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The Nature of the Sign Problem
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Fermionic observable O[n] from the bosonic ensemble

(O Sign)
(Sign)

(O)r Z O[n]Sign([n] exp(—S5[n]) =
"1l

Average sign in the simulated bosonic ensemble

(Sign) = ZSlgn[n]exp( S[n]) = ——exp(—ﬁVAf)
® 1]



Using
(Sign) = exp(—BVAF), Af=fr—1,

the estimated statistical error is

OSign \/ (Sign?) — (Sign)?  exp(BVAS) ‘

(Sign) V/N(Sign) B VN

Hence, the required number of independent measurements is

N = exp(2BV Af) .



Using
(Sign) = exp(—BVAF), Af=fr—1,

the estimated statistical error is

Sign)  VN(Sign) VN

Hence, the required number of independent measurements is

OSign \/ (Sign?) — (Sign)?  exp(BVAS) ‘

N = exp(26V Af) .

Academic “solution” of the sign problem:

UHU' = diag(E1, Bz, ...) = Zr = > exp(—BE,) = Sign[n] > 0.

Of course, if one could diagonalize the Hamiltonian — which
is generally exponentially hard for large systems — one would
not even need Monte Carlo simulations.
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Avoiding a Sign Problem by an Unconventional Regularization:
Application to CP(N — 1) 6-Vacua using SU(N) Quantum Spin Ladders



CP(N — 1) models are (1 + 1)-dimensional toy models for
QCD formulated in terms of N x N projection matrices

P(x)' = P(x), TrP(x)=1, P(x)?>=P(x)

with the Euclidean action
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CP(N — 1) models are (1 + 1)-dimensional toy models for
QCD formulated in terms of N x N projection matrices

P(x)' = P(x), TrP(x)=1, P(x)?>=P(x)

with the Euclidean action
gt 1
SIP] :/ dt/ b 25T [8XP8XP+C28tP8tP +i6Q[P]
0 0
that contains the topological charge

Q[P = / dt/ dx T PO PO P] € My[SU(N)/U(N—1)] = 7.

The complex action of a f-vacuum causes a severe sign
problem.



SU(N) quantum spins
T2, ac{l,2,. N>—1}, [T, T)]=ibufancTs

Spin ladder Hamiltonian

H=—J) [T+ TR = d 3 [T T2+ T T
xEA xeB
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Conserved SU(N) spin
TP=)"T?-> T [T°H=0
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Spontaneous symmetry breaking SU(N) — U(N — 1) implies
Goldstone boson fields P(x) € CP(N —1) = SU(N)/U(N —1)
with the low-energy effective action

B L L
S[P] = /dt/ dx/ dy Tr{p.0,Pd,P
0 0 0
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Spontaneous symmetry breaking SU(N) — U(N — 1) implies
Goldstone boson fields P(x) € CP(N —1) = SU(N)/U(N —1)
with the low-energy effective action

B L L
sip] = / dt/ dx/ dy Tr{p.0,Po,P
0 0 0
1 1
+ Ps |:8XP8XP+ CQatPatP:| — apaxpatp} .

Very large correlation length

¢ o exp(4ml'ps/cN) > L

implies dimensional reduction to (1 + 1)-d CP(N — 1) model

S[P] = / dt/ der{ [a POXP + - 8tP8t }—npaxpatp}.

Emergent f-vacuum angle
& & 0 =nm



Monte Carlo history of the order parameter

e For n = 3 (green curve) there is a first order phase transition with
spontaneous CP breaking in the (14 1)-d CP(3) model at § = .
e For n =4 (red curve) there is no phase transition at § = 0.

H. G. Evertz, G. Lana, and M. Marcu, Phys. Rev. Lett. 70 (1993) 875.

B. B. Beard and U.-J. W., Phys. Rev. Lett. 77 (1996) 5130.

B. Beard, M. Pepe, S. Riederer, and U.-J. W., Phys. Rev. Lett. 94 (2005) 010603.
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The Meron-Cluster Algorithm:
Application to some Strongly Correlated Electron Systems



Strategy of the meron-cluster algorithm:

S. Chandrasekharan and U.-J. W., Phys. Rev. Lett. 83 (1999) 3116.
> 1. Rewrite Z¢ using cluster variables such that all negative
configurations are matched with positive ones. Then effectively one
obtains Sign € {0, 1}, such that Sign® = Sign, and hence

OSign \/ (Sign®) — (Sign)? 1  exp(BVAF)2)
(Sign) V/N(Sign) ~ VN/(Sign) VN '

This solves one half of the sign problem.
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> 1. Rewrite Z¢ using cluster variables such that all negative
configurations are matched with positive ones. Then effectively one
obtains Sign € {0, 1}, such that Sign® = Sign, and hence

OSign \/ (Sign®) — (Sign)? 1  exp(BVAF)2)
(Sign) V/N(Sign) B V/N/(Sign) B VN '

This solves one half of the sign problem.

» 2. Never generate configurations that have been canceled
analytically. This solves the sign problem completely.

Like any other method for solving the sign problem, the
meron-cluster algorithm is not generally applicable. This is
unavoidable because some sign problems are NP-hard.

M. Troyer and U.-J. W., Phys. Rev. Lett. 94 (2005) 170201.
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Spinless fermion Hamiltonian with nearest-neighbor repulsion
1 1
H= th,ia X,I = _7( X+, ACX)_’—U( 2)(nx+?_§)

Suzuki-Trotter decomposition of the partition function

Z = Tr{exp[~B(H — uN)]}
M
= Jim Tr {exp[-e(Hy — 2o N)]....expl—c(Hay — 2= N)]}

Two-spin transfer matrix

exp[—e(hy,i — 2d(nX +n3)] = exp[e( v + ﬁ)]

2d
exp[—e(§ + £9)] 0 0 0
y 0 cosh(§) Xsinh($5) 0
0 Ysinh(§) cosh($5) 0
0 0 0 expl—e(§ — 4]



Path integral (in discrete time 5 = eM)

Zr = Trlexp(—eH1)exp(—cHo) ... exp(—eHaq)]V

= Z Sign[n] exp(—S[n])
(]
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Here two fermions interchange their positions. = Sign[n] =

—1.



Two-spin transfer matrix and cluster bonds

Wa 0 0 0
| 0 WatrWp —Wp 0O
oP(=chy) = o T, watWp 0
0 0 0 Wi
exp(-s[0,0,0,0]) Wi Ws We
g3, 8
nIns
exgo‘mi g[, + % +
A u [ &
exp(-s[1,0,1,0) W Wo
L

exp(-s[0,1,0,1])

Here Wy = exp(—eU/2), Wg = W =0, Wp = sinh(et/2).
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Cluster decomposition and reference configuration

an
I 3

|
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coesties

e All spins in a cluster are flipped simultaneously with probability %
e The flip of a meron-cluster changes the fermion sign.

e Only the 0-meron sector (which contains configurations without
merons) contributes to the partition function.

e By appropriate cluster flips one can reach a reference configuration.
e The measurement of 2-point functions also requires sampling the
2-meron sector.



Population of different meron sectors
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Restricting oneself to the 0-meron sector yields an exponential
improvement which completely solves the sign problem.
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Class of reference configurations for fermions with spin
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One finds accurate Kosterlitz-Thouless behavior for L < 128.
S. Chandrasekharan, J. Cox, J. Osborn, and U.-J. W., Nucl. Phys. B673 (2003) 405

S. Chandrasekharan and J. Osborn, Phys. Rev. B66 (2002) 045113.
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The Nested Cluster Algorithm:
Application to Frustrated Antiferromagnets



Geometrically frustrated lattices

A B C A A C
c A B C c A
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Triangular lattice Kagomé lattice

Antiferromagnetic spin % Heisenberg Hamiltonian

H=J> 55



Integrating out the spins

Z = Sign[b]WrwpP2Me
[b]
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Integrating out the spins
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Z = Sign[b]WrwpP2Me
[b]
» Only updates of cluster-internal plaquettes may change the sign.

» Once a statistically independent bond configuration has been
produced by the cluster algorithm, we perform an inner Monte Carlo
simulation by updating only the cluster-internal plaquette break-ups.

» Each cluster C defines the set of lattice sites A¢ contained in C.
The inner Monte Carlo algorithm generates clusters with different
orientations that visit all sites of A¢ in different orders, thus
contributing different values of Sign,.

» In this process, break-ups that lead to the decomposition of A¢ into
separate clusters must be rejected.
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Updating independent regions A
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Since the different regions A¢ are independent, the improved estimator of
the sign factorizes.

Improved estimator for the sign

(Sign); = [ [(Signc)i

Ac

Improved estimator for the staggered susceptibility

(M2Sign); = Y (MZSigne)i [] (Signer)i

Ae /\C/ #N¢



Probability distribution

of (Sign);
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Probability distribution of (Sign);

015 +

pI=1
ot V = 576 spins

m
10:0° 50:10™ 00 50x10" 10x0”

Volume dependence of (Sign); and (M?2Sign);




Coplanar susceptibility xs and collinear Néel susceptibility
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e Susceptibilities can be measured on volumes never reached before.

e However, the nested cluster algorithm works efficiently only at
moderate temperatures, when the regions A¢ are not too large.

M. Nyfeler, F.-J. Jiang, F. Kampfer, and U.-J. W., Phys. Rev. Lett. 100 (2008) 247206.
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Sign Problem and Meron-Cluster Algorithm

» In its most general form, the sign problem is NP-hard. Hence, a
general method that solves all sign problems can exist only if
NP = P, which is generally believed not to be the case.

»> Hence, any method for solving the sign problem is limited to specific
cases, and should make use of the structure of the system at hand.

» The meron-cluster algorithm matches all negative with positive sign
configurations by relating them via meron-cluster flips. It then
restricts the simulation to the 0-meron sector of uncancelled
configurations with positive sign. When the meron-cluster algorithm
is applicable, it solves the sign problem completely.

» The meron-cluster algorithm has been applied successfully to
relativistic field theories at non-zero chemical potential and at
non-zero vacuum angle, to theories of relativistic staggered
fermions, as well as to specific models for non-relativistic strongly
correlated electrons.
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Nested Cluster Algorithm

» The meron-cluster algorithm solves the sign problem only if all
configurations in the O-meron sector have a positive sign. This is
guaranteed if a positive reference configuration exists to which all
configurations can be flipped.

» In frustrated systems, no positive reference configuration exists.
Then the 0-meron sector contains negative sign configurations, and
the meron-cluster algorithm does not solve the sign problem.

» The nested cluster algorithm does not rely on a reference
configuration. Since clusters can be flipped independently, the total
sign factorizes into contributions of local cluster regions A¢. The
nested cluster algorithm gains a factor that is exponential in the
spatial volume, by taking advantage of the cluster independence.

» The nested cluster algorithm slows down significantly when the local
regions A¢ become too large, which limits the method to moderate
temperatures.

This workshop is a great opportunity to make further progress.
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