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Abstract

Actions for the 3-dimensional U(1) lattice gauge theory on the dual lattice in terms of
height variables are derived for the vacuum case and for the case of an inserted particle-
antiparticle pair. A Monte Carlo Markov chain lattice simulation for the given actions using
a Metropolis algorithm is implemented. Observables such as the action, field strength, energy
and correlation length are defined and simulated. Time-averaged field strength and energy
density plots are shown. An estimation of the string tension of a particle-antiparticle pair
is observed as the linear fit of the vacuum subtracted string potential. A second moment
approach to calculate the correlation length is derived and used to plot a 1.5-step-scaling
function, which shows unexpected behaviour, as the correlation length shrinks when the
lattice size is increased.
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Chapter 1

Introduction

In his seminal paper in 1974, Kenneth G. Wilson jump-started the field of lattice field theory
by discretizing Abelian and non-Abelian gauge fields on a Euclidean space-time lattice, and
he introduced ground-laying concepts, such as the Wilson action [1]. J. Villain iterated
on the approach by approximating the Wilson action to the second order in the gauge field
phase factor and he showed that this approximation preserves the correct symmetries and is in
good agreement with higher order series expansions [2]. In the context of the renormalization
group, the resulting Villain action is understood as a different theory in the same universality
class as the Wilson action [3]. Using this result, in 1982 M. Göpfert and G. Mack showed
that a 3-dimensional U(1) lattice gauge theory with Villain action shows confinement for all
values of the coupling constant, and they provided a lower bound for the string tension [4].
Being well understood and simple in its description, while still experiencing effects such as
confinement, makes the 3-dimensional U(1) lattice gauge theory the perfect toy example to
investigate the physics of non-perturbative renormalization through lattice field theories and
develop numerical methodologies such as the Monte Carlo Markov chain lattice simulations.

1.1. The scope of this thesis

In this thesis we want to investigate two key properties of the 3-dimensional U(1) lattice
gauge theory: The string tension and the correlation length.

We commence by defining 3-dimensional U(1) gauge theory on a cubic lattice in analogy to
[1, 2]. We then proceed to dualize the lattice field theory and define it on the dual lattice,
where we find the theory to be defined in terms of integer valued variables at each site of
the dual lattice, so-called height variables. The formulation of the dual theory in terms of
height variables allows us to simplify numerical calculations significantly. The derived action
describes the theory in a vacuum, i.e. without external charges. By inserting a Wilson loop on
the original lattice, which may be interpreted as a particle-antiparticle pair being created and
then later annihilated again, we find an altered action that allows us to calculate observables
in the presence of charges. By stretching the Wilson loop to encompass the whole of the
periodic time extent, the Wilson loop becomes a pair of Polyakov loops, representing two
static charges, which we take as the basis for further investigations.
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2 1. Introduction

In Chapter 3 we develop a Monte Carlo Markov chain lattice simulation that is based on
the action for the vacuum and Wilson loop systems we derived previously, where we utilize
a Metropolis type algorithm. We also develop a cluster algorithm, which we ultimately did
not use for simulation of the observables. We calculate observables including the action, the
field strength, the energy, the energy density and the correlation function of the system. We
produce plots of these observables, and we introduce an error estimation for the Markov chain
observables by combining bootstrapping resampling with binning of consecutive observables.
Finally we calculate estimates for the string tension as the linear coefficient of the vacuum
subtracted string potential of the particle-antiparticle pair.

In Chapter 4 we derive a second moment approach for the calculation of the correlation
length for the continuous as well as for the discrete case. We argue for the second moment
approach by comparing it to the conventional least squares fit in the regime where the
correlation function comes close to a parabola. We then apply the second moment method
to the observed correlation functions to get correlation lengths, which then are used to
extract a factor 1.5 step-scaling function. The resulting step-scaling function shows unusual
behaviour, where the correlation length decreases when increasing the lattice size. The step-
scaling function and the string tension are then further discussed in the conclusion of the
thesis.



Chapter 2

Dualizing the 3-dimensional U(1)
lattice gauge theory

2.1. Defining the 3-dimensional U(1) lattice gauge theory

Consider a 3-dimensional cubic Euclidean spacetime volume with periodic boundary condi-
tions. We discretize the Euclidean spacetime volume on a cubic lattice with N3 lattice sites,
while respecting the periodic boundary conditions. The isotropic lattice spacing a is set to 1.
We designate one dimension of the Euclidean spacetime as time, which gives us the inverse
temperature of our system as the time extent of the lattice β = Na.

A U(1) gauge theory in this lattice-discretized spacetime volume has to respect certain
symmetries. These are

• Translation symmetry: The theory should be invariant under a shift by a number
of lattice spacings.

• Gauge invariance: The invariance under a local gauge transformation is a key feature
of the theory we want to investigate.

• Charge conjugation: The action should be invariant under charge conjugation.

• Parity and Time-reversal: Reflecting either both space directions or the single
Euclidean time direction around the origin should leave the action invariant.

We introduce a gauge field on the lattice by placing gauge variables Uxy = eiφxy ∈ U(1) on
the links between neighbouring lattice sites ⟨xy⟩. A local gauge transformation takes the
form

U ′
xy = ΩxUxyΩ

∗
y, (2.1)

with Ωx = eiαx , αx ∈ R being the local phase factor. The simplest non-trivial gauge invariant
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4 2. Dualizing the 3-dimensional U(1) lattice gauge theory

term we can build on the lattice is the plaquette, a closed square of four gauge links on the
lattice,

U ′
xyU

′
yzU

′
wz

∗
U ′
xw

∗
= UxyUyzU

∗
wzU

∗
xw. (2.2)

This is the simplest form of a Wilson loop. While all Wilson loops are gauge invariant, we
use the plaquette to construct the action for the field theory. We then proceed to construct
an action from only gauge invariant terms, and the easiest way to do this is to simply sum
over all plaquettes on the lattice,

S[U ] =
1

e2

∑
□

(
1− 1

2
U1U2U

∗
3U

∗
4 − 1

2
U∗
1U

∗
2U3U4

)
(2.3)

=
1

e2

∑
□

(1− cosφ□) , (2.4)

with φ□ = φ1+φ2−φ3−φ4 the sum of the phase factors of the plaquette links. Incidentally,
this resembles the continuum theory term ∂µAν(x)−∂νAµ(x), and the plaquette contraction
is the natural object on the lattice for the field strength tensor.

The cosine term in the Wilson action (2.4) is unwieldy, as it would require us to use Bessel
functions to further investigate the theory. Instead we make use of the Villain action [2],

S[φ] =
1

2e2

∑
□

∑
n□

(φ□ − 2πn□)
2, (2.5)

where we use n□ ∈ Z to get the phase factor φ□ ∈ (−π, π] mapped onto the real numbers;
otherwise, this would be the Manton action [5]. The simple Gaussian form allows us to
further simplify and later easily dualize the theory. Furthermore, the Villain action, while
describing a different theory, is part of the same universality class as the Wilson action [6].

Next we want to introduce the n-form notation on the lattice, where we can relate objects
associated to sites, links, plaquettes and cubes by identifying them with their respective
differential forms (0-, 1-, 2- and 3-form respectively, see Figure 1). As done in [7], we
introduce the exterior differential d as acting on an n-form by summing over its oriented
boundary, yielding an (n+ 1)-form. For example, if we act with the exterior differential on
a 1-form, which is associated to the links on the lattice, we sum up the contributions from
the values on the links for each plaquette on the lattice. This gives us a 2-form, associated
to the plaquettes,

φ□ = dφl = φ1 + φ2 − φ3 − φ4. (2.6)

Using this notation, we easily see that applying the exterior derivative twice vanishes,
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(a) 0-form (b) 1-form (c) 2-form (d) 3-form

Figure 1: The four differential forms on a 3-dimensional lattice.

dφ□ = d2φl = 0. (2.7)

This is also known as the Bianchi identity. This provides a simple way to confirm gauge
invariance of the plaquette again, as we simply write

φ′
□ = d(φl + dαx) = dφl + ddαx = dφl = φ□. (2.8)

With this we finally build the partition function. On the lattice this means that we integrate
over all phase factors φl. A key insight is that, because the phases only exist inside some
periodic functions, we may decompose this integration into an integral over just one period
and sum over the rest. Finally we use the Villain action [2], which yields the partition
function

Z =
∏
l

1

2π

∫ π

−π
dφl

∏
□

∑
n□∈Z

exp

(
− 1

2e2
∥dφl − 2πn□∥2

)
. (2.9)

It its to be noted that here we introduced the square of the measure of an n-form as the
scalar product of the term with itself,

∥φ□∥2= (φ□, φ□) =
∑
□

φ2
□. (2.10)

2.2. Dualizing the lattice field theory

With dualization, we intend to change the underlying mathematical structure of theories
while respecting the symmetries and constraints on which they are based. For lattice theories,
this is especially straightforward, as for every lattice there exists the dual lattice. In our case,
a 3-dimensional cubic lattice, we define that a lattice site gets mapped onto a unit cube cell
and a link between two sites gets mapped onto a plaquette. Because the dual lattice is again
a 3-dimensional cubic lattice, we find that the dual of the dual lattice is again the original
lattice, as it should be.
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We say that each object identified as an n-form on the original lattice can also be identified
as a (3 − n)-form on the dual lattice. We denote this duality transformation with ∗, and
this gives rise to the codifferential δ = ∗d∗, which lowers the rank of a form by 1, e.g. the
codifferential of a 2-form χ□ with dual ψl is a 1-form χl with dual ψ□,

δχ□ = ∗d∗χ□ = ∗dψl =
∗ψ□ = χl. (2.11)

Note that applying the codifferential after the differential does not yield the original n-form,

δdφl = δφ□ = χl ̸= φl. (2.12)

Using the Bianchi identity (2.7), we can show that applying the codifferential twice vanishes,

δδ = ∗d∗∗d∗ = ∗dd∗ = 0. (2.13)

In order to dualize the lattice field theory we found in eq. (2.9), we start by using the relation

dφl − 2πn□ = φ□ − 2πn□ = F□, (2.14)

and we add the Bianchi identity (2.7) as a constraint. This leads to

Z =
∏

δ2π(dφ□)
∏
□

∫ ∞

−∞
dF□ exp

(
− 1

2e2
∥F□∥2

)
, (2.15)

where
∏

is the product over all cube cells. We now may express the delta function in terms
of the series expansion

∏
δ2π(dφ□) =

∏ ∑
k ∈Z

exp(i(k , dφ□)) (2.16)

=
∏ ∑

k ∈Z
exp(−i(δk , φ□)) (2.17)

=
∏ ∑

k ∈Z
exp(−i(δk , F□)). (2.18)

Here we performed a partial integration and then used periodicity. As such, the inclusion of
the Bianchi identity in (2.15) yields
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Z =
∏ ∑

k ∈Z
exp

(
−e

2

2
∥δk ∥2

)
. (2.19)

Note that the coupling constant squared has switched from the denominator to the numerator
in order to preserve dimensionality. Finally, going from the original to the dual lattice
transforms the product over all cube cells into a product over all lattice sites. The integer
valued variables, which we will call height variables from now on, are associated to the sites
of the dual lattice, and the codifferential yields a normal exterior differential,

Z =
∏
x

∑
hx∈Z

exp

(
−e

2

2
∥dh∥2

)
(2.20)

=
∏
x

∑
hx∈Z

exp

−e
2

2

∑
⟨xy⟩

(hx − hy)
2

 , (2.21)

where ⟨xy⟩ refers to the sum over links—nearest neighbour pairs—on the dual lattice. This
result is noteworthy, as we were able to transform a partition function in terms of the real
valued variables φl into one that has only integer valued height variables hx. Without having
to evaluate integrals, this dualization allows for integer valued lattice simulations, simplifying
Monte Carlo methods significantly.

Additionally, we observe the partition function to experience a kind of gauge symmetry, in
the sense of a redundant degree of freedom, where shifting all height variables hx up by some
constant does not affect the result. This will become relevant as we investigate the system
further.

The found partition function allows us to formulate, evaluate and simulate different observ-
ables, such as the energy or the mass-gap and correlation length. In a next section we will
consider the insertion of charges into the theory.

2.3. Inserting charges via Polyakov loops

While the plaquette is the simplest gauge invariant construction on the lattice, we may also
consider bigger Wilson loops. We find, that for Wilson loops bigger than a few plaquettes,
the surface with the given Wilson loop as its boundary is not unique at all, as there exists
a whole family of surfaces with the same border. Consider two surfaces S and S′ with the
same boundary ζ. We define surface indicator functions 1S and 1S′ as 2-forms, that are
either ±1 for when a plaquette is part of the surface S or S′ and 0 otherwise. The sign
depends on the oriented boundary. The codifferential of a surface indicator function is a
indicator function 1ζ itself, a 1-form which is ±1 when a link is part of the Wilson loop and
0 otherwise. Therefore, the codifferential of the indicator function of the two surfaces S and
S′ are equal,
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δ1S = 1ζ = δ1S′ . (2.22)

We may transform the surfaces that have the same boundary into each other by adding
to the surface indicator function 1S the codifferential of cube cell indicator functions 1Xi ,
3-forms that are ±1 if a cube cell is the designated cube cell X and 0 otherwise,

1S′ = 1S +
N∑
i=1

δ1Xi , (2.23)

where i ∈ {1, 2, ..., N} iterates over the required cube cells Xi to transform the surface S
into S′.

With the partition function from eq. (2.9), we define a Wilson loop observable over the
Wilson loop links l′ as

⟨Wl′⟩ =
1

Z

∏
l

1

2π

∫ π

−π
dφl

∏
□

∑
n□∈Z

exp

(
− 1

2e2
∥dφl − 2πn□∥2

)∏
l′

exp (iφl′) . (2.24)

The idea again is to dualize this expression. As we already understand how to proceed with
all but the last term, lets consider some initial transformations

∏
l′

exp (iφl′) = exp (i (1l′ , φl)) = exp (i (δ1S , φl)) (2.25)

= exp (i (1S , dφl)) = exp (i (1S , φ□)) = exp (i (1S , F□)) . (2.26)

Again, by inserting the Bianchi identity (2.18), we find

⟨Wl′⟩ =
1

Z

∏ ∑
k ∈Z

exp(−i(δk , F□))
∏
□

∫ ∞

−∞
dF□ exp

(
− 1

2e2
∥F□∥2

)
exp (i (1S , F□))

(2.27)

=
1

Z

∏ ∑
k ∈Z

exp

(
−e

2

2
∥δk ∥2

)
exp (i (1S , δk )) (2.28)

=
1

Z

∏ ∑
k ∈Z

exp

(
−e

2

2
∥δk + 1S∥2

)
, (2.29)

which is then dualized to yield
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⟨Wl′⟩ =
1

Z

∏
x

∑
hx∈Z

exp

(
−e

2

2
∥dh+ ∗1S∥2

)
, (2.30)

where ∗1S is the indicator function whether a dual link pierces the original Wilson loop
surface, and the sign depends on the orientation of the original Wilson loop. Now if we go
back and consider a different surface for the given Wilson loop as in eq. (2.23), we see that
it changes the height variables by a constant shift, under which the action is invariant.

Having constructed a coherent Wilson loop observable, it remains to be interpreted. As K.
Wilson argued in 1974 [1], for a Wilson loop with two edges in time direction at positions x
and y and two edges connecting x and y at times t and t′, the resulting loop can be thought
of as producing a particle-antiparticle pair at time t at the positions x and y, which exists
for the duration |t′ − t| and then annihilates again.

In our case, because we use periodic boundary conditions, we may also construct a different
case, where we stretch the Wilson loop to contain the whole extent of the time dimension. In
this case, one might say that the creation and annihilation happens simultaneously, canceling
each other. This results in two separate loops closed in the periodic time dimension, so-called
Polyakov loops [8]. These then represent a static particle-antiparticle pair.

Finally, if we want to observe different observables in the presence of the particle-antiparticle
pair, such as the energy of the string or field strength, we can utilize the adapted action

S[h] =
e2

2
∥dh+ ∗1S∥2=

e2

2

∑
<xy>

(hx − hy +
∗1S)

2 . (2.31)
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Chapter 3

Lattice simulation and confinement

3.1. Simulation parameters

With the theories from Chapter 2, we are able to start performing numerical simulations to
investigate the given theories further. We start by initializing a 3-dimensional cubic lattice
of N3 lattice points with periodic boundary conditions. We consider lattice sizes ranging
from 163 to 543. On each lattice site x, we initialize an integer valued height variable hx.
There are two possible initialization procedures, the so-called cold or hot starts. Starting
cold means to initialize all height variables to be equal, while starting hot means that we
initialize the height variables as a random integer in some given range. For our purpose and
going forward, we chose starting hot by initializing the height variables randomly chosen from
uniformly distributed integers in the range hx ∈ [−128, 127]. This is our first configuration
C in the configuration space that we want to sample, the start of our Markov chain.

With the initialized system, it remains to specify certain parameters of the system: First
and foremost, this is the action. Here we can choose between the two actions derived in
Chapter 2. If we want to observe properties of the vacuum, we choose the action

S[h] =
e2

2

∑
⟨xy⟩

(hx − hy)
2 . (3.1)

If we want to observe properties of the system in presence of two opposite static charges as
seen in Section 2.3, we choose the action

S[h] =
e2

2

∑
<xy>

(hx − hy +
∗1S)

2 , (3.2)

where ∗1S is the indicator function for dual links piercing the surface spanned by the two
Polyakov loops on the original lattice.

11



12 3. Lattice simulation and confinement

We also need to specify the coupling constant e of our system. Coupling constants we
consider are in the range e2 ∈ [0.4, 0.6], and we might choose different ranges depending
on the size of the lattice and the observable we want to calculate. The chosen action and
coupling constant determine the Boltzmann weight for each possible configuration of height
variables, and therefore the Boltzmann distribution.

3.2. Sampling the configuration space

In order to correctly sample the configuration space of the theory, we need to produce
configurations that follow the Boltzmann distribution

P (C) = 1

Z
exp (−S[C]) . (3.3)

We achieve this by iteratively performing transformations on our initial configuration in such
a way that we respect the Boltzmann weight. While there are multiple schemes to guarantee
that the transformations respect the Boltzmann weight, we confirm that our transformations
follow the Boltzmann distribution by showing that they obey ergodicity and the detailed
balance condition. The detailed balance condition can be stated as follows: The probability
of being in a state C and going to a state C′ must be equal to the probability of being in the
state C′ and going back to the state C,

P (C)P (C → C′) = P (C′)P (C′ → C). (3.4)

This is reminiscent of the Bayesian theorem. Furthermore, detailed balance in combination
with ergodicity ensures that the Markov chain converges to the desired stationary distribution
with the transition probability depending only on the previous configuration.

Ergodicity states that the transformation must be able to reach any configuration from any
other configuration in a finite number of steps. This makes sure that the entire configuration
space gets sampled by the Markov chain.

3.3. Metropolis algorithm

There are many different algorithms that can be constructed with the conditions above. Here
we introduce a Metropolis algorithm. Consider a configuration C. At the position x on the
lattice, the height variable has the value hx. We then propose a new configuration C′ that is
equivalent to C except at x where h′x = hx ± 1. We calculate the Boltzmann weights of both
configurations

P (C) = 1

Z
exp (−S) , P (C′) =

1

Z
exp

(
−S′) , (3.5)

where we abbreviated S = S[C] and S′ = S[C′]. Consider the case where S′ is smaller than
S, meaning that the new configuration C′ has a higher weight than the previous. In this
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case it is desirable to accept the new configuration, and we set P (C → C′) = 1. The detailed
balance condition (3.4) then gives us the probability to go from a higher weight to a lower
weight as

P (C′ → C) = P (C)
P (C′)

= exp
(
S′ − S

)
. (3.6)

The case where S′ is bigger than S can be calculated similarly. The full transformation
probability then can be stated as

P (C → C′) = min{1, eS−S′}. (3.7)

Here we note that, because we use the actions (2.5) or (2.31) from Chapter 2, the difference
of the actions S − S′ only depends on the height values of the neighbours of x, as all other
contributions cancel each other out. We exploit this in our implementation of the Metropolis
algorithm.

It is obvious that this transition probability satisfies detailed balance, but what about er-
godicity? If we consider any target configuration, we may construct a set of transformations
such that for each point on the lattice, the height values of the original configuration get
transformed into the height values of the target configuration. Because each single trans-
formation has a non-zero probability, any target configuration is in fact reachable with a
non-zero probability within a finite number of steps. Thus ergodicity is confirmed.

Now, as much as changing a single height variable is a new configuration, we did not move
very far in the configuration space. Therefore we propose a transformation for each point
on the lattice by choosing to move either up or down with 50 percent probability. After
having accepted or denied the transformation for each point, we have completed what we
call a Metropolis sweep, at which point we consider the configuration the next entry of the
Markov chain.

We also developed a cluster algorithm as an alternative, however we ultimately did not use
it in favour of the Metropolis algorithm. In Section 3.7 we present the cluster algorithm,
show that it obeys detailed balance and ergodicity and lastly elaborate on the decision to
not use it in the lattice simulation.

3.4. Thermalizing the simulation

As we start sampling the configuration space, it is unlikely that the distribution of the
first hundred samples already shows a resemblance to the desired distribution, as it most
probably contains configurations that have a vanishingly small Boltzmann weight. However,
we are allowed to discard the first configurations, which is called the burn-in or warm-up of
the Markov chain. By discarding these first outliers, we make sure that the observables we
are calculating are sampled from the desired distribution, which will give us more accurate
results.
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To test the thermalization, we performed a lattice simulation for different lattice sizes, actions
and coupling constants without burn-in. In Figure 2 we can see that for a simple observable,
such as the action, the system is thermalized within around 300 Metropolis sweeps.

For the upcoming simulation and calculation of observables we use a burn-in of 2000 Metropo-
lis sweeps. Hereby we are sure that after having thermalized the system, all subsequent con-
figurations C1, C2, ... are drawn from the desired distribution and are ready for observables
to be calculated from.

3.5. Observables

With a working Markov chain of configurations {Cj , j ∈ 1, ..., N} of height variables hjx,
we now calculate some observables. Because each calculated observable for a configuration
in the Markov chain is a sample of the true distribution of the observable, averaging over
all calculated observables yields the numerical approximation of the expectation value of
the desired observable. The numerical approximation can be improved by a resampling
procedure as described in Section 3.6, where we also estimate the error of the observable.
Here we list some observables that we took interest in.

3.5.1 Action observable

Because we are required to calculate the action for each link of the lattice anyways, we might
as well use it as an observable. As such we calculate for each configuration Cj the value

⟨S[Cj ]⟩ = e2

2

∑
⟨xy⟩

⟨
(
hjx − hjy

)2⟩. (3.8)

Because this is one of the simpler observables we can calculate on the lattice, we use it to
find the number of steps it takes to thermalize the system, as depicted in Figure 2.

3.5.2 Field strength

The field strength E is a 2-form on the original lattice, and therefore associated to the
plaquettes. We distinguish the three different components of the field strength, Ex, Ey

and B, by the bounding links of their plaquettes. If the plaquette has two spatial and two
temporal links, then the plaquette is associated to the electric field components Ex and Ey,
and we identify each of them with the direction in which the respective spatial links of their
plaquettes are pointed at, e.g. the plaquette of Ex has two spatial links in x-direction. On
the other hand, if the plaquette has four spatial links, then it is associated to the magnetic
field component B. Dualizing the field strength yields a 1-form, where we associate each
plaquette on the original lattice with the dual link piercing it,

E = ∗dh. (3.9)

In terms of the height variables, we find the field strength component Ei associated to the
piercing link in i-direction for i ∈ {1, 2, 3}, going out from the lattice site x as
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(a) Using vacuum action.

(b) Using the adapted action with an inserted particle-antiparticle pair.

Figure 2: Action observable plots with logarithmic y-axis showing thermalization behaviour
for different lattice sizes and coupling constants. In 2a the vacuum action is used, and in 2b
the adapted action with an inserted particle-antiparticle pair is used.
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⟨Ei,x[Cj ]⟩ = ⟨hjx − hj
x+î

⟩, (3.10)

where î is a unit vector in i-direction. Tracing back the dualization, we find the field strength
components as originally identified by the links of their plaquettes relate to the field strength
components identified by the piercing links as

E1 = Ey, (3.11)

E2 = Ex, (3.12)

E3 = B. (3.13)

We average over all time slices of the configuration in order to plot the field strengths, as
we consider only static systems when we use the vacuum action or the particle-antiparticle
action. However, averaging this way is not possible for the magnetic field component, as
for periodic boundary conditions the averaged magnetic field vanishes. In Figure 3 we see
the time-averaged field strength plots for both electric fields and both actions for a lattice
size of 163, and in Figure 4 we use a lattice size of 363. The coupling constant is held at
e2/2 = 0.27.

We clearly observe the sting connecting the two charges in the Ex field strength plots and
we identify the opposite charges of the particle pair in the Ey field strength plots. Further-
more, we see that the fluctuations of the field strength in the vacuum case are negligible in
comparison to the field strength values in presence of the particle-antiparticle pair.

3.5.3 Energy observable

Traditionally, the energy density of the electromagnetic field is given as [9]

u =
1

2

(
ϵ0|E|2+ 1

µ0
|B|2

)
. (3.14)

However, as we are in Euclidean spacetime, we derive the energy observable as

⟨H[Cj ]⟩ = e2

2β

 ∑
⟨xy⟩ spatial

⟨(hjx − hjy)
2⟩ −

∑
⟨xy⟩ temporal

⟨(hjx − hjy)
2⟩

 . (3.15)

Here we use β = Na. The energy observable gives us a way to calculate the energy stored
in the string connecting the particle-antiparticle pair, which is done in Section 3.8.

3.5.4 Energy density

The energy density for a point on the dual lattice then follows as the average over the
contributions to the total energy from the incoming and outgoing dual links at the given
dual lattice site,
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Figure 3: Time averaged field strength plots for a 163 lattice with and without Polyakov
loops. The coupling constant is held at e2/2 = 0.27.
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Figure 4: Time averaged field strength plots for a 363 lattice with and without Polyakov
loops. The coupling constant is held at e2/2 = 0.27.
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⟨u(x)[Cj ]⟩ = e2

4β

 ∑
⟨xy⟩ spatial

x fixed

⟨(hjx − hjy)
2⟩ −

∑
⟨xy⟩ temporal

x fixed

⟨(hjx − hjy)
2⟩

 (3.16)

As such, the energy density observable is again associated to the sites of the dual lattice,
which in turn are associated to the cube cells of the original lattice. This is shown in Figure
5 for the lattice sizes 163 and 363 with a coupling constant of e2/2 = 0.27.

3.5.5 Correlation function

Another observable is the correlation function. However, the implementation of the correla-
tion function observable has some intricacies, as the naive observable C(x − y) = ⟨hxhy⟩ is
not invariant under the global shift symmetry of the height variables. Instead, we use the
surface width observable

W (x, y) =
1

2
⟨(hx − hy)

2⟩, (3.17)

and define

W (t) = − 1

L

∑
x⃗,y⃗,t0

W (x = (t0, x⃗), y = (t0 + t, y⃗)) = C(t)− L
∑
x

⟨h2x⟩, (3.18)

which is equivalent to the correlation function up to some constant offset. We will go into
more detail about it in Chapter 4.

3.6. Error estimation

While the mean value over the Markov chain observables is a good starting point for our
analysis, we will sooner than later require an error estimation for the observables. This error
estimation is non-trivial, as consecutive configurations in the Markov chain can be highly
correlated, depending on the algorithm. Luckily, the bootstrapping procedure with binning
is able to take this correlation into account.

3.6.1 Bootstrapping resampling

If we assume that the data collected from our numerical experiment, in our case that would
be the configurations of our Markov chain, is representative of the total population, then we
are allowed to use bootstrapping resampling to improve our observations and estimate their
errors. This works as follows:

First we build the resampled ensembles. We decide on an number of ensembles we want to
create. For a quick data analysis this is usually 100 ensembles, for the final analysis it is
1000. For each ensemble we draw data points from our original data with replacement and
add them to the resampled ensemble until we have the same number of data points as there
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Figure 5: Time averaged energy density plots for lattices of size 163 and 363 with coupling
constant e2/2 = 0.27.
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are in the original data set. Note that by drawing with replacement, the resampled ensemble
has a very high likelihood to contain duplicates of the same data points while leaving out
others.

After having built the resampled ensembles, we perform the same analysis on the resampled
data set as we did on the original. This means in our case that for each resampled Markov
chain we calculate the observables and calculate the expectation value as the mean over
the observables of the whole Markov chain. This results in an expectation value for each
resampled ensemble, which again is a distribution of values, and on which we may again
perform a statistical analysis. The average over all expectation values can in this case be
considered our estimation of the true expectation value, and the standard deviation then is
our estimation of its true error.

For a pictorial representation of the bootstrapping procedure consider Figure 6.

3.6.2 Binning

While bootstrapping allows us to estimate the true error of our observable, it doesn’t yet take
into account the correlation between consecutive configurations in the Markov chain, and
therefore underestimates the error of the observables. This can be alleviated by considering
some groups of consecutive configurations as inherently linked and building groups. Such
a group of consecutive configurations is called a bin, and the number of data points in one
bin we call the bin size. As such, during the resampling procedure, we don’t choose single
data points to add to the resampled ensemble, but instead we draw from the collection of
bins with replacement and add all points inside the drawn bin to the ensemble, until the
number of data points in the resampled ensemble matches the number in the original data
set. Optimally, the number of data points is divisible by the bin size.

Binning should increase the estimated error of the observables, as they were previously
underestimated. Starting from a bin size of 1 data point, the error grows with increasing bin
size until at some point this growth slows down and levels off. If the bin size becomes too
large, with the number of data points being only a small factor larger than the bin size, the
error starts to vary wildly, becoming zero when the bin size is equal to the number of data
points. We thus aim to stop the binning when the error levels off, at which point the error
estimation is considered to take the correlation into account.

There are minor differences between the binned bootstrapping procedure and the block
bootstrapping as found in [6]. Where we group the data into bins, the block bootstrapping
adds a number of consecutive data points to the resampled ensemble whenever it draws with
replacement data points from the original data set. This approach increases the permutations
of possible resampled ensembles and as such produces generally smaller error estimates.
Furthermore, there is the jackknife bootstrapping procedure, which repeatedly calculates the
statistics of the data collection with a single data point removed [10]. The jackknife procedure
is the least computationally expensive of the procedures discussed, although it is limited in its
applicability for different statistics such as the median. We stick to bootstrapping resampling
with binning.



22 3. Lattice simulation and confinement

(a) From our original data set we draw observations with replacement to build one of the
resampled ensembles. Some data points are repeated while others are left out.

(b) The resampled ensemble provides a sample of the observable. Repeating the resampling
yields a distribution, from which the mean gives an estimation of the true observable, while
the standard deviation is the estimated error.

Figure 6: The bootstrapping procedure
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3.6.3 Parallelization

We considered two options to employ parallel computing for lattice simulations. We could
either choose an algorithm that allows for multiple changes to be done in parallel on the
configurations of the Markov chain, such as dividing up the lattice in a checkerboard manner
in even and odd sites and then performing a Metropolis sweep on only the even or odd sites
respectively, such that the parallel operations don’t interfere with each other, or we could
simply perform multiple lattice simulations in parallel and then combine the results. For
simplicity’s sake we chose the latter, although combining the results of simulations with the
same parameters is not quite straightforward.

While we combat the correlation of consecutive configurations inside the same Markov chain
by binning data points, this is not necessary when combining the data of uncorrelated simu-
lations with the same simulation parameters. Thus we modify the bootstrapping procedure.
For each resampled ensemble we want to build, we first resample the collection of simulations
by choosing simulations with replacement and readying them to be resampled until we have
the same number of simulations ready. Thus there might be multiple copies of the same
simulation present. We then perform the usual binning and resampling for each readied
simulation. We combine all these resampled simulations to build one resampled ensemble,
for which the usual analysis is then performed.

3.7. Cluster algorithm

In this section we present an alternative to the Metropolis algorithm introduced in Section
3.3, the cluster algorithm. The goal is again to produce a transformation of one height
variable configuration to the next, respecting detailed balance (3.4) and ergodicity. The key
idea of the cluster algorithm is to group the height variables into clusters, and transform the
group as a whole.

We commence by choosing a mirror plane as a value within the range of height values. We
accomplish this by picking a site x on the lattice, whose height variable hx from the previous
configuration gives us the mirror plane height value. We then may shift the mirror plane up
or down by a half integer ϵ ∈ {−1

2 , 0,
1
2}. This gives us the final mirror plane height value

h = hx + ϵ.

The next step is to build clusters of adjacent height variables. Consider a pair of neighbouring
height variables hx and hy. We want to figure out whether the two height variables should
be grouped for the transformation. For one, we never want to group height variables on
opposite sides of the mirror plane. It follows that we also never connect to values on the
plane itself, as this might indirectly connect height variables on opposite sides. If we reflect
the height variable hx at the mirror plane, this gives h′x = 2h−hx. If the two height variables
were on the same side of the mirror plane, reflecting just one will increase their difference
and thus the action, which in turn decreases the Boltzmann weight. In this case we want to
reflect the height variables together. To add the two height variables to the same cluster, we
activate the link connecting the two with a probability of
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Pbond = 1− e−S′

e−S
= 1− e−

e2

2
(h′

x−hy)
2

e−
e2

2
(hx−hy)

2
, (3.19)

where S is the action of the single bond connecting the two height variables and S′ is the
action if one of the two height variables would be reflected at the mirror plane. With this
choice of probability no height variables on opposite sides or in the mirror plane will be
connected to each other.

In a last step, for each cluster of height variables we choose to either reflect or not reflect the
whole cluster around the mirror plane with a 50 percent probability. This then generates a
new configuration for the Markov chain.

We can quite elegantly show detailed balance by considering the probability of not setting
a bond. The probability of not setting a bond in the case S′ of opposite sides is equal to 1,
while we have 1− Pbond for the case S. Then

e−S′
1 = (1− Pbond)e

−S ⇔ Pbond = 1− e−S′

e−S
. (3.20)

At last, ergodicity can be considered fulfilled, as one might imagine any configuration reach-
able by an finite iterative process where we always have a non-zero probability to get the
right transformation. A more formal proof is omitted here.

The cluster algorithm has a few advantages. In comparison to the Metropolis algorithm, the
cluster algorithm does not have a rejection step, and will always generate a new configuration.
Where the Metropolis algorithm only moves a height variable one up or down at the time, the
cluster algorithm makes big steps inside the configuration space. Also, the cluster algorithm
might be less affected by critical slowing down, although we did not investigate this further.

However, we did not use the cluster algorithm in the end. Where the Metropolis algorithm
is easily adaptable to the case with inserted Polyakov loops, this is not the case for the
cluster algorithm. Flipping a cluster, where some of the activated bonds pierce the oriented
surface of the Wilson loop, reverses the oriented surface as well. This and some numerical
considerations discouraged us from using the cluster algorithm.

3.8. String potential

With the energy observable (3.15) we are able to construct the string tension by subtracting
the vacuum energy from the energy in a system with an inserted particle-antiparticle pair.
The observed potential, dependent on the distance r of the two charges, then can be fitted
as

V (r) = const.+ σr +
γ

r
+O(

1

r2
), (3.21)
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where σ defines the string tension and γ is a universal factor depending on the dimensions
of the system [11, 12]. The vacuum subtracted string potential for e2/2 = 0.26 is illustrated
in Figure 7.

3.8.1 String tension

By simply fitting the found potentials, we obtain a first estimate of the string tension. The
string tension is not dependent on the size of the lattice, and as we calculate the slope of
the string potential for bigger and bigger lattices, we would get closer to the string tension.
This is done in Figure 8. We can see a tendency for a steeper slope for bigger lattice sizes,
although this is less evident for larger coupling constants. Here we would require more data
on even larger lattices to make a conclusive statement.

Furthermore, we can see that the observed string potential slopes all agree with the lower
bound of the string potential as laid out by Göpfert and Mack [4],

σ ≥ C · β−1/2a3/2 exp(−βC(0)/2), (3.22)

where 0 < C < 1 is an arbitrary constant, β = 4π2/e2, a is the lattice spacing and C(0) ≈
0.2527. Evaluating this expression with C = 1 for the coupling constants e2/2 ∈ [0.2, 0.3]
yields values between 3.8 · 10−7 and 2.2 · 10−5, four orders of magnitude smaller than the
observed slopes.



Figure 7: Vacuum subtracted string potentials for different lattice sizes for the coupling
constant e2/2 = 0.26.
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Figure 8: Fitted slopes for given coupling constants and lattice sizes with connecting lines
to guide the eye.
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Chapter 4

Correlation length and step-scaling
function

4.1. Deriving the correlation function

In order to extract the correlation length from the Monte Carlo Markov chain simulation, we
need to establish a correlation function observable. Because the observable needs to respect
the symmetries of the system, the simple function

C(x− y) = ⟨hxhy⟩, (4.1)

where hx and hy are height variables at the sites x and y, is not a candidate as it is not
invariant under the global shift of the height variables. Instead we follow [13] and consider
the surface width observable

W (x, y) =
1

2
⟨(hx − hy)

2⟩. (4.2)

Obviously this observable has the required invariance under a global shift in the height
variables. In order to respect periodicity of the lattice, we average over all lattice sites. We
define

W (t) = − 1

L

∑
x⃗,y⃗,t0

W (x = (t0, x⃗), y = (t0 + t, y⃗)) (4.3)

=
1

L

∑
x⃗,y⃗,t0

(
⟨hxhy⟩ − ⟨h2x⟩

)
(4.4)

= C(t)− L
∑
x

⟨h2x⟩. (4.5)

29
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We see that by using the surface width observable, we can extract the correlation length from
eq. (4.1), although with a constant offset. This additional offset changes the zero-momentum
mode, but leaves the non-zero modes unaffected. We will make use of this fact by calculating
an adapted version of the second moment correlation length, which originally related the zero
mode to the first non-zero mode in order to calculate the mass gap, but our adapted version
will work for any momentum mode.

Some of the correlation functions are illustrated in Figure 10.

4.2. Second moment correlation length

In order to extract the correlation length from a correlation function, the standard approach
is to make a fit of the correlation function in order to extract the asymptotic behaviour.
However, the additional offset from the derivation above would require an additional param-
eter to be fitted, which would destabilize our results. We therefore take a different approach
by making use of the second moment correlation length.

Due to the periodic boundary conditions, the correlation function takes the shape of a linear
combination of hyperbolic cosine functions and an offset. By considering the low momentum
modes of the momentum decomposition, we may nonetheless extract the mass gap and in
turn the true correlation length. We make the ansatz

g(x) = A cosh(m(x− β/2)), (4.6)

where β is the time extent of the lattice and m models the asymptotic behavior—the mass
gap.

With the goal of convincing ourselves of the validity of the second moment approach, we will
first look at the continuous time case and check if the second moment approach yields the
desired result. Afterwards, we will consider the discrete time case, where we check that the
continuum limit of vanishing lattice spacing coincides with the results of the continuum case
calculations.

4.2.1 Continuous time case

In the continuous case, the decomposition of the correlation function is given as

G(p) = A

∫ β

0
dxg(x)eipx. (4.7)

By evaluating this integral with the ansatz from eq. (4.6), we find

G(p) =
A

2

[
e−mβ/2 e

β(m+ip) − 1

m+ ip
+ emβ/2 e

β(−m+ip) − 1

−m+ ip

]
. (4.8)
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Although we will not be using the zero mode in the final version, here we want to use it to
test the original definition of the second moment correlation length.

G(0) =
2A

m
sinh(mβ/2). (4.9)

The next-higher momentum is p1 = 2π/β, but here we will generalize to arbitrary multiples
pn = 2πn/β. Inserting these momenta into (4.8), we find

G(pn =
2πn

β
) =

2A

m
sinh(mβ/2)

m2

m2 + p2n
, (4.10)

which, for n = 0, yields the zero mode as seen above.

The original definition of the second moment correlation length, as found in [14], is

ξ2nd =
1

p1

√
G(0)

G(p1)
− 1. (4.11)

Inserting the eqs. (4.9) and (4.10) for n = 1 gives the desired result

1

p1

√
G(0)

G(p1)
− 1 =

1

p1

√
m2 + p21
m2

− 1 =
β

2π

√
4π2

m2β2
=

1

m
= ξ. (4.12)

The next step is to modify and generalize the original second moment correlation length
(4.11) to accept arbitrary momenta. We therefore propose the formula

ξn =
1

p1

√
G(pn)/G(pn+1)− 1

(n+ 1)2 − n2G(pn)/G(pn+1)
. (4.13)

We can see that for n = 0 our proposal reduces to the original correlation length in eq. (4.1).
Further, the alternative correlation length definition given in [13] states

ξb =
1

p1

√
G(p1)/G(p2)− 1

4−G(p1)/G(p2)
, (4.14)

which fits our proposal for n = 1. Finally, we verify our proposal by inserting the two modes
for pn and pn+1 from eq. (4.10) into the formula (4.13). Because the modes only appear in
the form G(pn)/G(pn+1), we calculate
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G(pn)/G(pn+1) =
m2 + p2n+1

m2 + p2n
, (4.15)

from which follows

G(pn)/G(pn+1)− 1 = (2n+ 1)
1

n2
1

m2β2/4π2n2 + 1
, (4.16)

and

(n+ 1)2 − n2G(pn)/G(pn+1) = (2n+ 1)
m2β2/4π2n2

m2β2/4π2n2 + 1
. (4.17)

These equations then give us very nicely

1

p1

√
G(pn)/G(pn+1)− 1

(n+ 1)2 − n2G(pn)/G(pn+1)
=

β

2π

√
4π2

m2β2
=

1

m
= ξ (4.18)

This verifies the generalized second moment correlation length formula.

4.2.2 Discrete time case

Now, although this is a very pretty result, in our application we consider discrete time
correlation functions with the number of data points ranging in the few dozens, so we can-
not assume that the second moment correlation length formula is applicable here. Instead
we construct a new second moment correlation length formula for the discrete time case.
Consider again the ansatz

g(x) = A cosh(m(x− β/2)). (4.19)

Where previously x was a continuous variable, now we only have N = β/a points of the
correlation function at xj = aj, where j ∈ {0, ..., N − 1} and a is the lattice spacing in the
time direction (usually assumed to be 1). We label the values of the correlation function
as gj = g(xj). In order to extract the correlation length using the non-zero momenta, we
perform a discrete Fourier transform

Gn = a
N−1∑
j=0

gje
ipnxj , (4.20)

where Gn is the Fourier transform of gj and pn = 2π/β the momentum associated to the
Fourier mode. The factor a was added as an amplitude to preserve the continuum limit.
Because gj is real-valued, its Fourier transform satisfies the equality
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Gn = G∗
N−n, (4.21)

meaning the real part of the Fourier transform is symmetric and the imaginary part is anti-
symmetric around N/2. Calculating the Fourier transform for the ansatz gj = A cosh(m(xj−
β/2)) gives

Gn = aA
sinh(mβ/2) sinh(ma)

cosh(ma)− cos(pna)
. (4.22)

We can extract the m parameter by building a quotient and rearranging. We see that

Gn

Gm
=

cosh(ma)− cos(pma)

cosh(ma)− cos(pna)
. (4.23)

This reduces to

cosh(ma) =
Gn cos(pna)−Gm cos(pma)

Gn −Gm
, (4.24)

which we label the second moment correlation length formula for momenta pn and pm. We
also may recover the continuous time case. Using eq. (4.24) and expanding to the second
term yields

1 +
a2

2ξ2
= 1− a2

2

Gnp
2
n −Gmp

2
m

Gn −Gm
, (4.25)

where we also expanded the cosine terms. Solving for ξ we find

ξ =
β

2π

√
Gn −Gm

m2Gm − n2Gn
=

β

2π

√
Gn/Gm − 1

m2 − n2Gn/Gm
, (4.26)

which for m = n+ 1 is the formula (4.13) we derived for the continuous time case.

4.3. The second moment advantage and limitations

In employing the second moment correlation length, we gain the advantage of not having to
rely on a least squares fit of the correlation function to extract the correlation length. This
benefits us twofold.

For one, where the second moment method is the simple application of a formula, the least
squares model function is fundamentally a nonlinear problem, requiring the use of numer-
ical methods to approximate the real fit parameters up to a given accuracy. This can be
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considered a black box process, and while statistical methods are still applicable for the
least squares regression, it is more straightforward to do the error calculation for the second
moment approach.

The second advantage is that the second moment method is able to ignore the constant
offset (zero mode) of the correlation function, the least squares regression is required to take
the offset into account to produce the fit. This very much interferes with the quality of the
produced correlation length estimate for longer correlation lengths, which we demonstrate
in the following calculations:

Assuming we want to fit the function f(x) = A cosh((x−β/2)/ξ)−A with values for x ∈ [0, β].
Then

f(0) = A cosh(− β

2ξ
)−A =

Aβ2

4ξ2
(1 +

β2

12ξ2
) +O((1/ξ)6). (4.27)

As the correlation length increases, the correlation between the fitted amplitude A and the
squared mass termm2 increases as well, until the hyperbolic cosine becomes indistinguishable
from a parabola, at which point they become totally correlated, and no meaningful fit can
be calculated. Assuming that we can still detect the contributions of 1/ξ4 terms if they are
around 1/12 of the 1/ξ2 term, this gives us an upper bound on the correctly identifiable
correlation length of

1

12
≤ β2

12ξ2
⇔ ξ ≤ β. (4.28)

What happens if the hyperbolic cosine becomes a parabola in the second moment approach?
Consider approximating the ansatz (4.6) to order 1/ξ2. We ignore the amplitude, as it gets
canceled in the second moment approach. This gives

G(pn) ≃
∫ β

0
dx

(
1 +

(x− β/2)2

2ξ2

)
eipnx (4.29)

= eipnβ/2
∫ β/2

−β/2
dx

(
1 +

x2

2ξ2

)
(cos(pnx) + i sin(pnx)) . (4.30)

As this is a symmetric integral, the sine integral vanishes. We also use pn = 2πn/β, and
obtain
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G(pn) ≃ eiπn
∫ β/2

−β/2
dx

(
1 +

x2

2ξ2

)
cos(2πnx/β) (4.31)

= (−1)n
β

2π

∫ π

−π
dx

(
1 +

β2x2

8π2ξ2

)
cos(nx) (4.32)

= (−1)n
β3

4π2ξ2n2
cos(πn) =

β3

4π2ξ2n2
. (4.33)

Up to order 1/ξ2 the ratio of the two Fourier transforms cancels all but the mode dependence

G(pn)/G(pm) ≃ m2

n2
. (4.34)

If we were to insert this ratio into the second moment correlation length formula (4.13), then
the correlation length would diverge, as the quotient inside the square root is undefined. As
such we cannot observe the correlation length with the second moment approach when the
correlation function becomes a parabola. We proceed to order 1/ξ4, and we find

G(pn) ≃
∫ β

0
dx

(
1 +

(x− β/2)2

2ξ2
+

(x− β/2)4

24ξ4

)
eipnx (4.35)

= eipnβ/2
∫ β/2

−β/2
dx

(
1 +

x2

2ξ2
+

x4

24ξ4

)
cos(pnx) (4.36)

=
β3

4π2ξ2n2
+ (−1)n

β

2π

∫ π

−π
dx

β4x4

384π4ξ4
cosnx (4.37)

=
β3

4π2ξ2n2
+

β5

96π4ξ4n2

(
π2 − 6

n2

)
(4.38)

=
β3

4π2ξ2n2

(
1 +

β2

24π2ξ2

(
π2 − 6

n2

))
. (4.39)

The ratio yields

G(pn)/G(pm) ≃ m2

n2

1 + π2−6/n2

24π2

(
β
ξ

)2
1 + π2−6/m2

24π2

(
β
ξ

)2 . (4.40)

Expanding in β/ξ we get
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G(pn)/G(pm) ≃ m2

n2

(
1 +

π2 − 6/n2

24π2

(
β

ξ

)2

− π2 − 6/m2

24π2

(
β

ξ

)2
)

(4.41)

=
m2

n2

(
1 +

β2

4π2ξ2

(
− 1

n2
+

1

m2

))
(4.42)

For our usual choice of n = 1 and m = 2 this means

G(p1)/G(p2) ≃ 4

(
1− 3β2

16π2ξ2

)
= 4− 3β2

4π2ξ2
(4.43)

Inserting into the second moment correlation length formula (4.13) gives

ξ12 =
β

2π

√
G(p1)/G(p2)− 1

4−G(p1)/G(p2)
(4.44)

=
β

2π

√
4π2ξ2

3β2

(
3− 3β2

4π2ξ2

)
(4.45)

=
β

2π

√
4π2ξ2

β2
− 1 (4.46)

= ξ

√
1− β2

4π2ξ2
(4.47)

As such, where the second moment correlation length previously diverged, now the second
moment method is able to observe all correlation lengths ξ ≥ β/2π with a maximal difference
to the real correlation length of

max|ξ − ξ12|= β/2π. (4.48)

However, this difference is not observable, because at correlation lengths of less than half
the lattice spacing we observe correlation functions that allow for measurements beyond the
term of order 1/ξ4, or the correlation lengths become too short and the correlation functions
become mostly noise. We also want to consider different momentum modes. Solving the
calculation above for the general case m = n+ 1 yields

ξn,n+1 = ξ

√
1− β2

4π2n2ξ2
(4.49)
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4.4. Measuring correlation functions and correlation lengths

In order to determine different correlation lengths, we first have to measure the correlation
functions. We do this by producing correlation functions as described in the Sections 3.5 and
4.1. We employed the binning and bootstrapping procedure that we introduced in Section
3.6 to estimate the true expectation value and the error of each value of the correlation
function. Some of the correlation functions we used to calculate the correlation lengths and
later the step-scaling function are illustrated in Figure 10. These are highly usable as we
employed high statistics to produce a good quality result for the correlation length analysis
and for the step-scaling function.

In the case where the coupling constant is too small and the correlation function comes close
to a parabola, the second moment approach becomes unstable as previously discussed, and
requires even higher statistics to derive a usable result. On the other hand, for very short
correlation lengths, found for larger coupling constants, the correlation functions become
mostly noise and are therefore not usable for the second moment approach. Such correlation
functions are shown in Figure 9.

Next we calculate the correlation lengths from the usable correlation functions again via
binning and resampling for different lattice sizes and coupling constants. The calculated
second moment correlation lengths are shown in Figure 11. We observe a trend that for
smaller lattice sizes the correlation lengths get overestimated for decreasing coupling constant
e2/2. This is further investigated in the next section with the use of a step-scaling function.

4.5. The step-scaling function

The step-scaling function as introduced by M. Lüscher, P. Weisz and U. Wolff can be thought
of as a kind of finger print of a lattice field theory, and it describes the behaviour of an
observable, in our case the correlation length, when the lattice size is increased by a factor,
in our case we take the factor 1.5 [15]. We build the step-scaling function by calculating the
ratios ξ(L)/L and ξ(1.5L)/ξ(L) for each coupling constant and plotting them. The errors
are simply derived by Gaussian error propagation. The final step-scaling function is shown
in Figure 12. We again observe this behaviour, where increasing the lattice size decreases
the correlation length for lower coupling constants.



(a) Close to a parabola. (b) Mostly noise.

Figure 9: Unusable correlation functions.
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Figure 10: Some correlation functions we used for the correlation length and step-scaling
function analysis with a least squares fit line and estimated errors. The values of the coupling
constant e2/2, the second moment correlation length ξ and the estimated error σ are given.
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Figure 11: Calculated second moment correlation lengths for different lattice sizes. Here
we added a line connecting the data points to guide the eye and the colored dashed lines
indicate the standard error.
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Figure 12: 1.5-step-scaling function from second moment correlation lengths with a line
connecting consecutive data points to guide the eye. The boxes indicate the propagated
standard error.
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Chapter 5

Conclusion

5.1. Summary

Thus we arrive at the conclusion. We were able to derive a formulation of the 3-dimensional
U(1) lattice field theory on the dual lattice which allowed us to perform measurements and
simulations for both the vacuum case and the case of a particle-antiparticle pair. We de-
veloped a Monte Carlo Markov chain lattice simulation and implemented and performed
measurements of action, energy, field strength and correlation function observables and es-
timated their errors. We calculated the string tension for different lattice sizes and coupling
constants from the energy observations. We defined a shift-invariant correlation function
observable and derived a second moment approach to calculating the correlation length. We
compared it to deriving the correlation length via non-linear least squares regression. Finally
we calculated the correlation lengths for different lattice sizes and coupling constants and
produced a 1.5-step-scaling function.

5.2. Discussion and further proceeding

We now want to pick some of our results and discuss them further. We start at the beginning
where we derived the two actions with and without charges. While the action was all we
needed in order to start with the lattice simulations, there are more theoretical calculations
we omitted here. For one, we omitted calculating the transfer matrix of the system. The
transfer matrix would be useful in order to rigorously prove that the surface width observable
has the same correlation length dependence as the correlation function, however we consider
the discussion in Section 4.1 sufficient for the scope of this thesis.

In Chapter 3 we performed lattice simulations for lattices of sizes 163 to 543. These were
mainly limited by the computation power of the systems we ran them on, and we would
have liked to calculate the observables also on a 813 lattice, which would have complemented
the step-scaling function results nicely. We identified the range for the coupling constants
of e2/2 ∈ [0.2, 0.3] as our main target by investigating a wide range of coupling constants
and inspecting the correlation functions by eye. While this was optimal to find the range to
build the step-scaling function, we used the same range to measure the string tension, which
in turn makes our string tension result in Figure 8 quite limited in scope. One would have to
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perform the same investigation of coupling constants as we have done with the correlation
functions for the string tension, however we unfortunately did not have the computing time
to do so. Nonetheless we can see that the string tension might approach a continuum limit
for increasing lattice sizes.

In Chapter 4, the use of the second moment correlation length allows us to calculate the
correlation lengths without relying on non-linear least squares fitting. However we have to
note that the choice of what momentum modes to use for the second moment approach
is quite arbitrary, as each choice is its own related but different object. We used the first
and second momentum mode as it is closest to the original second moment formula, but
doesn’t utilize the zero mode. We assumed that this would make it less susceptible to higher
frequency interference that comes from the correlation function measurement, although we
did not test that. It might have been helpful to perform the exact same analysis with the
fitting approach as well, in order to compare the two, but our preliminary testing did indicate
that the second moment approach was preferable, so we proceeded with it.

As we see in Figure 11, as well as in the step-scaling function in Figure 12, the correlation
length observations experience this behaviour where the smaller lattice sizes lead to larger
correlation lengths than the larger lattices. This observation is quite astonishing and unex-
pected. As we were restricted by computing power, we concerned ourselves primarily with
the observation of correlation lengths up to the width of the cubic lattice. However, the
observation of larger correlation lengths is very much possible, although it yields higher esti-
mated errors. Incorporating data of larger lattices and correlation lengths of smaller lattices,
expanding to maybe 1.5 times the lattice width and increasing the statistics are all steps
that would be interesting to proceed with.
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