

).

(7.2.5)

Again, the δ-function results from translation invariance.
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From the terms in the action which are quadratic in the fields one reads off
the propagators and from the non-quadratic terms one reads off the vertices. The
covaraint derivative term

1

2
Dµφ

∗Dµφ =
1

2
(∂µ + ieAµ)φ∗(∂µ − ieAµ)φ, (7.2.6)

gives rise to a 2-scalar-1-photon and a 2-scalar-2-photon vertex. One arrives at
the following Feynman rules for scalar QED.

• Consider all pairwise contractions in the product of internal and external
fields that lead to a connected Feynman diagram. Each diagram has a multiplicity
factor that counts the number of pairings leading to the same topology of the
diagram.

• Write down a propagator (p2
i +m2)−1 for each oriented external scalar field

line, and a propagator δµνp
′
i
−2 (in Feynman gauge) for each external photon line.

• Associate a momentum qi or q′i with each oriented internal line and write
down a factor (q2i +m2)−1 for each scalar line and δµνq

′
i
−2 for each photon line.

• Write down a momentum conserving δ-function (2π)dδ(q1 + q2 + q3 + q4) for
each 4-scalar vertex taking into account the orientation of the internal or external
lines. To each vertex of this kind is also associated a factor −λ/4!.

• Write down a momentum conserving δ-function (2π)dδ(q1 + q2 + q′1) for
each 2-scalar-1-photon vertex. To each vertex of this kind is associated a factor
e(q1µ − q2µ).

• Write down a momentum conserving δ-function (2π)dδ(q1 + q2 + q′1 + q′2) for
each 2-scalar-2-photon vertex. To each vertex of this kind is associated a factor
2e2δµν .

• Finally, integrate the resulting expression over all internal momenta, i.e.
write

∫

ddq1...d
dqIφ

/(2π)Iφd
∫

ddq′1...d
dq′Iγ

/(2π)Iγd.

The numbers Iφ and Iγ of internal scalara and photon lines can be determined
as follows. There are four scalar lines emanating from each of the kφ4 scalar self-
interaction vertices. There are two scalar and one photon line emerging from a
2-scalar-1-photon vertex of which there are kφ2A, and finally there two scalar and
two photon lines emanating from a 2-scalar-2-photon vertex of which there are
kφ2A2 . Hence, one obtains

Iφ =
1

2
(4kφ4 + 2kφ2A + 2kφ2A2 − nφ), Iγ =

1

2
(kφ2A + 2kφ2A2 − nγ). (7.2.7)
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There are I = Iφ +Iγ integrations and k = kφ4 +kφ2A +kφ2A2 δ-functions. Again,
one of the δ-functions reflects translation invariance and remains in the final
result. Hence, only k − 1 δ-functions can be used to perform some integrations
trivially. The remaining

l = I − (k − 1) =
1

2
(4kφ4 + 2kφ2A + 2kφ2A2 − nφ)

+
1

2
(kφ2A + 2kφ2A2 − nγ) − kφ4 − kφ2A − kφ2A2 + 1

= kφ4 +
1

2
kφ2A + kφ2A2 − nφ/2 − nγ/2 + 1 (7.2.8)

integrations determine the number of loops l in the diagram.
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Chapter 8

Lattice Field Theory

When we regularize individual Feynman diagrams, e.g. using dimensional regu-
larization, we quantize a field theory in the framework of perturbation theory.
Even if we could calculate to all orders of perturbation theory (which is, of course,
practically impossible), the sum of all perturbative diagrams would not define the
theory nonperturbatively. In order to quantize a field theory beyond perturbation
theory, we must regularize the entire theory at once. A natural nonperturbative
regularization arises when we replace the Euclidean space-time continuum by a
4-dimensional hypercubic lattice. The lattice spacing then serves as an ultraviolet
cut-off.

8.1 Fermionic Path Integrals and Grassmann Alge-

bras

We have defined the path integral by using the classical action. Theories with
fermions have no immediate classical limit, and the definition of the path integral
needs special care. The first step is to define a so-called Grassmann algebra, which
works with anticommuting classical variables ηi with i ∈ 1, 2, ..., N . A Grassmann
algebra is characterized by the anticommutation relations

{ηi, ηj} = ηiηj + ηjηi = 0. (8.1.1)

An element of the Grassmann algebra is a polynomial in the generators

f(η) = f +
∑

i

fiηi +
∑

ij

fijηiηj +
∑

ijk

fijkηiηjηk + ... (8.1.2)
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The fij...l are ordinary complex (or sometimes real) numbers, which are anti-
symmetric in i, j, ..., l. One also defines formal differentiation and integration
procedures. The differentiation rules are

∂

∂ηi
ηi = 1,

∂

∂ηi
ηiηj = ηj ,

∂

∂ηi
ηjηi = −ηj , (8.1.3)

and integration is defined by
∫

dηi = 0,

∫

dηi ηi = 1,

∫

dηidηj ηiηj = −1. (8.1.4)

These integrals are formal expressions. One should not ask over which range of
ηi we actually integrate.

The Grassmann algebra we use to define fermion fields is generated by Grass-
mann numbers Ψx and Ψ̄x, which are completely independent. The index x runs
over all space-time points as well as over all spin, flavor or color indices. Let us
consider the simplest (completely unrealistic) case of just two degrees of freedom
Ψ and Ψ̄, and let us perform the Gaussian integral

∫

dΨ̄dΨ exp(−mΨ̄Ψ) =

∫

dΨ̄dΨ (1 −mΨ̄Ψ) = m. (8.1.5)

Note that the expansion of the exponential terminates because Ψ2 = Ψ̄2 = 0.
When we enlarge the Grassmann algebra to an arbitrary number of elements the
above formula generalizes to

∏

x

∫

dΨ̄xdΨx exp(−Ψ̄xMxyΨy) =

∫

DΨ̄DΨ exp(−Ψ̄MΨ) = detM. (8.1.6)

In the two variable case we have
∫

dΨ̄dΨ Ψ̄Ψ exp(−mΨ̄Ψ) = 1, (8.1.7)

which generalizes to
∫

DΨ̄DΨ Ψ̄xΨy exp(−Ψ̄MΨy) = M−1
ij detM. (8.1.8)

8.2 The Fermion Doubling Problem

In the continuum the Euclidean free fermion action is given by

S[ψ̄, ψ] =

∫

ddx ψ̄(x)(γµ∂µ +m)ψ(x). (8.2.1)
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In Euclidean space the Dirac matrices γµ are Hermitean. Again the partition
function

Z =

∫

Dψ̄Dψ exp(−S[ψ̄, ψ]) (8.2.2)

is a formal expression that requires regularization. On the lattice the continuum
fermion field ψ̄(x), ψ(x) is replaced by variables Ψ̄x,Ψx that live on the lattice
points x. The continuum derivative is discretized by finite differences, such that

S[Ψ̄x,Ψx] =
∑

x,µ

1

2
(Ψ̄xγµΨx+µ̂ − Ψ̄x+µ̂γµΨx) +

∑

x

mΨ̄xΨx. (8.2.3)

It is instructive to bring this expression to momentum space, because it allows
us to read off the lattice fermion propagator

〈Ψ̄(−p)Ψ(p)〉 = [i
∑

µ

γµ sin pµ +m]−1. (8.2.4)

In complete analogy to the scalar field case we can analyze the fermionic 2-point
function for its exponential decay. The energies E of lattice fermions with spatial
momentum ~p show up as poles in the propagator. Here the lattice dispersion
relation takes the form

sinh2E =
∑

i

sin2 pi +m2. (8.2.5)

Like in the scalar field case the continuum dispersion relation is recovered in
the continuum limit for small E, ~p and m. However, there are other momenta
where E becomes small for small m. These are at the corners of the Brillouin
zone at which at least one component of the momentum vector takes the value
pi = π, because also then sin pi goes to zero. This is in contrast to the scalar field
case, and it is due to the fact that the fermionic action contains only a single
derivative. As a consequence, the lattice dispersion relation leads to extra states
in the spectrum that are absent in the continuum theory. The extra states do not
disappear in the continuum limit, such that the naive lattice discretization of the
fermionic action does not lead to the correct continuum theory. The extra states
appearing in the lattice dispersion relation show up as extra physical particles.
These so-called doubler fermions are a manifestation of a fundamental problem
of lattice regularized fermionic theories. This so-called doubling problem leads
to a multiplication of fermion species. The above lattice fermion propagator has
2d poles instead of just 1 as in the continuum. Hence, the naively discretized
fermion theory contains 2d − 1 extra fermion species. The origin of the doubling
problem is deeply connected with chiral symmetry and can even be traced back
to the Adler-Bell-Jackiw anomaly. The doubler fermions pose a severe problem
in lattice field theory. Without removing them we cannot describe QCD (or the
Standard model) which has definitely less than 16 quarks.
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8.3 The Nielsen-Ninomiya No-Go Theorem

Before we try to eliminate the doubler fermions let us prove a general theorem
due to Nielsen and Ninomiya: a chiral invariant free fermion lattice action, which
is translation invariant, Hermitean, and local, necessarily has fermion doubling.
The theorem is based on topology. In fact, it holds because the lattice momentum
space (the Brillouin zone) is a torus. A general chiral and translation invariant
lattice action leads to a propagator

〈Ψ̄(−p)Ψ(p)〉 = [i
∑

µ

γµρµ(p)]−1. (8.3.1)

Of course, the mass term is now absent because it breaks chiral symmetry. The
above action is Hermitean only if ρµ(p) is real. Locality of the action, i.e. expo-
nential suppression of couplings at large distances, implies that ρµ(p) is regular
in momentum space, i.e. there are no poles or discontinuities. Most impor-
tant, translation invariance implies that ρµ(p) is periodic over the Brillouin zone.
Poles of the propagator — and hence physical or doubler fermions — correspond
to points p with ρµ(p) = 0 for all µ. Hence, the theorem states that with the
above properties, ρµ(p) = 0 at more than just one point. Let us prove this first
in d = 1. Then there is a single regular periodic function ρ1(p), which should at
least have one zero to describe the physical fermion pole. Then the function is
positive on one side of the zero and negative on the other side, such that it must
go through zero again in order to satisfy periodicity. A double zero (with the
function not changing sign) is not allowed, because this would lead to a wrong
dispersion relation for the physical fermion. In higher dimensions the proof is
analogous. In d = 2 there are two functions ρ1(p) and ρ2(p). The zeros of ρ1(p)
lie on a closed curve in the 2-dimensional Brillouin zone. This curve may be closed
via the periodic boundary conditions. The zeros of ρ2(p) lie on another closed
curve that intersects the first one in the pole position of the physical fermion.
Due to the periodic boundary conditions of the Brillouin zone, the curves than
necessarily must also intersect somewhere else. Again, the curves cannot just
touch each other, because this would lead to a wrong dispersion relation. In d di-
mensions the zeros of ρµ(p) (with µ = 1, 2, ..., d) lie on d closed d− 1-dimensional
manifolds. Those cannot intersect in just one point. If they intersect once they
necessarily intersect also somewhere else. This proves lattice fermion doubling
for a chiral invariant lattice action. The theorem does not specify the number of
doubler fermions. It is definitely possible to reduce the number of doublers from
2d − 1 to 1, but it is impossible to eliminate doublers completely. Of course, one
may try to evade the theorem by violating one of its basic assumptions. In fact,
people have worked on random lattices because it has no translation invariance,
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and hence no periodic momentum space. However, there is not much one can
do analytically on a random lattice, even for a free fermion, and it is unclear if
the consequences of the no-go theorem are indeed evaded. When one violates
Hermiticity one looses contact with Minkowski space and it is unclear what the
Euclidean results mean. People have also worked with nonlocal actions. Then
ρµ(p) is not a continuous function (it may have poles or discontinuities), and the
theorem which relies on topology obviously does not apply. Still, it has turned
out that most nonlocal actions have serious problems. For example, the resulting
continuum theory may be nonlocal or not Lorentz invariant. In work on lattice
gauge theory Wilson removed the fermion doublers in a very direct and radical
way, simply by breaking chiral symmetry explicitly. Then the theorem is evaded
because the propagator then contains terms without γµ. Of course, this leads
to all kinds of complications. In particular, it is nontrivial that chiral symmetry
will be recovered in the continuum limit. For vector-like theories like QCD this
is under control. For chiral theories like the Standard model, however, it is still
unclear if we can define them nonperturbatively due to the notorious fermion
doubling problem.

8.4 Wilson Fermions

In his original work on lattice gauge theory Wilson has avoided the fermion dou-
bling problem by breaking chiral symmetry explicitly. The so-called Wilson term
gives the doubler fermions a mass at the order of the cut-off while the physical
fermion remains massless. Hence, in the continuum limit chiral symmetry is re-
stored in the physical sector. Wilson’s modification of the naive fermion action
takes the form of a discretized second derivative

S[Ψ̄,Ψ] =
∑

x,µ

1

2
(Ψ̄xγµΨx+µ̂ − Ψ̄x+µ̂γµΨx) +

∑

x

Ψ̄xΨx

+
1

2

∑

x,µ

(2Ψ̄xΨx − Ψ̄xΨx+µ̂ − Ψ̄x+µ̂Ψx). (8.4.1)

Then the lattice propagator takes the form

〈Ψ̄(−p)Ψ(p)〉 = [i
∑

µ

γµ sin pµ +m+
1

2

∑

µ

(2 sin(pµ/2))
2]−1. (8.4.2)

It is instructive to work out the corresponding dispersion relation, and in par-
ticular to determine the fermion mass as a function of the bare mass m. The
Wilson term acts as a momentum dependent mass term. For small momenta it
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vanishes quadratically, and hence it does not effect the dispersion of the physical
fermion at least in the continuum limit. For the doubler fermions, on the other
hand, the Wilson term is nonzero, and effectively gives them a mass of the order
of the cut-off. In the continuum limit the doubler fermions are hence eliminated
from the spectrum of the theory.

8.5 Abelian Lattice Gauge Fields

Let us consider an Abelian gauge field aµ in the continuum. A gauge transfor-
mation then amounts to

a′µ(y) = aµ(y) + ∂µϕ(y). (8.5.1)

Since a gauge field is described by a Lorentz vector the corresponding lattice
field is naturally associated with the links connecting neighboring lattice points.
We denote the lattice gauge potential by Aµ,x where x denotes the center of the
corresponding lattice link. The gauge transformation equation for Abelian lattice
gauge field then takes the form

A′
µ,x = Aµ,x + Φx−µ̂/2 − Φx+µ̂/2, (8.5.2)

where Φx is the lattice gauge transformation associated with the lattice point
x. The derivative of the continuum gauge transformation has been replaced by a
finite difference, and we have again put the lattice spacing to 1. The field strength
of the continuum gauge field is

fµν(y) = ∂µaν(y) − ∂νaµ(y), (8.5.3)

while the lattice field strength is

Fµν,x = Aν,x+µ̂/2 −Aν,x−µ̂/2 −Aµ,x+µ̂/2 +Aµ,x−µ̂/2. (8.5.4)

Here x denotes the center of a lattice plaquette (an elementary lattice square)
such that the lattice field strength is the oriented sum of gauge links around the
plaquette. In complete analogy with the continuum action the standard lattice
gauge action takes the form

S[Aµ] =
∑

µν,x

1

4e2
F 2

µν,x. (8.5.5)

Again one can construct a perfect gauge action by blocking from the continuum.
The natural way to block a continuum gauge field is

Aµ,x =

∫

cx−µ̂/2

ddy (1 + yµ − xµ)aµ(y) +

∫

cx+µ̂/2

ddy (1 − yµ + xµ)aµ(y). (8.5.6)
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It is instructive to prove that with this blocking a continuum gauge transforma-
tion ϕ(y) induces a lattice gauge transformation

Φx =

∫

cx

ddy ϕ(y). (8.5.7)

The derivation of the perfect gauge action is in complete analogy to the scalar
and fermionic cases, and will not be presented here. As in the scalar field case,
the perfect action turns out to be local.

8.6 The Notion of Lattice Differential Forms

Lattice fields have a natural place to live on the lattice. For example, gauge
potentials live on the links, while gauge transformations live on the lattice points
and field strength variables live on plaquettes. The notion of lattice differential
forms is based on this fact, and it allows to perform complicated manipulations
of Abelian lattice fields in a simple and transparent manner.

Let us consider a 4-dimensional hypercubic lattice. It decomposes naturally
into k-dimensional oriented elementary cells ck. These are the lattice points c0,
the links c1, the plaquettes c2, the cubes c3 and the hypercubes c4. The dual
lattice is obtained by shifting the original lattice by half a lattice spacing in each
direction. The dual lattice consists of (4 − k)-dimensional dual cells ∗ck. The
points ∗c4 of the dual lattice are dual to the hypercubes of the original lattice,
the links ∗c3 are dual to the original cubes, the plaquettes ∗c2 are dual to the
original plaquettes, etc. On the cells ck one defines fields — the so-called k-forms
Φ(ck). For example, a gauge transformation is a 0-form because it lives on points,
while a gauge potential is a 1-form because it lives on links. To each k-form there
is associated a dual (4 − k)-form simply by

∗Φ(∗ck) = Φ(ck). (8.6.1)

The exterior differential d increases the rank of a form by one

dΦ(ck+1) =
∑

ck∈∂ck+1

Φ(ck), (8.6.2)

i.e. dΦ is a (k + 1)-form defined on the cells ck+1. It is a sum of the k-forms
Φ living on the oriented boundary of ck+1. For example, the field strength is a
2-form constructed as

F = dA, (8.6.3)



80 CHAPTER 8. LATTICE FIELD THEORY

and a gauge transformation takes the form

A′ = A+ dΦ. (8.6.4)

Applying the exterior differential twice always gives d2 = 0. For example, the
Abelian field strength is gauge invariant because

F ′ = dA′ = dA+ d2Φ = dA = F. (8.6.5)

The codifferential δ =∗ d∗ lowers the rank of a form by one and is given by

δΦ(ck−1) =
∑

∗ck∈∂∗ck−1

Φ(ck). (8.6.6)

For example, the continuum Landau gauge condition ∂µaµ(y) = 0 takes the form
δA = 0 on the lattice. The Laplacian ∆ = dδ + δd leaves the rank of a form
unchanged. Each form can be written as a Hodge decomposition

Φ = d∆−1δΦ + δ∆−1dΦ. (8.6.7)

One defines a scalar product of two k-forms Φ and Ψ by

(Φ,Ψ) =
∑

ck

Φ(ck)Ψ(ck). (8.6.8)

This induces a norm ||Φ||2 = (Φ,Φ). For example, the standard lattice gauge
action takes the form

S[A] =
1

2e2
||F ||2 =

1

2e2
(dA, dA). (8.6.9)

The rule for partial integration on the lattice simply reads

(dΦ,Ψ) = (Φ, δΨ), (8.6.10)

where Φ is a k-form, and Ψ is now a (k+1)-form. For a gauge field in the Landau
gauge one can rewrite the gauge action as

S[A] =
1

2e2
(A, δdA) =

1

2e2
(A, δdA + dδA) =

1

2e2
(A,∆A). (8.6.11)

The notion of differential forms is very useful, in particular because it allows us
to perform partial integrations on the lattice in a simple manner.
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8.7 Wilson loops and the Lattice Coulomb Potential

Let us consider an Abelian lattice gauge theory (a theory of free photons) cou-
pled to external electric currents. The currents may represent infinitely heavy
charged particles. In the continuum the interaction of a gauge field with an ex-
ternal current is described by

∫

ddy jµ(y)aµ(y). Expressed in form language the
corresponding lattice expression reads (J,A). Let us consider the lattice current
of a heavy charged particle moving along the links of the lattice. The current
is then 1 on the links that form the world line of the particle, and zero on all
other links. The Wilson loop observable is associated with the propagation of a
charge-anticharge pair that is created and later annihilated. The corresponding
world line is a closed loop C and the so-called Wilson loop is given by

WC = exp(i(J,A)). (8.7.1)

The expectation value of a rectangular Wilson loop of spatial size R and temporal
size T is related to the potential V (R) of a static charge-anticharge pair

lim
T→∞

〈WC〉 ∼ exp(−V (R)T ). (8.7.2)

Let us calculate this quantity for an Abelian gauge theory. The lattice quantized
path integral

Z =
∏

c1

∫ ∞

−∞
dA(c1) exp(− 1

2e2
||F ||2) (8.7.3)

is still undefined because the implicit integration over all gauges results in an
infinite factor. The quantization of Abelian (noncompact) gauge fields on the
lattice does indeed require gauge fixing. Here we choose to work in the Landau
gauge, i.e. we introduce a δ-function constraint in the functional integral

Z =
∏

c1

∫ ∞

−∞
dA(c1)

∏

c0

δ(δA(c0)) exp(− 1

2e2
||F ||2). (8.7.4)

This expression is now well-defined. In the Landau gauge we can write the Wilson
loop expectation value as

〈WC〉 =
1

Z

∏

c1

∫ ∞

−∞
dA(c1)

∏

c0

δ(δA(c0)) exp(− 1

2e2
(A,∆A) + i(J,A))

∼ exp(−e
2

2
(J,∆−1J)). (8.7.5)

Going to momentum space and performing the large T limit one can derive the
lattice Coulomb potential from this expression. The lattice Coulomb potential is
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slightly distorted at short distances due to discretization artifacts, but it agrees
with the ordinary Coulomb potential at large separations. The Wilson-loop ex-
pectation value is an order parameter of lattice gauge theory. In the case of an
Abelian gauge theory it indicates that we are in an ordinary Coulomb phase with
the typical interactions between static charged particles.

8.8 Lattice QED

To construct the action of lattice QED we have to add interaction terms to the
free fermion (electron) and free gauge field (photon) actions from before. In
particular, the free Wilson fermion action

S[Ψ̄,Ψ] =
∑

x,µ

1

2
(Ψ̄xγµΨx+µ̂ − Ψ̄x+µ̂γµΨx) +

∑

x

mΨ̄xΨx

+
1

2

∑

x,µ

(2Ψ̄xΨx − Ψ̄xΨx+µ̂ − Ψ̄x+µ̂Ψx) (8.8.1)

is not gauge invariant. Under a U(1) gauge transformation the fermion field
transforms as

Ψ′
x = exp(iΦx)Ψx, (8.8.2)

while the gauge field transforms as

A′
µ,x = Aµ,x + Φx+µ̂/2 − Φx−µ̂/2. (8.8.3)

To make the fermion action gauge invariant we now introduce the parallel trans-
porter field

Uµ,x = exp(−iAµ,x) ∈ U(1). (8.8.4)

Under a gauge transformation it transforms as

U ′
µ,x = exp(iΦx−µ̂/2)Uµ,x exp(−iΦx+µ̂/2), (8.8.5)

such that

S[Ψ̄,Ψ, Uµ] =
∑

x,µ

1

2
(Ψ̄xγµUx+µ̂/2,µΨx+µ̂ − Ψ̄x+µ̂γµU

+
x+µ̂/2,µΨx)

+
∑

x

mΨ̄xΨx

+
1

2

∑

x,µ

(2Ψ̄xΨx − Ψ̄xUx+µ̂/2,µΨx+µ̂ − Ψ̄x+µ̂U
+
x+µ̂/2,µΨx)(8.8.6)



8.8. LATTICE QED 83

is indeed gauge invariant and has the correct naive continuum limit. Note that
+ here denotes complex conjugation. The concept of a parallel transporter con-
necting neighboring lattice sites in a gauge covariant way extends naturally to
the continuum. In fact, one can define a parallel transporter along any curve C
connecting the points x0 and x1 as

UC = exp(−i
∫

C
dyµaµ(y)). (8.8.7)

Under a continuum gauge transformation

a′µ(y) = aµ(y) + ∂µϕ(y) (8.8.8)

the parallel transporter transforms as

U ′
C = exp(iϕ(x0))UC exp(−iϕ(x1)). (8.8.9)

The Wilson loop defined above is nothing but a parallel transport around a
closed curve. When one adds the free photon action to the above expression for
the electron-photon interaction one obtains the action of lattice QED.

Lattice QED is of theoretical interest because it is unknown how QED be-
haves for large values of the electric charge. This can only be investigated in a
nonperturbative formulation such as lattice gauge theory. Numerical simulations
suggest that the renormalized electric charge never becomes large. In fact, some
calculations indicate that QED is trivial, i.e. the renormalized electric charge
vanishes in the continuum limit. To locate the continuum limit in such calcu-
lations it is essential to measure the electron mass, i.e. the inverse correlation
length of the electron field. The naive correlation function 〈Ψ̄xΨy〉, however, is
not gauge invariant, and therefore does not contain information about the elec-
tron mass. The reason for the gauge dependence is that the physical electron
consists not just of the bare electric charge carried by the fermion field, but also
of the photon cloud surrounding the charge. The charged field of the physical
electron can be constructed as follows

Ψc,x = exp(−i(Ex, A))Ψx. (8.8.10)

Here Ex is a 1-form describing the electric field of a static charge located at the
point x, i.e.

δEx = δx, (8.8.11)

where δx is a 0-form which is 1 at x and zero otherwise. The field Ex is localized
in the specific time slice defined by xd, and it is zero in all other time slices.
This is very essential, because otherwise the definition of the electron field would
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require information about the Euclidean past or future. This would destroy the
causal structure of the theory, and would prevent us from constructing a transfer
matrix, and hence from rotating our physical results back into Minkowski space-
time. Under a gauge transformation one finds

Ψ′
c,x = exp(−i(Ex, A

′))Ψ′
x = exp(−i(Ex, A+ dΦ)) exp(iΦx)Ψx

= exp(−i(δEx,Φ)) exp(iΦx)Ψc,x = Ψc,x. (8.8.12)

Here (δEx,Φ) = (δx,Φ) = Φx has been used. Hence the physical charged field is
gauge invariant. Its correlation function 〈Ψ̄c,xΨc,y〉 does indeed decay exponen-
tially with the electron mass.

8.9 Lattice QCD

The concept of the parallel transporter is even more important in non-Abelian
gauge theories. Not even the pure gluon part of lattice QCD can be formulated in
terms of vector potentials Gµ,x. Instead, the whole action is formulated in terms
of link parallel transporters

Ux,µ = exp(iGa
µ,xλa) = exp(iGµ,x) ∈ SU(3). (8.9.1)

Again, the parallel transporter has a meaning already in the continuum. In non-
Abelian gauge theory it arises as a path ordered exponential

UC = P exp(i

∫

C
dyµGµ(y)) = lim

ε→0

∏

y∈C

exp(iεGµ(y)). (8.9.2)

It is instructive to prove that under a non-Abelian gauge transformation

G′
µ(y) = g(y)(Gµ(y) + ∂µ)g(y)+, (8.9.3)

the parallel transporter transforms as

U ′
C = g(x0)UCg(x1)

+, (8.9.4)

in complete analogy to the Abelian case. Consequently, the quark-gluon interac-
tion part of the lattice QCD action has exactly the same form as the electron-
photon interaction part of the lattice QED action of eq.(8.8.6). Of course, now
the parallel transporters are SU(3) matrices and the fermion fields have a color
index (which is suppressed in our notation).



8.9. LATTICE QCD 85

The pure gluon part of the action, on the other hand, is quite different from
the free photon action in QED. This is because the gauge transformation equa-
tion (8.9.3) cannot be discretized in a gauge covariant way, when one uses the
vector potential Gµ. Instead Wilson has constructed the pure gluon part of the
lattice QCD action again using parallel transporters. First, he builds a parallel
transporter around an elementary plaquette

Uµν,x = Uµ,x−ν̂/2Uν,x+µ̂/2U
+
µ,x+ν̂/2U

+
ν,x−µ̂/2. (8.9.5)

Then the action is constructed as a sum over all plaquettes

S[Uµ] =
∑

µν,x

1

2g2
s

Re Tr(1 − Uµν,x). (8.9.6)

It is a good exercise to prove that this expression reduces to the correct continuum
action

S[Gµ] =

∫

ddy
1

2g2
s

TrGµν(y)Gµν(y). (8.9.7)

.

To fully define the lattice QCD path integral we also must consider the mea-
sure. For the quarks we have the ordinary Grassmann variable integrations. For
the gluons we must integrate over the configurations of parallel transporters Uµ.
To discuss this, let us concentrate on a pure gluon theory. The lattice partition
function of that theory is given by

Z =
∏

x,µ

∫

SU(3)
dUµ,x exp(−S[Uµ]). (8.9.8)

We integrate independently over all link variables using the so-called Haar mea-
sure dUµ,x for each parallel transporter. The Haar measure is a left and right
invariant measure, i.e.

∫

SU(3)
dU f(gLU) =

∫

SU(3)
dU f(UgR) =

∫

SU(3)
dU f(U), (8.9.9)

for any function f and for any SU(3) matrices gL and gR. It is convenient to
normalize the measure such that

∫

SU(3)
dU 1 = 1. (8.9.10)

One can show that the Haar measure is unique and that it has the following
additional properties

∫

SU(3)
dU Uij = 0,

∫

SU(3)
dU UijUkl =

1

3
δjkδil. (8.9.11)
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Here ij determines a specific matrix element, i.e. i, j, k, l ∈ {1, 2, 3}. For compact
groups like SU(3) the integration is over a finite domain. This is in contrast to
QED in which we integrated the gauge potential Aµ over all real numbers. This
made it necessary to fix the gauge in lattice QED. In lattice QCD, on the other
hand, the path integral is finite from the beginning, and gauge fixing is not
necessary. This is a big advantage of the formulation using parallel transporters.

The above pure gluon partition function contains a single parameter — the
bare gauge coupling gs. When we want to perform the continuum limit, we must
search for values of gs for which the correlation length of the lattice theory di-
verges. As always, we are looking for a second order phase transition. To analyze
the phase structure of a gauge theory, one needs to study order parameters like
the magnetization 〈sx〉 in the Ising model. A simple local order parameter like
〈Uµ,x〉 does not make sense in a gauge theory. This follows from Elitzur’s theorem,
which states that gauge non-invariant observables vanish in lattice gauge theory
(formulated with parallel transporters). This is trivial to prove using eq.(8.9.11).
A useful order parameter in a gauge theory must be gauge invariant and, in ad-
dition, nonlocal. A good order parameter in the pure gluon theory is the Wilson
loop

〈WC〉 = 〈Tr
∏

µ,x∈C

Uµ,x〉. (8.9.12)

For a rectangular curve with side lengths R and T the Wilson loop describes
the instantaneous creation and annihilation of a static quark-antiquark pair at
distance R that lives for a time T . As in QED the Wilson loop is related to the
static potential

lim
T→∞

〈WC〉 ∼ exp(−V (R)T ). (8.9.13)

In QCD we expect quarks and antiquarks to be confined to one another by a
potential rising linearly at large separations R, i.e.

lim
R→∞

V (R) ∼ σR, (8.9.14)

where σ is the string tension. In a confinement phase the Wilson loop hence
shows an area law

lim
R,T→∞

〈WC〉 ∼ exp(−σRT ). (8.9.15)

If confinement would be lost (by going through a phase transition) the Wilson
loop would no longer show area law behavior. A Coulomb phase, for example, is
characterized by a perimeter law.
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8.10 Confinement in the Strong Coupling Limit

In lattice gauge theory it is straight forward to prove confinement for large val-
ues of the bare gauge coupling gs. In the strong coupling region, however, the
correlation length is small and we cannot take the continuum limit. In fact, due
to asymptotic freedom we expect the continuum limit to be at gs → 0. It is an
open question if confinement persists in the continuum limit. However, there is
a lot of positive numerical evidence that this is indeed the case. Assuming that
there is no phase transition between the strong and weak coupling regions, the
derivation of confinement in the strong coupling regime would carry over to the
continuum limit. In the strong coupling expansion we expand in powers of 1/gs

around gs = ∞. To leading order the pure gluon action is then simply zero. The
Wilson loop operator takes the form

WC = U1ijU2jkU3kl...UNmi, (8.10.1)

where N = 2(R + T ) is the number of links along the loop. Using the first
formula of eq.(8.9.11) then immediately implies WC = 0. The second formula of
eq.(8.9.11) suggests that to get a nonzero result one needs to have the product
of two matrix elements for each link variable on the Wilson loop. This can be
achieved by expanding the Boltzmann factor of the action to higher orders in
1/gs. The lowest nonzero contribution comes from tiling the Wilson loop with
plaquettes that result from expanding

exp(− 1

2g2
s

Re Tr(1 − Uµν,x)) = exp(− 3

2g2
s

)(1 +
1

2g2
s

Re TrUµν,x) (8.10.2)

for the plaquettes in the interior of the Wilson loop. Taking the Uµν,x term for
all these plaquettes and using the second formula of eq.(8.9.11) gives

〈WC〉 =
1

(g2
s)

RT
. (8.10.3)

Indeed we find an area law and we read off the string tension as

σ = − log(
1

g2
s

). (8.10.4)

Higher order corrections arise from deformations of the simple tiling from above.
The leading correction comes from eliminating one of the RT plaquettes of the
original tiling, and replacing it with five plaquettes at the surface of an elementary
lattice cube, such that the resulting surface bounded by the Wilson loop has no
holes. The cube can be attached above and below the plane of the Wilson loop,
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and it can go out in the two possible orthogonal directions. This results in 4RT
contributions, which all have four more plaquettes than the leading term, and
are hence suppressed by 1/(g2

s )4. Up to that order one finds

〈WC〉 =
1

(g2
s)

RT
(1 + 4RT

1

(g2
s)

4
). (8.10.5)

The last two terms are the first term in an exponential, and hence we can read
off the corrected string tension as

σ = − log(
1

g2
s

) + 4
1

(g2
s )4

. (8.10.6)

The string tension has been computed to higher orders. Still, one is unable to go
to high enough orders to reach the physically interesting scaling region in which
we can perform the continuum limit. At present, only numerical simulation tech-
niques are powerful enough to enter that regime. Consequently, the above result
for the string tension cannot yet be compared with experimental results. It is
instructive to derive the glueball mass in a similar manner. For this purpose one
considers the correlation function of two elementary plaquette operators sepa-
rated in Euclidean time. Using the strong coupling expansion one can identify
the exponential decay, and extract the correlation length whose inverse is the
massgap or glueball mass.

8.11 Confinement in Compact Abelian Gauge Theory

The above strong coupling calculations prove that lattice QCD confines at large
values of the bare gauge coupling. However, the calculation does not really hint at
the dynamical mechanism that confines color. It is a subject of ongoing research
to understand the confinement mechanism in non-Abelian gauge theories. In
abelian gauge theories, on the other hand, the issue is completely understood,
even analytically. Of course, as we saw earlier, the Wilson loop in an Abelian
gauge theory yields the Coulomb potential, which does not confine in d = 4. It is,
however, possible to modify the formulation of Abelian gauge theories, such that
they also confine at strong coupling. This is achieved simply by working with
parallel transporters in the pure gauge action, as we were forced to do in non-
Abelian theories. This leads to the compact formulation of Abelian lattice gauge
theory, which is very similar to Wilson’s lattice formulation of non-Abelian gauge
theory. The use of (compact) parallel transporters instead of (noncompact) vector
potentials has drastic consequences in Abelian gauge theory. As we will see, the
compact theory has magnetic monopoles as additional degrees of freedom, which
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turn out to be responsible for confinement. In fact, the monopoles condense in
the confinement phase (like Cooper pairs condense in a superconductor), while
they are ordinary charged particles in the Coulomb phase.

As we will see, the confinement mechanism in a compact Abelian gauge the-
ory is the dual of the Meissner effect in a superconductor. An external magnetic
field is constricted to flux strings within the superconductor. The flux strings
cost energy proportional to their length, i.e. they have a nonzero string tension.
If there would be single magnetic monopoles, in a superconductor their magnetic
flux would form a string ending in an antimonopole, and hence monopoles and
antimonopoles would be confined to one another. In QCD color electric charges
(quarks and gluons) are confined. This could be described by a dual Meissner
effect. The Meissner effect in a superconductor arises because electric charges
(Cooper pairs) are condensed. A dual superconductor would require the conden-
sation of magnetic charges (monopoles). This is exactly what happens in compact
QED. It is still unclear if the same mechanism is responsible for confinement in
QCD, although there is some positive numerical evidence.

To understand the role of the monopoles let us now consider 4-d compact
U(1) lattice gauge theory. This is lattice QED without electrons, but — as we
will see — with magnetic charges. For simplicity we consider the theory in the
so-called Villain formulation, for which the partition function takes the form

Z =
∏

c1

∫ π

−π
dθ(c1)

∏

c2

∑

n(c2)∈Z

exp(− 1

2e2
‖dθ + 2πn‖2), (8.11.1)

where the gauge field θ is a 1-form on the links c1, n is a 2-form on the plaquettes
c2 and e is the bare electric charge. First we replace the link integration in the
path integral by an integration over the plaquette angles θ� = dθmod2π. The
Bianchi identity is implemented by a δ-function constraint

Z =
∏

c2

∫ π

−π
dθ�(c2)

∏

c3

∑

k(c3)∈Z

δ(
1

2π
dθ� − k)

∏

c2

∑

n(c2)∈Z

exp(− 1

2e2
‖θ� + 2πn‖2)

=
∏

c3

∑

k(c3)∈Z

∏

c2

∫ π

−π
dθ�(c2)

∏

c2

∑

n(c2)∈Z

exp(− 1

2e2
‖θ� + 2πn‖2) exp(i(dθ�, k)).

(8.11.2)
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The constraint has been eliminated using the Poisson summation formula. There-
by we have introduced an integer valued 3-form k. Now we perform the integra-
tion over the variable F = θ� + 2πn, and we obtain

Z =
∏

c3

∑

k(c3)∈Z

∏

c2

∫ ∞

−∞
dF (c2) exp(− 1

2e2
‖F‖2) exp(i(dF, k))

=
∏

c3

∑

k(c3)∈Z

∏

c2

∫ ∞

−∞
dF (c2) exp(− 1

2e2
‖F‖2) exp(i(F,∗ d∗k))

=
∏

∗c3

∑

∗k(∗c3)∈Z

exp(−e
2

2
‖d∗k‖2). (8.11.3)

Eq.(8.11.3) describes a Z gauge theory with dual link variables ∗k and with a
quadratic action.

The dual Z gauge theory is the κ→ ∞ limit of scalar QED with gauge group
R. The dual noncompact gauge field ∗A ∈ R is a 1-form on the dual links ∗c3, and
the complex scalar field Φx = exp(i∗χx) is defined in terms of the dual 0-form
∗χ ∈]− π, π]. To make the action periodic in ∗χ we also introduce a dual integer
valued 1-form ∗k ∈ Z such that the partition function reads

Z =
∏

∗c3

∫ ∞

−∞
d∗A(∗c3)

∏

∗c4

∫ π

−π
d∗χ(∗c4)

∏

∗c3

∑

∗k(∗c3)∈Z

exp(− 1

2g2
‖d∗A‖2 − κ

2
‖d∗χ+ 2π∗k − ∗A‖2). (8.11.4)

The scalar field Φx carries the bare charge g. In the unitary gauge ∗χ = 0 the
partition function is

Z =
∏

∗c3

∫ ∞

−∞
d∗A(∗c3)

∏

∗c3

∑

∗k(∗c3)∈Z

exp(− 1

2g2
‖d∗A‖2 − κ

2
‖2π∗k − ∗A‖2). (8.11.5)

Now it is clear that for κ→ ∞ only configurations with ∗A = 2π∗k contribute to
the functional integral and that we thus recover the dual Z gauge theory with

Z =
∏

∗c3

∑

∗k(∗c3)∈Z

exp(−e
2

2
‖d∗k‖2) (8.11.6)

for e = 2π/g. This is exactly the Dirac quantization condition for the bare electric
and magnetic charges. Since the scalar particle of the dual gauge theory carries
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the charge g, it is natural to identify it with the magnetic monopole of the original
model. We will see later that such an identification is indeed justified.

Lüscher has derived an inequality between the bare and renormalized charge
in noncompact scalar QED in the Coulomb phase

gr ≤ g. (8.11.7)

Here gr is the renormalized magnetic charge. The Dirac quantization condition
relates the renormalized electric and magnetic charges by

er =
2π

gr
. (8.11.8)

Duality in the κ→ ∞ limit together with the Dirac quantization condition thus
turns the inequality eq.(8.11.7) into an inequality between the bare and the renor-
malized electric charge in compact U(1) lattice QED

er =
2π

gr
≥ 2π

g
= e. (8.11.9)

Consequently, magnetic monopoles lead to antiscreening of electric charge, as
opposed to the screening of electric charges in ordinary QED. Now it becomes
clear why the presence of monopoles can lead to confinement of electric charges.
Because monopoles enhance the renormalized electric charge, they can drive the
theory to strong coupling, where Coulomb’s law breaks down and confinement
sets in. This is in fact what happens in compact lattice QED. At small bare
electric charges the theory is in the Coulomb phase. Then the monopoles are
stable magnetically charged particles, and external electric charges interact via
Coulomb forces. For large bare electric charges the model is in the confined
phase, in which the monopoles are condensed and magnetic charge is not a good
quantum number. In the dual formulation the confined phase is equivalent to the
Higgs phase of scalar QED, in which the scalar charged particle (the monopole) is
condensed. The Coulomb phase of compact QED, on the other hand, corresponds
to the Coulomb phase of noncompact scalar QED.

In the dual formulation of the theory the monopole is an ordinary charged
scalar field. Therefore it is straightforward to construct a creation operator for it.
As discussed before the bare charged field Φx cannot create the physical charged
state, because it is not gauge invariant. Φx only creates the bare monopole, but
not the dual photon cloud surrounding it. The gauge dependence of Φx is fixed
by going to the Coulomb gauge. We perform a gauge transformation ∗ϕ in the
time slice containing the point x

∗A′ = ∗A+ d∗ϕ,
∗χ′ = ( ∗χ+ ∗ϕ)mod2π. (8.11.10)
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Coulomb gauge fixing generates the dual Coulomb field surrounding the mono-
pole. The appropriate gauge transformation at the point x is given by

∗ϕx = −(∗Bx,
∗A), (8.11.11)

with
δ∗Bx = δx, (8.11.12)

where δx is the Kronecker delta function on the dual lattice, i.e.

δx =

{

1 for y = x
0 otherwise.

(8.11.13)

∗Bx is the magnetic field of a monopole located at the point x. It is nonzero only
on the dual links located in the time slice containing the monopole creation point
x. The explicit form of ∗Bx is given by

∗Bx = d3∆
−1
3 δx, (8.11.14)

where d3 is the 3-dimensional exterior differential and ∆3 is the 3-dimensional
Laplacian. In the Coulomb gauge the charged field is

Φc,x = exp(i∗χ′
x) = exp(−i(∗Bx,

∗A))Φx. (8.11.15)

This has exactly the same form as the charge creation operator discussed earlier,
except that we are now using a dual formulation. If we again go to the limit
κ→ ∞ and fix to unitary gauge Φx = 1, ∗A = 2π∗k we find

Φc,x = exp(−2πi(∗Bx,
∗ k)). (8.11.16)

This is the monopole field from which one can construct all monopole Green
functions. Now we will investigate the vacuum expectation value of the monopole
field

〈Φc,x〉 =
1

Z

∏

∗c3

∑

∗k(∗c3)∈Z

Φc,x exp(−e
2

2
‖d∗k‖2) (8.11.17)

after transforming back to the original compact QED. From there one arrives at a
Coulomb gas representation of the correlation function, which makes the creation
and annihilation of monopoles explicit.

When one performs the duality transformation again one goes back to the
original compact lattice QED. The expectation value of the monopole field then
takes the form

〈Φc,x〉 =
1

Z

∏

c1

∫ π

−π
dθ(c1)

∏

c2

∑

n(c2)∈Z

exp(− 1

2e2
‖dθ + 2πn + 2πδ∆−1(B − ω)‖2), (8.11.18)
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The integer valued 3-form ω ∈ Z is a remnant of the Dirac string which emanates
from the monopole position x. It obeys

∗(dω) = δx (8.11.19)

such that d(B − ω) = 0. B and ω give rise to a plaquette shift 2πδ∆−1(B − ω)
which acts as an external background field.

In the present form it is unclear why eq.(8.11.18) describes the creation of
monopoles. Therefore we now rewrite the theory as a Coulomb gas of monopole
world lines. First we perform a Hodge decomposition of n

n = d∆−1δn + δ∆−1dn = d∆−1δn + δ∆−1m, (8.11.20)

where the monopoles are described by the 3-form m = dn. The dual 1-form ∗m
describes monopole world lines on the dual links, which form closed loops because
of the continuity equation for magnetic charge

δ∗m = ∗dm = ∗d2n = 0. (8.11.21)

When n is shifted to n′ = n+ dl, where l ∈ Z is a 1-form we still have

m′ = dn′ = dn+ d2l = dn = m. (8.11.22)

One may thus eliminate n from the path integral in favor of m and l

〈Φc,x〉 =
1

Z

∏

c3

∑

m(c3)∈Z,dm=0

∏

c1

∑

l(c1)∈Z

∏

c1

∫ π

−π
dϕ(c1)

exp(− 1

2e2
‖d(ϕ + 2πl + 2πδ∆−1n) + 2πδ∆−1(m+B − ω)‖2).

(8.11.23)

Introducing a noncompact gauge field A = ϕ+ 2πl + 2πδ∆−1n one now writes

〈Φc,x〉 =
1

Z

∏

c3

∑

m(c3)∈Z,dm=0

∏

c1

∫ ∞

−∞
dA(c1)

exp(− 1

2e2
‖dA + 2πδ∆−1(m+B − ω)‖2). (8.11.24)

Using partial integration and d(m+B − ω) = 0 one finds

〈Φc,x〉 =
1

Z

∏

c3

∑

m(c3)∈Z,dm=−dB

exp(−2π2

e2
(m+B,∆−1(m+B)))

(8.11.25)
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with

Z =
∏

c3

∑

m(c3)∈Z,dm=0

exp(−2π2

e2
(m,∆−1m)). (8.11.26)

The expectation value is expressed as a ratio of two partition functions. Z in
the denominator describes an ensemble of closed monopole world lines. The
monopoles interact with each other via long-range Coulomb forces represented by
the inverse Laplacian. In the numerator there is, in addition, one open monopole
world line that starts at x. Now it is clear that a monopole has indeed been cre-
ated at the point x. This shows explicitly that the expectation value, which was
originally constructed in the dual scalar QED, does indeed describe the creation
of the topological excitations of compact QED. Note that the invisibility of the
Dirac string is now obvious, because ω has disappeared from the final expression.

Because of the Dirac quantization condition strong electric couplings e cor-
respond to weak magnetic couplings g. Hence, the strong coupling limit of the
original compact QED corresponds to the weak coupling limit of the dual non-
compact QED. We can make use of this to show that monopoles are indeed
condensed in the confined phase. For this purpose we investigate the monopole
field expectation value 〈Φc,x〉 in the strong coupling e = ∞ limit, which corre-
sponds to the weak coupling g = 0 limit in the dual formulation. In this limit only
the configurations with zero dual action contribute to the path integral. Then
k = 0 and consequently

〈Φc,x〉 = 1, (8.11.27)

such that monopoles indeed condense in the confined phase.

8.12 The Monte Carlo Method

The most interesting questions in lattice field theory — especially those that
may eventually lead to a solution of QCD — cannot be answered analytically.
For example, the strong coupling expansion does not converge well in the weak
coupling scaling region, in which we want to take the continuum limit of lattice
QCD. Fortunately, the close analogy with classical statistical mechanics allows
us to use other techniques developed there. A powerful numerical technique to
solve problems in statistical mechanics is the so-called Monte Carlo method. The
idea is to compute the partition function (do the path integral) by generating
field configurations numerically. Of course, the path integral is an extremely
high dimensional integral, such that doing it with standard numerical integration
techniques is completely hopeless. In the Monte Carlo method predominantly
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those field configurations are generated that have the largest contribution to the
path integral. In fact, the Boltzmann factor exp(−S[Φ]) is used as the probability
to generate the field configuration Φ.

In a Monte Carlo simulation one generates a sequence of field configurations

Φ(1) → Φ(2) → ...→ Φ(N), (8.12.1)

which form a so-called Markow chain, by applying an algorithm that turns the
configuration Φ(i) into Φ(i+1). The initial configuration Φ(1) is either picked at
random or selected otherwise. Ultimately, nothing should depend on this choice.
After a (possibly large) number M of Monte Carlo iterations (applications of
the algorithm) an equilibrium is reached, and the system has forgotten about
the initial configurations. Only the configurations generated after equilibration
are used in the actual calculation. To estimate the expectation value of some
observable one averages its values over all configurations of the Monte Carlo
sample

〈O[Φ]〉 ≈ 1

N −M

N
∑

i=M+1

O[Φ(i)]. (8.12.2)

In the limit N → ∞ the approximation becomes exact. At finite N −M one
makes a calculable numerical error that decreases proportional to 1/

√
N −M .

Hence, to increase the numerical accuracy by a factor of two one must run the
Monte Carlo algorithm four times as long. The Boltzmann factor exp(−S[Φ]) is
not explicitly included in the above sum. It is implicitly included, because the
configurations in the Markow chain occur with probability exp(−S[Φ]).

To demonstrate that a particular Monte Carlo algorithm converges to the cor-
rect equilibrium distribution it is sufficient to show that it is ergodic and obeys
detailed balance. Ergodicity means that starting from an arbitrary initial config-
uration the algorithm can in principle reach any other field configuration. This
condition is obviously necessary, because the correct value for the path integral
can be obtained only if all field configurations (of finite action) are included.
Detailed balance means that

exp(−S[Φ])w[Φ,Φ′] = exp(−S[Φ′])w[Φ′,Φ]. (8.12.3)

Here w[Φ,Φ′] is the transition probability for the algorithm to turn the config-
uration Φ into Φ′. A Monte Carlo algorithm is completely characterized by its
w[Φ,Φ′]. Since the algorithm definitely generates a new configuration the proper
normalization is

∫

DΦ′ w[Φ,Φ′] = 1. (8.12.4)
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When the Monte Carlo algorithm converges to an equilibrium distribution p[Φ] of
field configurations, this distribution is an eigenvector of w[Φ,Φ′] with eigenvalue
1

∫

DΦ p[Φ]w[Φ,Φ′] = p[Φ′]. (8.12.5)

Now we want to show that the canonical Boltzmann distribution

p[Φ] = exp(−S[Φ]) (8.12.6)

is indeed an eigenvector of w[Φ,Φ′] if the algorithm obeys detailed balance. We
find

∫

DΦ exp(−S[Φ])w[Φ,Φ′] =

∫

DΦ exp(−S[Φ′])w[Φ′,Φ]

= exp(−S[Φ′])

∫

DΦw[Φ′,Φ]

= exp(−S[Φ′]). (8.12.7)

Assuming ergodicity one can show that only one eigenvector with eigenvalue 1
exists, and that the equilibrium distribution is therefore unique.

A simple example of an algorithm that is ergodic and obeys detailed balance
is the so-called Metropolis algorithm. In this algorithm a new configuration Φ′

is randomly chosen in the vicinity of the old configuration Φ. If the action of
the new configuration is smaller than the action of the old configuration, the new
configuration is accepted, i.e.

S[Φ′] < S[Φ] ⇒ w[Φ,Φ′] = 1. (8.12.8)

On the other hand, if the new action is larger, the new configuration is accepted
only with a certain probability, i.e.

S[Φ′] > S[Φ] ⇒ w[Φ,Φ′] = exp(−S[Φ′] + S[Φ]). (8.12.9)

Otherwise the old configuration is kept. This algorithm obeys detailed balance.
Let us consider two configurations Φ and Φ′. We can assume that S[Φ′] < S[Φ]
such that w[Φ,Φ′] = 1. Then of course, S[Φ] > S[Φ′] such that w[Φ′,Φ] =
exp(−S[Φ] + S[Φ′]), and hence

exp(−S[Φ])w[Φ,Φ′] = exp(−S[Φ]) = exp(−S[Φ′]) exp(−S[Φ] + S[Φ′])

= exp(−S[Φ′])w[Φ′,Φ]. (8.12.10)

The Metropolis algorithm is particularly simple, but not very efficient. It
turns out that subsequent configurations in the Markow chain are correlated with



8.12. THE MONTE CARLO METHOD 97

each other. Hence, to generate a new statistically independent field configuration
may require a large number of Monte Carlo iterations. The autocorrelation time
τ of the Metropolis algorithm actually increases when one approaches a second
order phase transition (or equivalently the continuum limit). At a second order
phase transition the correlation length ξ diverges (or equivalently the particle
mass in lattice units vanishes). One finds so-called critical slowing down

τ ∝ ξz, (8.12.11)

where z is a dynamical critical exponent characterizing the efficiency of a Monte
Carlo algorithm. For the Metropolis algorithm one finds z ≈ 2, which leads
to a very bad critical slowing down behavior. In lattice gauge theory the best
algorithm that is presently known (the so-called overrelaxation algorithm) has
z ≈ 1. For simpler spin models so-called cluster algorithms exist which have
z ≈ 0, and which hence eliminate critical slowing down. These algorithms are
extremely efficient, and allow one to perform very accurate numerical simulations
in these models. Unfortunately, for lattice gauge theory no algorithm with z ≈ 0
is known.

The inclusion of quarks poses additional very hard problems in numerical
simulations of QCD. As a matter of fact, computers cannot deal with Grassmann
numbers directly. Therefore, one integrates out the fermions analytically and ob-
tains a fermion determinant, that is a very complicated function of the gluon link
variables. One includes the determinant in the effective gluon action, which then
becomes highly nonlocal. To evaluate the change in action, which is necessary
for the Metropolis step, then is a very time-consuming procedure. Simulations
with dynamical quarks are therefore orders of magnitude more complicated than
simulations of the pure gluon theory. It is a matter of ongoing research to find
better ways to handle quarks numerically. Due to the tremendous difficulties to
simulate dynamical quarks, people often use the so-called quenched approxima-
tion, in which the fermion determinant is simply put to 1. It is unclear how this
very drastic approximation affects the physics. Especially for light quarks one
expects that the quenched approximation should be bad. On the other hand, for
somewhat heavier quarks the approximation seems to work reasonably well.


