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Fermionic path integral

Zf = Tr exp(−βH) =
∑
[n]

Sign[n] exp(−S [n]) , Sign[n] = ±1

Path integral of a corresponding bosonic model

Zb =
∑
[n]

exp(−S [n])

Fermionic observable O[n] from the bosonic ensemble

〈O〉f =
1

Zf

∑
[n]

O[n]Sign[n] exp(−S [n]) =
〈O Sign〉
〈Sign〉

Average sign in the simulated bosonic ensemble

〈Sign〉 =
1

Zb

∑
[n]

Sign[n] exp(−S [n]) =
Zf

Zb
= exp(−βV∆f )
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Using
〈Sign〉 = exp(−βV∆f ) , ∆f = ff − fb ,

the estimated statistical error is

σSign

〈Sign〉
=

√
〈Sign2〉 − 〈Sign〉2
√

N〈Sign〉
=

exp(βV∆f )√
N

.

Hence, the required number of independent measurements is

N = exp(2βV∆f ) .

Academic “solution” of the sign problem:

UHU† = diag(E1,E2, ...) ⇒ Zf =
∑
n

exp(−βEn) ⇒ Sign[n] > 0 .

Of course, if one could diagonalize the Hamiltonian — which
is generally exponentially hard for large systems — one would
not even need Monte Carlo simulations.
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CP(N − 1) models are (1 + 1)-dimensional toy models for
QCD formulated in terms of N × N projection matrices

P(x)† = P(x), TrP(x) = 1, P(x)2 = P(x)

with the Euclidean action

S [P] =

∫ β

0
dt

∫ L

0
dx

1

g2
Tr

[
∂xP∂xP +

1

c2
∂tP∂tP

]
+ iθQ[P]

that contains the topological charge

Q[P] =
1

πi

∫ β

0
dt

∫ L

0
dx Tr[P∂xP∂tP] ∈ Π2[SU(N)/U(N−1)] = Z .

The complex action of a θ-vacuum causes a severe sign
problem.
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SU(N) quantum spins

T a
x , a ∈ {1, 2, ...,N2 − 1}, [T a

x ,T b
y ] = iδxy fabcT

c
x

Spin ladder Hamiltonian

H = −J
∑
x∈A

[T a
x T a∗

x+1̂
+ T a

x T a
x+2̂

]− J
∑
x∈B

[T a∗
x T a

x+1̂
+ T a∗

x T a∗
x+2̂

]

x

y

L

L’

Conserved SU(N) spin

T a =
∑
x∈A

T a
x −

∑
x∈B

T a∗
x , [T a,H] = 0



Spontaneous symmetry breaking SU(N) → U(N − 1) implies
Goldstone boson fields P(x) ∈ CP(N − 1) = SU(N)/U(N − 1)
with the low-energy effective action

S [P] =

∫ β

0
dt

∫ L

0
dx

∫ L′

0
dy Tr

{
ρ′s∂yP∂yP

+ ρs

[
∂xP∂xP +

1

c2
∂tP∂tP

]
− 1

a
P∂xP∂tP

}
.

Very large correlation length

ξ ∝ exp(4πL′ρs/cN) � L′

implies dimensional reduction to (1 + 1)-d CP(N − 1) model

S [P] =

∫ β

0
dt

∫ L

0
dx Tr

{
1

g2

[
∂xP∂xP +

1

c2
∂tP∂tP

]
− nP∂xP∂tP

}
.

Emergent θ-vacuum angle
θ = nπ
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Monte Carlo history of the order parameter
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• For n = 3 (green curve) there is a first order phase transition with

spontaneous CP breaking in the (1 + 1)-d CP(3) model at θ = π.

• For n = 4 (red curve) there is no phase transition at θ = 0.

H. G. Evertz, G. Lana, and M. Marcu, Phys. Rev. Lett. 70 (1993) 875.

B. B. Beard and U.-J. W., Phys. Rev. Lett. 77 (1996) 5130.

B. Beard, M. Pepe, S. Riederer, and U.-J. W., Phys. Rev. Lett. 94 (2005) 010603.
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Strategy of the meron-cluster algorithm:

S. Chandrasekharan and U.-J. W., Phys. Rev. Lett. 83 (1999) 3116.

I 1. Rewrite Zf using cluster variables such that all negative
configurations are matched with positive ones. Then effectively one
obtains Sign ∈ {0, 1}, such that Sign2 = Sign, and hence

σSign

〈Sign〉
=

√
〈Sign2〉 − 〈Sign〉2
√

N〈Sign〉
=

1√
N

√
〈Sign〉

=
exp(βV∆f /2)√

N
.

This solves one half of the sign problem.

I 2. Never generate configurations that have been canceled
analytically. This solves the sign problem completely.

Like any other method for solving the sign problem, the
meron-cluster algorithm is not generally applicable. This is
unavoidable because some sign problems are NP-hard.

M. Troyer and U.-J. W., Phys. Rev. Lett. 94 (2005) 170201.
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Spinless fermion Hamiltonian with nearest-neighbor repulsion

H =
∑
x ,i

hx ,i , hx ,i = − t

2
(c†xcx+î + c†

x+î
cx)+U(nx −

1

2
)(nx+î −

1

2
)

Suzuki-Trotter decomposition of the partition function

Zf = Tr{exp[−β(H − µN)]}

= lim
M→∞

Tr
{

exp[−ε(H1 −
µ

2d
N)] . . . exp[−ε(H2d −

µ

2d
N)]

}M

Two-spin transfer matrix

exp[−ε(hx ,i −
µ

2d
(nx + nx+î ))] = exp[ε(

U

4
+

µ

2d
)]

×


exp[−ε(U

2 + µ
2d )] 0 0 0

0 cosh( εt
2 ) Σ sinh( εt

2 ) 0
0 Σ sinh( εt

2 ) cosh( εt
2 ) 0

0 0 0 exp[−ε(U
2 −

µ
2d )]


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1

2
)

Suzuki-Trotter decomposition of the partition function

Zf = Tr{exp[−β(H − µN)]}

= lim
M→∞

Tr
{

exp[−ε(H1 −
µ

2d
N)] . . . exp[−ε(H2d −

µ

2d
N)]

}M

Two-spin transfer matrix

exp[−ε(hx ,i −
µ

2d
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Path integral (in discrete time β = εM)

Zf = Tr[exp(−εH1) exp(−εH2) . . . exp(−εH2d)]M

=
∑
[n]

Sign[n] exp(−S [n])

X

T − +U µ
2

−
2d

2
ε t

tε
2

sinh(

exp(−ε[ ])

exp(− [ε −
2
U −

2d

µ
− ])

)

)cosh(

Here two fermions interchange their positions. ⇒ Sign[n] = −1.



Two-spin transfer matrix and cluster bonds

exp(−εhxy ) =


WA 0 0 0
0 WA + WD −WD 0
0 −WD WA + WD 0
0 0 0 WA



=

=

+ +

+

+

+

+

+

+

+=

=

=

=

W W W

W W W

W W W

W W W

W W

W W

A B C

D

A

A

A

B

B

B

C

C

CD

D

exp(−s[0,1,0,1])

exp(−s[1,0,1,0])

exp(−s[1,0,0,1])

exp(−s[0,1,1,0])

exp(−s[0,0,0,0])

exp(−s[1,1,1,1])

D

−

Here WA = exp(−εU/2), WB = WC = 0, WD = sinh(εt/2).



Cluster decomposition and reference configuration

• All spins in a cluster are flipped simultaneously with probability 1
2 .

• The flip of a meron-cluster changes the fermion sign.

• Only the 0-meron sector (which contains configurations without

merons) contributes to the partition function.

• By appropriate cluster flips one can reach a reference configuration.

• The measurement of 2-point functions also requires sampling the

2-meron sector.
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Population of different meron sectors
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Restricting oneself to the 0-meron sector yields an exponential
improvement which completely solves the sign problem.



Class of reference configurations for fermions with spin
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One finds accurate Kosterlitz-Thouless behavior for L ≤ 128.
S. Chandrasekharan, J. Cox, J. Osborn, and U.-J. W., Nucl. Phys. B673 (2003) 405.

S. Chandrasekharan and J. Osborn, Phys. Rev. B66 (2002) 045113.
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Geometrically frustrated lattices

Triangular lattice Kagomé lattice

Antiferromagnetic spin 1
2

Heisenberg Hamiltonian

H = J
∑
x ,i

~Sx · ~Sx+î



Integrating out the spins

Z =
∑
[b]

Sign[b]W nA
A W nD

D 2NC

I Only updates of cluster-internal plaquettes may change the sign.

I Once a statistically independent bond configuration has been
produced by the cluster algorithm, we perform an inner Monte Carlo
simulation by updating only the cluster-internal plaquette break-ups.

I Each cluster C defines the set of lattice sites ΛC contained in C.
The inner Monte Carlo algorithm generates clusters with different
orientations that visit all sites of ΛC in different orders, thus
contributing different values of SignC .

I In this process, break-ups that lead to the decomposition of ΛC into
separate clusters must be rejected.
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Updating independent regions ΛC

Since the different regions ΛC are independent, the improved estimator of

the sign factorizes.

Improved estimator for the sign

〈Sign〉i =
∏
ΛC

〈SignC〉i

Improved estimator for the staggered susceptibility

〈M2
s Sign〉i =

∑
ΛC

〈M2
sCSignC〉i

∏
ΛC′ 6=ΛC

〈SignC′〉i
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the sign factorizes.
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Probability distribution of 〈Sign〉i

-1.0×10
-9

-5.0×10
-10 0.0 5.0×10

-10
1.0×10

-9

< Sign >i

0

0.05

0.1

0.15

βJ = 1

V = 576 spins

Volume dependence of 〈Sign〉i and 〈M2
sSign〉i

0 100 200 300 400 500 600 700 800 900

V

10
-18

10
-12

10
-6

10
0

<Sign>+

<Ms
2
Sign>+10

-6

βJ = 1



Probability distribution of 〈Sign〉i

-1.0×10
-9

-5.0×10
-10 0.0 5.0×10

-10
1.0×10

-9

< Sign >i

0

0.05

0.1

0.15

βJ = 1

V = 576 spins

Volume dependence of 〈Sign〉i and 〈M2
sSign〉i

0 100 200 300 400 500 600 700 800 900

V

10
-18

10
-12

10
-6

10
0

<Sign>+

<Ms
2
Sign>+10

-6

βJ = 1



Coplanar susceptibility χs and collinear Néel susceptibility χN
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• Susceptibilities can be measured on volumes never reached before.

• However, the nested cluster algorithm works efficiently only at

moderate temperatures, when the regions ΛC are not too large.

M. Nyfeler, F.-J. Jiang, F. Kämpfer, and U.-J. W., Phys. Rev. Lett. 100 (2008) 247206.



Outline

The Nature of the Sign Problem

Avoiding a Sign Problem by an Unconventional Regularization:
Application to CP(N − 1) θ-Vacua using SU(N) Quantum Spin Ladders

The Meron-Cluster Algorithm:
Application to some Strongly Correlated Electron Systems

The Nested Cluster Algorithm:
Application to Frustrated Antiferromagnets

Conclusions



Sign Problem and Meron-Cluster Algorithm

I In its most general form, the sign problem is NP-hard. Hence, a
general method that solves all sign problems can exist only if
NP = P, which is generally believed not to be the case.

I Hence, any method for solving the sign problem is limited to specific
cases, and should make use of the structure of the system at hand.

I The meron-cluster algorithm matches all negative with positive sign
configurations by relating them via meron-cluster flips. It then
restricts the simulation to the 0-meron sector of uncancelled
configurations with positive sign. When the meron-cluster algorithm
is applicable, it solves the sign problem completely.

I The meron-cluster algorithm has been applied successfully to
relativistic field theories at non-zero chemical potential and at
non-zero vacuum angle, to theories of relativistic staggered
fermions, as well as to specific models for non-relativistic strongly
correlated electrons.
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Nested Cluster Algorithm

I The meron-cluster algorithm solves the sign problem only if all
configurations in the 0-meron sector have a positive sign. This is
guaranteed if a positive reference configuration exists to which all
configurations can be flipped.

I In frustrated systems, no positive reference configuration exists.
Then the 0-meron sector contains negative sign configurations, and
the meron-cluster algorithm does not solve the sign problem.

I The nested cluster algorithm does not rely on a reference
configuration. Since clusters can be flipped independently, the total
sign factorizes into contributions of local cluster regions ΛC . The
nested cluster algorithm gains a factor that is exponential in the
spatial volume, by taking advantage of the cluster independence.

I The nested cluster algorithm slows down significantly when the local
regions ΛC become too large, which limits the method to moderate
temperatures.

This workshop is a great opportunity to make further progress.
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