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Abstract

This thesis consists of two parts:
In the first part, we study the 2-d O(3) model and investigate the relevance of the θ-vacuum

angle. In addition to the standard lattice action, we use a so-called topological action, which
is invariant under small field deformations and does not have the correct classical continuum
limit. Despite several deficiencies, this action still leads to the correct quantum continuum
limit. Furthermore we construct an optimized constraint action, whose cut-off effects are
extremely small. We will extend Hasenbusch’s concept of an improved estimator to address
the sign problem that arises for non-vanishing θ-vacuum angles. By calculating the continuum
value of the step scaling function we show that dislocations do not spoil the continuum limit of
this theory and that we obtain a different continuum theory for each value of θ. In addition we
are able to confirm the analytic predictions of the S-matrix theory by unprecedented precision.
This indirectly confirms the WZNW model as the low-energy effective theory of the 2-d O(3)

model at θ = π.
In the second part of the thesis, we discuss quantum link models in the context of quantum

simulating lattice gauge theories. We work out the Hamiltonian formulation of Wilson’s
approach to lattice gauge theories and show its connection to quantum link models, which
are lattice implementations of gauge theories with a finite-dimensional Hilbert space per link.
We show how to couple the quantum links to staggered fermions. Quantum link models are
discussed in detail, especially for the cases of U(2) and SO(3) gauge groups. We present a
so-called rishon representation, which allows the representation of the gauge links in terms
of fermion bi-linears. This allows us to suggest an implementation in ultra-cold atoms in an
optical lattice setup to quantum simulate this system. We present exact diagonalization results
to show the physical relevance of these models. In this context we study the spontaneous
breaking of the chiral symmetry, its restoration at a finite baryon density, and dynamical
phenomena such as the expansion of a chirally restored hot-spot in a chiral broken vacuum.
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Chapter 1.

Introduction

In the first part of this thesis, we investigate θ-vacuum effects in the O(3) model in two space-
time dimensions. This models serves as a toy model for QCD – the theory of the strong
interaction. The 2-d O(3) model shares important features with QCD: both theories are
asymptotically free (see section 6.2). They both have a massgap, which is generated non-
perturbatively. This implies that the massgap can not be studied using perturbation theory
but can only be computed, for example, when studying the theory on a lattice. In addition,
in both theories one can define a topological charge, which gives rise to distinct topological
sectors in configuration space. Configurations that carry a non-trivial topological charge, while
minimizing the action of the theory are called instantons. The topological charge allows to
introduce a θ-vacuum term, which breaks both parity and charge conjugation symmetry. Both
theories undergo a mechanism known as dimensional transmutation, where a theory with only
dimensionless parameters acquires a dimensionful scale due to quantization.

The O(3) model is a special case of the CP (N − 1) models [1, 2], since it is equivalent
to the CP (1) model. In these more general models one also observes asymptotic freedom,
a non-perturbatively generated mass gap, dimensional transmutation, as well as instanton
configurations. Therefore the study of a θ-vacuum angle is also possible. Except for the CP (1)

model, these models are not exactly solvable, but can be studied on a lattice using Monte Carlo
methods. Berg and Lüscher came up with a geometric definition of the topological charge on
a lattice [3].

On the other hand, the O(3) model is also a special case of the O(N) models, which are
asymptotically free theories for N ≥ 3. These models have a non-perturbatively generated
mass gap, but have no instanton configurations, except for the O(N) model in N − 1 dimen-
sions. These models are exactly solvable in two space-time dimensions [4].

In this sense the 2-d O(3) model is very special, since it is an O(N) model, which al-
lows the introduction of a θ angle. Additionally it is the only CP (N − 1) model that can
be solved analytically, at least for θ = 0 and θ = π, whereas for other values of θ the
model is not integrable [5]. The analytic studies are based on the exact S-matrix theory [6].
For θ = 0, this theory predicts a mass gap m(θ = 0) = 8

eΛMS [7], which is generated
non-perturbatively. At θ = π a massless theory is predicted, which reduces to the k = 1

Wess–Zumino–Novikov–Witten (WZNW) model [8–10] at low energies. This conformal model
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describes the interaction of a matrix-valued field U(x) ∈ SU(2) by the action

S =
1

2g2

∫
d2x Tr(∂µU †(x)∂µU(x))

− ik

12π

∫
B3

d3x εµνρ Tr((U(x)†∂µU(x))(U(x)†∂νU(x))(U(x)†∂ρU(x))), (1.1)

where the second integration extends over half of a 3-ball, whose border is identified with the
compactified two-dimensional space-time.
The 2-d O(3) model with a θ-angle also finds applications in condensed matter physics. A

(1 + 1)-d antiferromagnetic quantum spin chain is described by the Hamiltonian

H = J
∑
〈xy〉

~Sx · ~Sy, (1.2)

where the sum goes over all nearest neighbor spin pairs 〈xy〉 and ~Sx are quantum spin operators
satisfying the SU(2) algebra [Sax, S

b
y] = iδxyεabcS

c
x. The representation of the spins can be

chosen as S = 1/2, 1, 3/2, . . . Haldane conjectured that such a quantum spin chain has a gap
for integer spins S and is gapless for half-integer spins S [11]. It was already known for a long
time that for spin S = 1/2 the mass gap vanishes [12]. This model can be described by the 2-d
O(3) model as a low-energy effective theory with 1/g2 = S/2 and where an integer quantum
spin chain corresponds to θ = 0 and half-integer spins correspond to θ = π.
The exact S-matrix theory can be used to predict quantities even for systems in a finite

volume. Balog and Hegedűs [13] provided a prediction for the so-called step scaling function,
which was introduced by Lüscher, Weisz, and Wolff [14]. The step scaling function describes
the scaling behavior of a renormalized coupling in a finite volume. This allowed to confirm
Haldane’s conjecture numerically for θ = 0 [15] and within statistical errors also for θ = π [16].
It is easy to show that the action S[~e] of the 2-d O(3) model (see next section) satisfies the

so-called Schwarz inequality

S[~e] ≥ 4π

g2
|Q[~e]|, (1.3)

where Q[~e] is the topological charge of a configuration [~e]. When implementing this model
on the lattice, depending on the action, one may encounter field configurations with non-
zero topological charge Q[~e] that violate the Schwarz inequality. These configurations are
known as dislocations. When the action of a dislocation is less than a critical value, a semi-
classical argument suggests that the topological susceptibility χt = 〈Q2〉/V should suffer from
an ultra-violet power-law divergence in the continuum limit [17]. On the other hand, it is
known that the topological susceptibility in the continuum is only logarithmically divergent,
when removing the cut-off. Therefore the observation of a power-law divergence, when using
the lattice action, would question the continuum limit of the topological susceptibility. In
CP (N − 1) models with N ≥ 3, this problem does, however, not arise. In the CP (2) model
one can use a modified lattice action [2] to avoid the dislocation problem. In the CP (1)

model (i.e. the O(3) model) using the standard action and the geometric definition of the
topological charge [3] the semi-classical argument [17] suggests a power-law divergence of χt.
Using so-called classically perfect lattice action [18] it possible to remove dislocations by a
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delicate fine-tuning. However, it was shown in [19] that the dislocations do not spoil the
continuum limit of the topological susceptibility. In this work Bietenholz et. al. have also used
a so-called topological action, were all allowed configurations have zero action. Even for this
case they observed that the topological susceptibility diverges only logarithmically. As we will
see later, even when introducing a non-zero θ-vacuum, the dislocation problem does not spoil
the continuum limit. Therefore it does not prevent θ from being physically relevant.
In this work we will use different lattice actions to confirm the exact S-matrix results.

Besides the standard action, we use a topological action [19], which constrains the maximal
angle between neighboring spins. This action is invariant under small field deformations.
Although it does not have the correct naive continuum limit and it violates the Schwarz
inequality, we found that this action still yields the correct quantum continuum limit [20,21]. In
addition, we combined this action with the standard action and thereby eliminated the lattice
spacing effects almost entirely. These optimized actions have also been studied intensively
in [22].
In this thesis, we investigate the continuum limit of the step scaling function in the 2-d O(3)

model for different θ-vacua. For θ > 0, the system suffers from a sign problem. To obtain high
precision Monte-Carlo data, we use a modified Hasenbusch improved estimator [23,24]. Since
we find a different continuum value of the step scaling function for each value of θ, we can
conclude that θ indeed is a relevant parameter of the theory which does not get renormalized
non-perturbatively. Furthermore, we confirm the result of the conjectured exact S-matrix
theory at θ = π [25] with unprecedented precision. For the first time, this numerically confirms
the conjectured exact S-matrix of the 2-d O(3) model at θ = π [4] beyond any reasonable
doubt. This also confirms the existence of a conformal fixed point at θ = π, where the model
reduces to the WZNW model at low energies.
This study has been a basis for further investigations to demonstrate walking near the

conformal fixed point close to θ ≈ π [26]. The essential features of walking technicolor models
are shared by this toy model and can be accurately investigated by numerical simulations.
This part of the thesis is organized as follows. We first introduce the 2-d O(3) model in

chapter 2, where we also discuss the different actions and the observables, including the step
scaling function. In chapter 3 we explain the numerical techniques including Monte Carlo
methods, the cluster algorithm [27], and how to handle the sign problem using a modified
Hasenbusch estimator. We finish in chapter 4, where we present results of the Monte Carlo
simulations.
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Chapter 2.

2-d O(3) Model with a θ-Vacuum Angle

2.1. Continuum Theory

Let us write down the action of the 2-d O(3) model in the continuum, which is defined as

S[~e] =
1

2g2

∫
d2x ∂µ~e(x) · ∂µ~e(x), (2.1)

where g2 is the coupling constant and ~e(x) is a three-component field of unit-vectors ~e(x) ∈ S2.
The space-time index µ runs over one spacial and one temporal direction, which are treated
equally since we are working in Euclidean time. This theory can be quantized using the path
integral formalism which leads to the partition function

Z =

∫
D~e exp(−S[~e]). (2.2)

This model has a global O(3) symmetry, which rotates all spins with the same rotation matrix
R ∈ O(3):

O(3) : ~ex −→ ~ex
′ = R ~ex (2.3)

In addition, we find the discrete global symmetries:

C : ~ex −→ ~ex
′ = −~ex,

P : ~ex1,x2 −→ ~e ′x1,x2 = ~e−x1,x2 . (2.4)

The C-symmetry is an element of the O(3) symmetry group.
One can define a topological charge

Q[~e] =
1

8π

∫
d2x εµν ~e · (∂µ~e× ∂ν~e) ∈ Z, (2.5)

which is an integer number that describes how many times the sphere S2 gets covered by ~e(x),
when x is integrated over space-time. This quantity gives rise to topologically non-trivial field
configurations. A special field configuration are the so-called instantons, which have a non-
zero topological charge Q[~e] and minimize the action S[~e]. From the definition of the action
and the topological charge, one can immediately see that the integral

I =

∫
d2x (∂µ~e± εµν~e× ∂ν~e)2 = 4g2S[~e]± 16πQ[~e] ≥ 0, (2.6)
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which immediately implies the Schwarz inequality

S[~e] ≥ 4π

g2
|Q[~e]|. (2.7)

Instantons saturate this inequality. Therefore one can read of the (anti)self-duality equation
of the instantons in equation (2.6)

∂µ~e = ±εµν~e× ∂ν~e. (2.8)

Because of the presence of non-trivial topological sectors, we can define a θ-dependent
partition function as

Z(θ) =

∫
D~e exp(−S[~e]) exp(iθQ[~e]). (2.9)

It can be seen that the symmetry transformations do not leave the topological charge invariant:

C : Q[~ex] −→ −Q[~ex],

P : Q[~ex] −→ −Q[~ex]. (2.10)

If the θ parameter is not θ = 0, π it breaks the C and P symmetry, which is analogous to
the θ-vacuum angle in QCD [28, 29]. The aim of this part of the thesis is to show that the
parameter θ is indeed a relevant parameter of the theory, which means that it does not get
renormalized non-perturbatively. We will show numerically that for each value of θ there
exists a different continuum theory.

2.2. Lattice Implementation

To treat the 2-d O(3) model in perturbation theory, one has to work with a small coupling
g. Because this is not always the case, we have to use a non-perturbative method to study
this model. We therefore discretize space-time on a lattice, which implies that the field ~e(x)

is defined on the sites of the lattice xµ = a(n1, n2), where a is the lattice spacing and nµ
are integer coordinates (see figure 2.1). To keep this in mind, we denote the position as a
subscript to the field variables ~ex.

q q q q qq q q q qq q q q qq q q q qq q q q q
x

:
~ex
�
��

&%
'$

Figure 2.1.: In discretized space-time, ~ex ∈ S2 is defined on the sites x of the lattice.
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One can eliminate the lattice cut-off by taking the so-called continuum limit, which means
that one sends the lattice spacing a→ 0 to zero in units of a fixed physical correlation length.
The continuum action (2.1) can be discretized by replacing derivatives with finite differences

∂µ~e→ 1
a(~ex+µ̂ − ~ex)

Sstandard[~e] = − 1

g2

∑
〈xy〉

~ex · ~ey, (2.11)

where the sum goes over all neighboring sites 〈xy〉. This is the so-called standard action. In
the next section we will also introduce topological actions.
The partition function is again

Z =

∫
D~e exp(−S[~e]), with

∫
D~e =

(∏
x

∫
S2

d~ex

)
. (2.12)
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L

t1 t2A(t1, t2)

Figure 2.2.: Triangulated square lattice: the triangles 〈xyz〉 in the shaded area A(t1, t2) carry the
topological term iθq〈xyz〉.

Also the topological charge Q[~e] can be implemented in a discretized space-time. In order
to do so, we triangulate the lattice as shown in figure 2.2. To each of the triangles 〈xyz〉, we
associate an oriented area A〈xyz〉 = 4πq〈xyz〉 ∈ [−2π, 2π] on the sphere S2, defined by ~ex, ~ey,
and ~ez, as it is shown in figure 2.3. If we sum up the normalized areas q〈xyz〉 of all triangles,
taking into account their orientation, we obtain the topological charge [3]

Q[~e] =
∑
〈xyz〉

q〈xyz〉. (2.13)

Using this definition, the topological charge is again an integer, as long as we sum over all
triangles in a periodic space-time lattice. The normalized area q〈xyz〉 ∈ [−1

2 ,
1
2 ] of one single

triangle 〈xyz〉 can be calculated as

Re2πiq〈xyz〉 = 1 + ~ex · ~ey + ~ey · ~ez + ~ez · ~ex + i~ex · (~ey × ~ez), R ≥ 0. (2.14)

Because of the presence of non-trivial topological sectors, we can again define a θ-dependent
partition function as

Z(θ) =

∫
D~e exp(−S[~e]) exp(iθQ[~e]), (2.15)

where Q[~e] is now the topological charge defined on the lattice.
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Figure 2.3.: Definition of the oriented area A〈xyz〉, which gets associated with the triangle 〈xyz〉 .

2.3. Topological and Optimized Constraint Lattice Actions

Besides the standard action we also consider the topological action, that has been introduced
in [19]

Stopological[~e] =
∑
〈xy〉

s(~ex, ~ey), s(~ex, ~ey) =

{
0 for ~ex · ~ey > cos δ

∞ else
. (2.16)

Here, we have introduced the maximally allowed angle δ, which plays the role of the coupling
constant. The topological action only allows configurations for which the angle between the
field variables on neighboring sites x and y is smaller than δ (~ex · ~ey > cos δ). Otherwise
the action is infinite, which means that the corresponding configurations are not allowed.
All allowed configurations have the same action Stopological[~e] = 0. As a consequence, this
lattice model does not have the correct classical continuum limit, it violates the Schwarz
inequality (1.3) between action and topological charge, and it cannot be treated in perturbation
theory. Despite these various deficiencies this action still has the correct quantum continuum
limit [19].

As will be shown later, the standard action approaches the continuum limit of the step
scaling function from above while the topological action approaches it from below. Therefore
we combine these two actions in order to reduce the cut-off effects. This we do with an
optimized constraint action

Sconstraint[~e] =
∑
〈xy〉

s′(~ex, ~ey), s′(~ex, ~ey) =

{
− 1
g2
~ex · ~ey for ~ex · ~ey > cos δ

∞ else
. (2.17)

Here g2 is again the coupling constant, while δ is a fixed parameter that is tuned to a value
which minimizes the cut-off effects. For δ = π the optimized constraint action reduces to the
standard action (2.11). On the other hand, if we send g2 → ∞, we obtain the topological
action (2.16).
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2.4. Observables

2.4.1. Physical Mass

A standard quantity to measure is the physical mass m = m(L; θ), which depends on the
vacuum angle θ and on the extent L of the lattice in the spatial direction. It can be extracted
from the correlation function C(t1, t2; θ) = 〈 ~E(t1) · ~E(t2)〉θ, which measures the correlation of
the averaged spins ~E between two time-slices t1 and t2. The averaged spin of one time-slice
is defined as

~E(t) =
1

L

∑
x1

~e(x1,t), (2.18)

where t = x2. With this, the correlation function reads

C(t1, t2; θ) = 〈 ~E(t1) ~E(t2)〉θ =
1

Z(t1, t2; θ)

∫
D~e ~E(t1) · ~E(t2) exp (−S[~e] + iθQ(t1, t2)) .

(2.19)
For technical reasons (see section 3.3) we work with open boundary conditions in the temporal
direction and introduce the topological charge Q(t1, t2) between the time-slice t1 and t2, which
is in general a non-integer number. This topological charge Q(t1, t2) is the sum of the areas
q〈xyz〉 corresponding to the triangles that are highlighted in gray in figure 2.3. We also have
defined a variant of the partition function as

Z(t1, t2; θ) =

∫
D~e exp (−S[~e] + iθQ(t1, t2)) . (2.20)

For a large separation in time |t1 − t2|, we expect an exponential fall-off of the correlation
function

C(t1, t2; θ) ∼ exp(−m(L; θ)(t2 − t1)), (2.21)

from which the mass m(L; θ) can then be extracted. This requires the lattice to be sufficiently
large in the temporal direction. We usually choose Lt = 10L. To obtain an estimator for the
mass, we calculate the effective mass meff(t), which is defined as

meff(t) = − log

(
C(t+ 1)

C(t)

)
, (2.22)

where C(t) =
∑

t1
C(t1 + t, t1; θ) is the averaged correlation function over a certain range of

time t1, which should not get too close to the end of the temporal extent. To calculate the
mass m(L; θ), we average meff(t) for sufficiently large t, weighted it by its jackknife error.
In the infinite volume limit L → ∞ the mass is known analytically from the S-matrix

theory [4]. For a vanishing θ parameter we have m(L → ∞; θ = 0) = 8
eΛMS , where e is the

base of the natural logarithm and ΛMS is the scale generated by dimensional transmutation
in the modified minimal subtraction renormalization scheme. On the other hand, for θ = π,
one obtains a massless theory: m(L→∞; θ = π) = 0.
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2.4.2. Step Scaling Function

The exact S-matrix theory even predicts physical quantities, in partial the step scaling func-
tion, in a finite volume, which is well suited for comparison with numerical data. The step
scaling function σ(s, u0; θ) [14] is defined as follows. Let us choose a rescaling factor s and
define the renormalized coupling u0 as

u0 = m(L; θ)L. (2.23)

Starting on a volume with spacial extent L, one adjusts the coupling g2 in the action in order to
obtain a certain value of the renormalized coupling u0. Then, one measures the renormalized
coupling u1 = m(L′; θ)L′ on the scaled volume with spacial extent L′ = sL. Setting the
rescaling factor s = 2 implies that we measure the quantity

σ(2, u0; θ) = 2m(2L; θ)L
∣∣∣
m(L;θ)L=u0

(2.24)

on a volume which has twice the spacial extent L′ = 2L than the original system.
The step scaling function tells us something about the finite-size effects of the system with

volume L. For example, if the finite-size effects are very strong, we find that the step scaling
function is almost identical to the renormalized coupling (σ(2, u0; θ) ≈ u0). This happens
when the box L is small and the correlation length (ξ = 1/m) scales roughly with the volume.
On the other hand, if finite-size effects are small, the mass is almost independent of the volume
L and we find a doubling in the step scaling function (σ(2, u0; θ) ≈ 2u0).
The step scaling function in equation (2.24) is defined in the continuum, but can be gen-

eralized to a finite lattice spacing a. The step scaling function Σ(2, u0, a/L; θ) then tells us
how large the renormalized coupling u gets, if we double the volume in the spatial direction
(L→ 2L), while keeping the lattice spacing a fixed. Σ(2, u0, a/L; θ) is defined as

Σ(2, u0, a/L; θ) = 2m(2L/a; θ)L
∣∣∣
m(L/a;θ)L=u0

(2.25)

while choosing the coupling g such that m(L/a; θ)L = u0. In the continuum limit, this
definition then corresponds to the step scaling function of equation (2.24)

σ(2, u0; θ) = lim
L→∞

Σ(2, u0, a/L; θ). (2.26)

When calculating the error of the step scaling function, one has to take into account the error
propagation from the uncertainty of the estimate of the coupling g and from the measurement
of the masses themselves. This has been done carefully in [30] and is also used here.
The result of the step scaling function for u0 = 1.0595 is known. For zero θ parameter it is

σ(2, u0; θ = 0) = 1.261210 [13]. For θ = π it is σ(2, u0; θ = π) = 1.231064 [25].
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Chapter 3.

Numerical Techniques

3.1. Monte Carlo Methods

3.1.1. Markov Chains and Importance Sampling

In order to calculate expectation values including the correlation function C(t1, t2; θ), we need
to evaluate an integral over all possible spin configurations∫

D~e =

(∏
x

∫
S2

d~ex

)
. (3.1)

This integral can not be solved analytically. We therefore have to circumvent the integration.
Let us set the θ parameter to zero for the moment (we will see how to handle non-zero values
of θ in section 3.2 and in section 3.3).
The main idea of the Monte Carlo methods is the so-called importance sampling. This means

that, instead of the exact integration, we just sum over certain configurations of this integral
and average over them. The configurations [~e(i)] are chosen according to their probability
p[~e(i)] = exp(−S[~e(i)]) in order to obtain a correct distribution. Instead of calculating the
expectation value as in its definition

〈A〉 =
1

Z

∫
D~e A[~e] exp (−S[~e]) =

1

Z

∫
D~e A[~e] p[~e] (3.2)

we approximate this integration by summing only over the “most important” configurations

Â =
1

N

N∑
i=1

A[~e(i)], (3.3)

where we call Â an estimate of 〈A〉. Here we have chosen a so-called Markov-chain of N
configurations. These are N configurations, which are chosen to the their respective weight
and labeled with the index (i). Of course, the larger we choose N , the more accurately we can
estimate 〈A〉. If the different configurations in this sum are uncorrelated, one can estimate
the mean deviation σÂ of the estimate Â and the observable 〈A〉 using the standard deviation
of Â (called σ) as

σ2
Â

=

〈(
Â− 〈A〉

)2〉
=

1

N
σ2. (3.4)
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Now we use an algorithm that chooses the configurations [~e(i)] with their correct probability
p[~e(i)]. Usually one generates many updates and measures the quantity A[~e(i)]. But how do
we get a new configuration [~e(i+1)] out of an arbitrary configuration [~e(i)]? In order to follow
importance sampling, it is best if this algorithm satisfies the following two rules:

Detailed balance: Each two configurations [~e(i)] and [~e(i
′)], have to satisfy detailed balance,

which means that

p[~e(i)] W ([~e(i)]→ [~e(i
′)]) = p[~e(i

′)] W ([~e(i
′)]→ [~e(i)]), (3.5)

where W ([~e(i)]→ [~e(i
′)]) is the transition probability from configuration [~e(i)] to configu-

ration [~e(i
′)]. Detailed balance ensures the correct probability distribution in equilibrium

because the probability of observing a certain configuration [~e(i)] is given by∑
j

p[~e(j)]W ([~e(j)]→ [~e(i)]) =
∑
j

p[~e(i)]W ([~e(i)]→ [~e(j)]) = p[~e(i)], (3.6)

where in the first step we have used detailed balance and in the second step we have
used that

∑
jW ([~e(i)]→ [~e(j)]) = 1.

Ergodicity: For any given configuration [~e(i)], the algorithm should be able to reach any
other configuration [~e(i

′)] with a non-vanishing probability after a finite number of steps.

3.1.2. Metropolis Algorithm

Let us study the most simple algorithm, which obeys detailed balance and ergodicity, known
as the Metropolis algorithm. After choosing a certain initial configuration [~e(0)] (e.g. a trivial
one, with all spins aligned in the same direction, or each spin in a random direction), the
algorithm runs through the following steps:

i. Pick a random site x and calculate a random rotation matrix R in the vicinity of the
unit matrix 1.

ii. Rotate the spin at the site x using the rotation matrix R: ~ex → R~ex.

iii. Accept the new configuration [~e(i+1)] with a certain probability pacc, otherwise undo the
rotation R and continue with the previous configuration [~e(i+1)] = [~e(i)] .

iv. Go back to step 1.

The Metropolis acceptance probability is

pacc = min

(
1,
p[~ei+1]

p[~e(i)]

)
(3.7)

in order to satisfy detailed balance from equation (3.5). If the averaged acceptance rate is too
low, one can choose the rotation matrix R to be closer to the unit matrix 1.
Since the probability p[~e] is nothing else than the exponent of the action, this formula can

be represented as
pacc = min (1, exp(−∆S)) , (3.8)
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where ∆S = S[~ei+1]− S[~e(i)]. Even though S[~e] depends on all spins of the lattice, ∆S only
depends on the rotated spin and on its neighbors. This is a consequence of the fact that we
have chosen a local (nearest neighbor) interaction. For the topological action the acceptance
probability can only take two values: It is one if the new configuration (after the spin rotation)
is allowed, and zero if not.
At the beginning of a simulation, this update algorithm is performed for a certain time with-

out taking any measurements. The reason is that the initial configuration was a completely
random or completely ordered one, which is a very unlikely configuration. We thus first have
to wait for the system to equilibrate. After this equilibration time, we take measurements (in
our case of the correlation function) after every sweep. A sweep is the proposition of NV new
configurations in the Markov chain, where NV is the number of spins.
If the autocorrelation between two following measurements A[~ei] and A[~ei+1] (e.g. the cor-

relation of the extracted masses of two consecutive measurements) is too big, we can measure
the correlation function only after a multiple of sweeps.
This algorithm suffers from the so-called critical slowing down. This means that the larger

the correlation length ξ = 1
m of the system gets, the longer it takes to obtain an uncorrelated

new configuration.

3.1.3. Cluster Algorithm

In order to avoid critical slowing down, the Wolff cluster algorithm has been constructed
in [27]. The idea is to update a large cluster of spins collectively instead of just a single spin.
If the size of this cluster grows with the correlation length of the system, critical slowing down
can be avoided.
A clusters C is a set of sites x and is constructed as follows. Let us first choose a plane,

which is characterized by the vector ~r, that is perpendicular to this plane. All the spins ~ex at
sites x, which belong to the cluster x ∈ C, are then reflected on this plane

~ex −→ ~ex
′ = ~ex − 2(~ex · ~r)~r. (3.9)

Under this cluster flip, the change of the action ∆S gets the following contributions. If two
sites x and y belong to the cluster C they do not contribute to a change of the action ∆S

under a spin flip, since ~ex′ · ~ey′ = ~ex · ~ey. The same is true if both sites do not belong to the
cluster. ∆S only gets a contribution, if one site x belongs to the cluster C and one site y does
not. For example, for the standard action the contribution to ∆S is

∆S = s(~ex
′, ~ey)− s(~ex, ~ey) + (contributions of other links) =

1

g2
2(~ex · ~r)(~ey · ~r) + . . . (3.10)

In order to obey detailed balance, the clusters are formed according to the following rules:

i. Choose a site x at random, add it to the cluster C.

ii. Add all links 〈xy〉 connecting x with one of its neighbors y to a list `.

iii. Pick the first link 〈xy〉 of the list ` that has not yet been checked.
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iv. The link 〈xy〉 is “activated” with probability

pbond = max
(
0, 1− exp

(
s(~ex

′, ~ey)− s(~ex, ~ey)
))
. (3.11)

The link 〈xy〉 is marked as being checked. If the link has not been activated, go back to
step iii.

v. If the link 〈xy〉 has been activated, make sure that both ends x and y belong to the
cluster C. If one of the ends did not belong to the cluster before, also add all links
connecting the site with its neighbors to the list `. Go back to step iii.

vi. If all links in ` are marked as checked, the construction of the cluster is completed.

Note that for the topological action, the bond probability pbond only takes the values 1 or 0.
This cluster algorithm also allows the usage of an improved cluster-estimator of the corre-

lations function. In this thesis, however, we will use another estimator, which is discussed in
section 3.3.

3.2. Sign Problem

As soon as we incorporate a non-zero θ parameter, we encounter the so-called sign problem,
when performing a Monte Carlo simulation. The reason is that we have interpreted the
exponent exp(−S[~e]) as a weight p[~e] of a certain configuration [~e]. Since the action S[~e] is
a real-valued function, we always find positive weights p[~e]. If θ is non-zero, the exponent
acquires the complex term involving the topological charge Q[~e] and an expectation value of
an observable A has to be calculated as

〈A〉θ =
1

Z(θ)

∫
D~e A[~e] exp (−S[~e] + iθQ[~e]) . (3.12)

This exponent can not serve as a weight anymore and we have to find another solution to
sample configurations in a Monte Carlo simulation.
For moderate volumes, as the ones investigated here, a possible solution is the so-called

reweighting technique [31]. The idea is to sample different configurations, as if θ would be
zero, and to shift the complex phase from the topological term in the observable. This is based
on the fact that we can express the estimator of the observable A at θ as

〈A〉θ =
1

Z(θ)

∫
D~e A[~e] exp (iθQ[~e]) exp (−S[~e]) =

1

Z(θ)

∫
D~e A[~e] exp (iθQ[~e]) p[~e], (3.13)

where again we have chosen p[~e] = exp (−S[~e]) as if θ would be zero. The partition function
can be expressed as

Z(θ) =

∫
D~e exp(iθQ[~e])exp(−S[~e]) =

∫
D~e exp(iθQ[~e])p[~e] = 〈exp (iθQ[~e])〉0 , (3.14)

where we have added the subscript 〈〉0 to the expectation value to indicate a sampling, which
is independent of θ. In this way the expectation value of A can be written as

〈A〉θ =
〈A[~e] exp (iθQ[~e])〉0
〈exp (iθQ[~e])〉0

. (3.15)
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This means that in a Monte Carlo simulation, one updates the configurations [~e] according to
the weights p[~e] and measures the two quantities A[~e] exp (iθQ[~e]) and exp (iθQ[~e]) indepen-
dently. At the end, one averages these two quantities and builds the ratio, which serves as an
estimator for the observable A.
In order to estimate the correlation function, we perform exactly this procedure

C(t1, t2; θ) =

〈(
~E(t1) · ~E(t2)

)
exp(iθQ(t1, t2))

〉
θ=0

〈exp(iθQ(t1, t2))〉θ=0

=
C(t1, t2, 0)Z(t1, t2, θ)/Z(0)

Z(t1, t2, θ)/Z(0)
. (3.16)

We have used the topological charge Q(t1, t2) between the time-slice t1 and t2.
The problem of the reweighting technique is that it suffers from a poor signal-to-noise ratio,

because we have a complex phase in the observable which cancels out large parts of the signal.
In order to improve the statistics one needs an exponential amount of computer time as a
function of the space-time volume.

3.3. Hasenbusch’s Improved Estimator

To obtain high accuracy data, despite the sign problem, we use an improved estimator, first
proposed by Hasenbusch in [23], which was further developed in [24]. In this work this algo-
rithm is adjusted to address the sign-problem in a system with a non-zero θ parameter.
The original idea [23] is to explicitly integrate out certain rotational degrees of freedom.

One rotates all spins after the time-slice t with a rotation matrix X(t) ∈ SO(3)

X(t) : ~e(x,t′) −→ X(t)~e(x,t′) for all t′ > t. (3.17)

Using open boundary conditions in the temporal direction, the contributions to the action S[~e]

and the topological charge Q[~e] only change on the links between the time-slice t and t+ 1. In
order to improve the estimator of the correlation function, one inserts such a rotation on each
time-slice and averages over all possible rotation matrices. The correlation of two time-slice
averaged spins ~E(t1) and ~E(t2) can then be expressed as

~E(t1) · ~E(t2) ∼ ~E(t1) · 〈X(t1 + 1)〉〈X(t1 + 2)〉 · · · 〈X(t2)〉 ~E(t2), (3.18)

where
〈X(t)〉 =

∫
dX(t) exp

(
Tr
(
X(t)Q(t)T

))
, (3.19)

and dX(t) is the Haar measure of SO(3). The matrix Q(t) is the contribution to the action
originating from the links between time-slice t and t+ 1, which for the standard action reads

Qij(t) =
1

g2

∑
x

ei(x,t)e
j
(x,t+1). (3.20)

Since the integration over X(t) can not be done analytically, [23] suggests to do this statisti-
cally.
In [24] (see appendix E therein) the authors suggest to average only over four different

rotation matrices X at each time-slice, which can be done analytically. These four matrices
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all do not change the action. The improvement of this estimator of the correlation function is
almost equally good as a statistical sampling of these matrices, but the computational effort
is drastically reduced. The four matrices can be obtained by first diagonalizing the matrix
Q(t) using a singular value decomposition (SVD)

Q(t) = U(t)q(t)V (t), (3.21)

where q(t) is a diagonal matrix and U(t) and V (t) are the SO(3) SVD-matrices. Equation
(3.19) can then be expressed with a new integration variable Y with X = UY V as

〈X(t)〉 = U(t)〈Y (t)〉V (t), and 〈Y (t)〉 =

∫
dY (t) exp

(
Tr
(
Y (t)q(t)T

))
. (3.22)

Note that a choice of Y (t) = U(t)TV (t)T corresponds to X(t) = 1, which does not change
the action, since the rotation of the spins is trivial. It can be seen that there are always four
matrices Y0, Y1, Y2, and Y3, which have the same contribution to the integration in equation
(3.22) and are related by

Y1 = W T
1 Y0W1, Y2 = W T

2 Y0W2, Y3 = W T
3 Y0W3, (3.23)

where Wi ∈ SO(3) are orthogonal matrices with

W1 =

 1

−1

−1

 , W2 =

 −1

1

−1

 , W3 =

 −1

−1

1

 . (3.24)

Since the four Yi matrices have the same contribution to the integral, we can just aver-
age over these matrices. This average 1

4(Y0 + Y1 + Y2 + Y3) = (Y0)diag is the diagonal
part of the matrix Y0. Choosing Y0 = U(t)TV (t)T , we calculate an average over Xi ma-
trices, where X0 = U(t)U(t)TV (t)TV (t) = 1, X1 = U(t)W T

1 U(t)TV (t)TW1V (t), X2 =

U(t)W T
2 U(t)TV (t)TW2V (t), X3 = U(t)W T

3 U(t)TV (t)TW3V (t). We thus end up with an
estimator, which comes close to Hasenbusch’s original estimator

〈X(t)〉 ≈ U(t)(U(t)TV (t)T )diagV (t). (3.25)

To incorporate a non-zero value of θ one includes the θ term in the sum of the Y matrices.
This sum turns out to be

X̃(t) =
∑
i

Xi(t) exp (iθQ (t, t+ 1, Xi (t))) , (3.26)

where Q(t, t+ 1, Xi(t)) is the topological charge after all the spins ~e(x,t′) for t′ > t have been
rotated with the rotation matrix Xi(t). With this, we obtain improved estimators as(
~E(t1) · ~E(t2)

)
exp(iθQ(t1, t2)) ∼ ~E(t1) X̃(t1 + 1) X̃(t1 + 2) · · · X̃(t2) ~E(t2) (3.27)

exp(iθQ(t1, t2)) ∼
(∑

i

eiθQ(t1,t1+1,Xi(t1+1))
)
· · ·
(∑

i

eiθQ(t2−1,t2,Xi(t2))
)

Note that this is just an improved estimator and it does not interfere with the update of
the configurations. It can thus not help against critical slowing down. The reason why we are
able to estimate high-precision data is that the sign problem is only mild.
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Chapter 4.

Numerical Results

4.1. Cut-Off Effects

The 2-d O(3) model has been simulated using Monte Carlo methods (see section 3.1). We
compared different lattice actions: the standard action (see section 2.2), the topological action,
and constrained action (see section 2.3). To update, we used the cluster algorithm (see section
3.1.3) and to improve the estimator of the correlation function we used Hasenbusch’s improved
estimator (see section 3.3). After extracting the mass of the correlation function (see section
2.4.1) we calculated the step scaling function (see section 2.4.2). We used lattice sizes up to
L/a = 64 with Lt = 10L and open boundary conditions in the temporal direction.
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Figure 4.1.: Cut-off dependence of the step scaling function Σ(2, u0 = 1.0595, a/L; θ = 0) for three
different lattice actions: the standard action, the topological lattice action, and the
optimized constraint action with cos δ = −0.345. The fits are based on equation (4.1).
The horizontal line represents the analytic continuum results [13].

First, we compare the cut-off behavior of the different lattice actions. It is remarkable
that for the standard action the cut-off effects of the step scaling function Σ(2, u0, a/L; θ) are
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known analytically for θ = 0 [32]:

Σ(2, u0, a/L; θ = 0) = σ(2, u0; θ = 0) +
a2

L2

[
B log3(L/a) + C log2(L/a) + . . .

]
, (4.1)

where B and C are fit parameters and L/a is the number of lattice points in the spatial
direction.
By measuring the step scaling function on different lattice sizes L/a, we plot the cut-off

behavior of the different lattice actions as it is done in figure 4.1. The curves for the standard
action and for the topological action are fits of the function (4.1), where σ, A, and B are fit
parameters.
For θ = 0 the continuum limit (horizontal line) is predicted by the exact S-matrix theory

to be at σ(2, u0 = 1.0595; θ = 0) = 1.2612103 [13]. As one can see, the standard action
approaches this continuum limit from above, while the topological action approaches the
continuum limit from below. The maximum angle δ of the constraint action is tuned to the
continuum value at a lattice size L/a = 10 and takes an optimal value at cos(δ) = −0.345.
Even for finer lattices the cut-off effects of the constraint action are remarkably small and only
at the per mill level.
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Figure 4.2.: Cut-off dependence of the step scaling function Σ(2, u0 = 1.0595, a/L; θ) for the stan-
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represent the analytic continuum results for θ = π [25], and the fitted continuum value
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These calculations have also been performed for θ = π/2 and θ = π, which is shown in
figure 4.2. At θ = π the exact S-matrix theory again predicts a continuum result (horizontal
line) of σ(2, u0 = 1.0595; θ = π) = 1.231064 [25]. This result is confirmed by extrapolating the
results obtained with the standard action or the constraint action. For the constraint action,
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we still use the maximal angle δ, which has been tuned at θ = 0. Also in this case the cut-off
effects of the constraint action are extremely small.
For θ = π/2, we do not have an analytic prediction of the continuum limit and we do not

know whether the function (4.1) is still applicable to describe the cut-off effects. Nevertheless,
we fit this function to the cut-off effects of the standard action, which gives a small χ2/d.o.f.
Extrapolating to the continuum limit agrees with an estimator of the continuum limit for
the constraint action (horizontal line). Again, the constraint action has a maximum angle
constraint δ, which has been tuned at θ = 0, but still shows an extremely good cut-off
behavior.

4.2. Continuum Mass-Gap
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Figure 4.3.: The θ-dependent massgap Lm(θ, L) at Lm(0, L) = 1.0595 using the optimized con-
straint action for L = 24a, compared to the analytic result at θ = π [25] (cross).

Figure 4.1 and 4.2 also show that all continuum limits (at θ = 0, π/2, π) are significantly
different, which means that each value of θ indeed corresponds to a different theory. Hence θ
is a relevant parameter that does not renormalize to 0 or π non-perturbatively, as one might
have expected due to the presence of dislocations. This can also be seen in figure 4.3, where
we plot m(θ, L)L as a function of θ, keeping the coupling fixed. For θ = 0, we fix the value to
m(0, L)L = 1.0595, at θ = π one obtains m(π, L)L = 1.048175 [25].
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Chapter 5.

Conclusions and Outlook

We have studied different lattice actions in the 2-dO(3) model. The constraint action combines
the standard action with a topological action. The topological action restricts the maximal
angle between neighboring spins and is thus invariant under small deformations of the field.
In the constraint action this maximal angle is tuned in order to reduce the cut-off effects. Our
results show that only a single tuning is necessary (at L/a = 10, θ = 0) to once and for all
fix this maximal angle. Other lattice sizes or other values of θ have extremely small cut-off
effects of the step scaling function which all lie at the per mill level or beyond. An efficient
modification of Hasenbusch’s improved estimator allowed us to simulate at non-zero values of
θ, where a sign problem arises, which, however, turns out to be mild.
We showed that the θ parameter in the 2-d O(3) model is indeed a relevant parameter and

does not get renormalized non-perturbatively. We found a different continuum limit for each
value of θ (here shown for θ = 0, π/2, π). Dislocations do not spoil this continuum limit even
for θ 6= 0. We confirmed the exact S-matrix conjecture for the step scaling function at θ = π,
which also implies that the model indeed reduces to the WZNW model at low energies.
A later work [26] has studied the physics of the 2-d O(3) model close to θ ≈ π, where the

physics of a slowly walking coupling has been studied.
We are currently extending the improved actions to gauge theories. Our approach is different

from Symanzik’s improvement program [33], where one parametrizes the cut-off effects in the
framework of effective field theories. This often requires tuning of several parameters, which
can be computationally expensive. In our case, we tune just one free parameter against a
non-perturbative quantity in the continuum limit. In particular, we have implemented the
improved actions for the SU(2) and the SU(3) pure gauge theory in order to drastically
reduce cut-off effects. This project is expected to lead to a publication in the near future. It
has the potential to significantly improve the accuracy of numerical simulations of QCD and
other non-Abelian gauge theories.
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Chapter 6.

Introduction

6.1. Motivation

In this second part of the thesis we discuss the quantum simulation of non-Abelian lattice gauge
theories. What is actually a non-Abelian gauge theory? Why are these models interesting to
study? Why are they so difficult to study? What is a lattice regulator? What is a quantum
simulator and how can it help us to learn more about non-Abelian gauge theories? These are
questions that we address in this introduction. It is important to have a clear view on the
actual problem that we are facing and on the tools we are using to tackle these problems.
In this introduction we start in section 6.2 with a discussion why gauge theories, and here

especially non-Abelian gauge theories, are important in particle physics. A prominent non-
Abelian gauge theory is the theory of the strong interaction (QCD) in the Standard Model
of particle physics. In the next section 6.3 we discuss some effects of the strong interaction,
which can not been calculated in perturbation theory. These include confinement and the
spontaneous breaking of chiral symmetry. These so-called non-perturbative effects can be
studied using lattice gauge theory, which is introduced in section 6.4. We describe Wilson’s
approach of regularizing gauge theories on a lattice [34]. This method can be used to study
equilibrium properties of QCD, such as the hadron spectrum and thermodynamic quantities.
On the other hand, Wilson’s lattice formulation also has a severe problem when dealing with
real-time dynamics, a finite baryon density, or a non-zero θ-vacuum angle, which are discussed
in section 6.5. Inspired by applications in condensed matter physics, we suggest to use a
quantum simulator to investigate non-perturbative effects that cannot be addressed with a
classical computer. In section 6.6 we explain the basic idea of quantum simulating a system
using ultra-cold atoms in an optical lattice setup. We finish this introduction by discussing
approaches of quantum simulating lattice gauge theories in section 6.7.
In order to implement a system in a quantum simulator, it is advantageous to work with

a finite-dimensional Hilbert space. The so-called quantum link models [35–37] are an ideal
framework to formulate gauge theories in a finite-dimensional Hilbert space. These models
are therefore a key to implementing non-Abelian gauge theories in a quantum simulator and
will be discussed in detail in the following chapters. This study will show that the physics of
quantum link models is interesting and non-trivial. Furthermore our results can be used to
validate future experimental implementation in quantum simulator.
In chapter 7 we review Wilson’s approach to lattice gauge theory in the context of QCD and

discuss the Hamiltonian formulation of this theory. Quantum link models are then introduced
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as an extension of Wilson’s lattice gauge theory. We will discuss the gauge symmetry in detail,
study the global symmetries of this model, and introduce the concept of staggered fermions.

In the following chapters 8 and 9, we work out quantum link models explicitly for the U(2)

and SO(3) gauge groups, respectively. We will show explicitly how quantum link models can
be used to implement gauge theories in an optical lattice setup. In addition, we present exact
diagonalization results of phenomena including the real-time evolution of a chirally restored
hot-spot and the spontaneous breaking of chiral symmetry, as well as its restoration at finite
baryon density.

6.2. Non-Abelian Gauge Theories

Gauge theories appear in the context of field theory and describe a special kind of invariance
of these models, the so-called gauge symmetry. Gauge transformations relate different field
configurations, which correspond to the same physical states. Let us consider classical electro-
dynamics as an example. Since the electric scalar potential and the magnetic vector potential
are not directly observable fields, they can be transformed by gauge transformations, leaving
the physical observables (the electric and magnetic field) invariant. We say this model has
a gauge symmetry. In contrast to global symmetries, which transform the fields in the same
way everywhere in space-time, gauge transformations are local symmetries, which means that
the fields are transformed differently at every point in space-time.

In the example of classical electrodynamics, the gauge symmetry is characterized by a real
function ϕ(~x, t). When performing a gauge transformation, temporal or spatial derivatives of
this function ϕ(~x, t) are added to the electric scalar and magnetic vector potential, respectively.
Since the gauge transformation is characterized by only one real parameter at every point in
space-time ~x, t, we talk about a U(1) gauge transformation in electrodynamics. These gauge
transformations can be generalized to the non-Abelian case [38], where gauge transformations
are characterized by matrix-valued functions Ω(~x, t), for example, SU(N) matrices.

The Standard Model of particle physics is such a non-Abelian gauge theory. It is invariant
under the SU(3)c × SU(2)L × U(1)Y gauge symmetry. The theory involves fermion fields
(quarks and leptons), a scalar Higgs field, and gauge fields. Gauge fields are responsible
for mediating forces between the fermions, while the Higgs field is responsible for providing
a mass to most of the elementary particles. The fermion fields and the gauge fields can
undergo gauge transformations, which means that, at every point in space-time, the fields are
“rotated” by a matrix Ω(~x, t) (see section 7.2). This transformation must leave the physical
(observable) quantities invariant. The different forces are described by terms in a Lagrangian
functional in the context of quantum field theory. This Lagrangian describes the interactions
of the Higgs field, the electroweak force, and the strong force, which is described by quantum
chromodynamics (QCD).



6.3. Quantum Chromodynamics and some of its Non-Perturbative Effects 33

6.3. Quantum Chromodynamics and some of its
Non-Perturbative Effects

Quantum Chromodynamics (QCD) is a non-Abelian gauge theory with an underlying SU(3)c
gauge symmetry. It is very successful in describing the strong interaction between quarks
(fermions) and gluons (vector bosons). This theory is asymptotically free [39,40], which means
that the strength of the interaction becomes weaker with increasing momentum transfer. On
the other hand, in the low-energy regime, the quarks and gluons couple very strongly to each
other. They never occur as free isolated objects, but are always bound into baryons (bound
states of 3 quarks, gluons, and a fluctuating number of quark-antiquark pairs, e.g. protons
and neutrons) or mesons (bound states of a quark-anti-quark pair, gluons, and a fluctuating
number of quark-antiquark pairs, e.g. pions). This phenomenon is known as confinement and
is correctly described by QCD, regularized on a space-time lattice.

The study of QCD is affected by various difficulties. One of them is due to ultraviolet (UV)
divergences. This problem is encountered, for example, in the path integral formalism, where
one integrates over all field configurations. This integration then diverges as one integrates
over configurations, which are associated with very high frequency fluctuations of the fields.
To address this problem one needs to impose a regularization.

This regularization can be realized in different ways. For example, in perturbation theory,
one usually analytically continues the number of space-time dimensions. QCD can then be
handled in perturbation theory in the high-energy regime, where the quarks behave almost
like free particles (due to asymptotic freedom). This implies that the coupling between quarks
and gluons becomes small and one can use perturbation theory and expand quantities in the
small coupling in this limit.

Perturbative methods fail when investigating the interaction of quarks in the low-energy
regime, because the coupling is very strong in this limit (due to confinement). A non-
perturbative approach, which also works for low energies is provided by the lattice regu-
larization (see next section). This means that one replaces the continuous space-time by a
discrete set of points and defines the quark fields on the lattice sites and the gluon fields on
the links connecting neighboring lattice sites.

Besides confinement, another important non-perturbative effect of QCD is the spontaneous
breaking of chiral symmetry. Even though this symmetry is weakly explicitly broken by the
mass term of the fermions (see section 7.6.4), the symmetry is still approximately intact for
fermions with a small mass. The symmetry is broken spontaneously at low temperatures,
leading to (pseudo-)Goldstone bosons, which can be identified as the pions. Because these
particles are Goldstone bosons of an (approximate) symmetry, the masses of the pions are
small compared to ,e.g., the mass of a nucleon. At high temperatures chiral symmetry is
restored, which gives rise to a crossover that separates the low-temperature chirally broken
phase from the high-temperature quark-gluon plasma. This crossover has been accurately
investigated using Monte Carlo simulations of lattice QCD [41,42].
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6.4. Lattice Field Theory Approach to Non-Abelian Gauge
Theories

As described in the last section, some problems in QCD can only be addressed non-pertur-
batively, which makes it an especially interesting theory to study in the context of lattice
field theory. When defining field theories on a lattice, UV divergences are regularized non-
perturbatively. By introducing a finite lattice spacing a between nearest-neighbor sites, one
automatically eliminates field configurations with frequencies higher than p > 2π

a . Therefore
the lattice cut-off serves as a UV regulator and defines the quantum field theory, leading to
finite results. Due to the finite volume of the lattice with (anti)periodic boundary conditions,
we also have a lower bound of the momentum: p = 2π

L is the smallest possible non-zero
momentum, where L is the extent of the lattice in one of the space-time dimensions. At the
end one takes the continuum limit a → 0, while the physical observables should approach a
constant. One can also take the infinite volume limit L→∞.

The non-perturbative physics of a non-Abelian gauge theory is traditionally addressed in
the context of Wilson’s lattice gauge theory [34]. The fermion fields are then defined on the
sites of a 4-d space-time lattice, while the gluon field is represented by parallel transporter
matrices residing on the links connecting neighboring lattice sites. Via the path-integral
formalism, the lattice formulation of a gauge theory in Euclidean time can be mapped to a
problem in statistical mechanics. When the Euclidean action SE is real, the Boltzmann factor
exp(−SE) represents a weight, which allows us to use importance sampling to update the field
configurations. Statistical methods are then used to compute observables (see section 3.1 in
the first part of the thesis). This is a first-principle approach, where all systematic errors
(due to the finite lattice spacing a, non-physical masses m, . . . ) can be controlled rigorously.
Lattice gauge theory comes with no assumptions, e.g. on the input parameters (g, m, . . . ).
The parameters can be fixed by matching a quantity with an experimentally measured value.

Lattice gauge theory enables us to address important questions in particle physics. Among
other things, it has been very successful in calculating the masses of light hadrons [43, 44].
It can also be used to make predictions about decay constants of light and heavy-light pseu-
doscalar mesons, semileptonic form factors [45], the running of the coupling, heavier hadrons,
excited states, resonances, and flavor physics. Lattice QCD allowed the extraction of quark
masses. These masses can be compared with experiments, which confirms QCD as the correct
theory of the strong interactions also at low energies.

Lattice gauge theories also find applications in other areas of physics. For example, in
condensed matter physics, certain quantum spin liquids are described by a U(1) gauge theory
[46]. Also the non-Abelian SU(2) variant of quantum spin liquids has long been debated as a
possible connection between the doped Mott insulator and the high-Tc superconducting phase
in cuprates [47].
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6.5. Limitations of Wilson’s Lattice Gauge Theory

We discussed that non-Abelian gauge theories play a central role in the Standard Model of
particle physics. For example, the SU(3) gauge theory of the strong interaction gives rise to
non-perturbative effects, including chiral symmetry breaking. Monte Carlo based methods
allow us to study some of these non-perturbative effects numerically.
Unfortunately, very interesting questions are not accessible by classical simulation methods,

due to severe sign problems. The sign problem is encountered, when the Euclidean action SE
is not real, which causes the Monte-Carlo weights of the configurations exp(−SE) to be not
positive definite. It is possible to absorb the sign (or the complex phase) of the weight in the
observable (see section 3.2 in the first part of the thesis) in order to use importance sampling.
This procedure, however, leads to a poor signal-to-noise ratio, which requires an exponential
amount of computer power to improve the statistics of the Monte Carlo simulation.
Sign problems appear when simulating high-density nuclear matter, for example, in the

interior of a neutron star. The nuclear matter in a neutron star is very dense and we might
encounter exotic phases like a baryonic superfluid or a color superconductor [48]. In order
to study systems at finite densities, one has to add a chemical potential µ, which leads to a
complex action problem (a variant of a sign problem). The sign problem also appears when
studying non-equilibrium physics, which needs to be calculated in real-time. One example is
the real-time evolution of a heavy-ion collision, where the quark-gluon plasma, which is in a
chirally symmetric phase, finally hadronizes into mesons and baryons and thus breaks chiral
symmetry. As in the context of the classical O(3) model (see first part of the thesis), the
study of θ-vacuum effects suffers from a sign problem also in QCD.
For certain simpler models, the sign problem can be solved by expressing the action in

other degrees of freedom or by using elaborate update routines [49, 50]. In other cases, we
lack new ideas how to circumvent the sign problem. This is a strong motivation to implement
non-Abelian gauge theories in a quantum simulator.

6.6. Quantum Simulation, Ultra-Cold Atomic Gases, and
Optical Lattices

We have stated that the sign problem in non-Abelian gauge theories is an exponentially hard
problem for classical simulations. One idea to circumvent the sign problem is by implementing
the system on a quantum simulator. Unlike classical simulations, a quantum simulator does
not suffer from a sign problem and can even address the dynamics of the system in real-time.
A quantum simulator is a system, in which quantum objects, e.g. atoms, can be controlled,

such that they resemble another quantum system as it was first suggested by Feynman [51].
There are digital and analog quantum simulators. In a digital quantum simulator unitary
transformations update the quantum objects step by step. For example, as first suggested
by Cirac and Zoller [52], in an ion trap, the internal electronic or nuclear states can be
manipulated using laser coupling and interactions between the ions [53]. In principle, such a
system would be programmable and could undergo any unitary transformation, at least in its
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most general form as a universal quantum simulator.
On the other hand, in an analog quantum simulator the system evolves by its intrinsic

dynamics. After an initial state is prepared, the quantum objects interact among themselves,
where only certain parameters can be tuned from the outside [54]. For example, a Bose-
Einstein condensate of atoms or molecules, which was first realized by Cornell, Wiemann, and
Ketterle [55, 56], can be used as an analog quantum simulator. An other example are ultra-
cold atomic gases that are trapped in an optical lattice, where a set of laser beams is tuned
to form a periodic potential [57]. Individual atoms then find the minima of this potential and
thus arrange themselves in the lattice geometry. These potentials are chosen appropriately in
order to adjust the interaction parameters between the atoms such that they mimic a certain
quantum system that is otherwise difficult to study. When constructing an optical lattice, one
can make use of a rich experimental toolbox. Already several systems in condensed matter
physics have been emulated in an optical lattice setup, including the bosonic Hubbard model,
which was implemented by Greiner et. al. [58].

6.7. Quantum Simulation of Gauge Theories

It is natural to ask whether quantum simulators can be used to study non-Abelian gauge
theories. Since these systems embody the quantum nature already in their basic degrees of
freedom, one does not encounter a sign problem. Measurements can be performed at arbitrary
times, which means that one can even address dynamical questions. Due to its quantum
nature, it is most convenient to implement models with a finite-dimensional Hilbert space in
a quantum simulator. Our approach to quantum simulate non-Abelian gauge theories is to
use quantum link models, which are lattice gauge theories with a finite-dimensional Hilbert
space.
Quantum simulators for lattice models with a local U(1) gauge symmetry with [59–61]

and without [62–64] coupling to matter fields have already been constructed. Some of these
constructions take advantage of the quantum link formulation (see chapter 7), which has a
finite dimensional Hilbert space per link. Quantum link models have been introduced for U(1)

and SU(2) gauge groups [35–37] and extended to other gauge groups including the QCD gauge
group SU(3) [65, 66]. For a detailed review of the recent approaches in quantum simulating
lattice gauge theories we refer to [67].
For the first time, we here propose a construction of a quantum simulator for non-Abelian

quantum link models with a U(N) [68] or SO(3) [69] gauge symmetry coupled to staggered
fermions. Other implementations of non-Abelian gauge theories in optical lattices have been
described in [70,71].
We will show that already a simple realization in (1 + 1) dimensions shares non-trivial fea-

tures with QCD, including confinement or spontaneous chiral symmetry breaking and restora-
tion at finite baryon density. Our construction can be realized with ultra-cold alkaline-earth
atoms, such as 87Sr or 193Yb, in an optical lattice.
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Chapter 7.

From Wilson’s Lattice Gauge Theory to
Quantum Link Models

7.1. Introduction

In this chapter we motivate quantum link models, which are an alternative formulation of gauge
theories on the lattice. We first discuss the standard approach, which was originally suggested
by Wilson in section 7.2. We will then discuss staggered fermions, which we will also use in the
quantum link formulation, in section 7.3. After that, we discuss the Hamiltonian formulation
of Wilson’s lattice gauge theory before we ultimately extend this concept to quantum link
models in section 7.5. It will become evident that quantum link models are a more general
concept, in which the Hamiltonian formulation of Wilson’s lattice gauge theory emerges in a
certain limit.

7.2. Wilson’s Formulation of Lattice Gauge Theory for QCD

7.2.1. The Action of Quantum Chromodynamics in the Continuum

In 1974, Wilson suggested a method how to regularize a gauge theory on the lattice [34]. In
this section we summarize how to put QCD on the lattice, following Chapter 2 of Gattringer’s
and Lang’s Book [72]. After that we extend Wilson’s lattice gauge theory to more general
gauge groups and ultimately to quantum link models.
Before we do that, let us review the QCD action in the continuum. The gauge group of

QCD is SU(3). This means that we can transform the fields with a different group element
Ω(x) ∈ SU(3) at each point x in space-time. We construct the action in the Euclidean path
integral formalism, where the space-time coordinates are xµ = (x1, x2, x3, x4) and x4 = it is
the Euclidean time coordinate. Let us introduce the following fields:

Quark fields ψfα,c(x), ψ
f
α,c(x): Since leptons do not take part in the strong interaction, quarks

are the only relevant fermions in QCD. The two quark fields are Dirac spinors, which are
4-component Grassmann variables with a Dirac index α. There are six different “flavors”
f of quarks, each with a mass mf . The different flavors are f ∈ {up, down, strange,
charm, bottom, top}. The fermion fields also have a color index c and transform in the
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fundamental representation of the SU(3) gauge group:

ψfα,c(x) −→ ψ′fα,c(x) = Ω(x)cdψ
f
α,d(x), ψ

f
α,c(x) −→ ψ

′f
α,c(x) = ψ

f
α,d(x)Ω(x)†dc,

(7.1)

where we implicitly summed over the color index d.

Gluon gauge field Aµ(x)cd: The interaction in QCD is mediated by gauge bosons, known
as gluons. Because gluons are spin 1 particles, the gluon fields transform as 4-vectors
under Euclidean transformations, which means that in 4-d systems with Euclidean space-
time, they carry a vector index µ ∈ {1, 2, 3, 4}. In addition they carry two color
indices c and d. This gluon field matrix is combined of eight gluon fields Aaµ(x) as

Aµ(x)cd = gs
8∑

a=1
Aaµ(x)λacd/2, where λ

a are the eight generators (traceless, Hermitian

3 × 3 matrices, also known as Gell-Mann matrices) of the SU(3) gauge group and gs
is the coupling strength of the gauge fields. This gluon field matrix transforms in the
adjoint representation of the SU(3) gauge group, which in matrix form reads

Aµ(x) −→ A′µ(x) = Ω(x)Aµ(x)Ω(x)† + i(∂µΩ(x))Ω(x)†. (7.2)

Field strength tensor Fµν(x)cd: The field strength tensor is responsible for the kinetic en-
ergy and the self-interaction of the gauge fields and is defined as

Fµν(x) = ∂µAν(x)− ∂νAµ(x) + [Aµ(x), Aν(x)]. (7.3)

We obtain the gauge transformation rules as:

Fµν(x) −→ F ′µν(x) = Ω(x)Fµν(x)Ω(x)† (7.4)

The QCD action takes the form

S[ψ,ψ,A] =

∫
d4x
[∑
f

ψ
f
(x)
(
γµ (∂µ + iAµ(x)) +mf

)
ψf (x)+

1

2g2s
Tr(Fµν(x)Fµν(x))

]
(7.5)

or with all indices written explicitly

S[ψ,ψ,A] =

∫
d4x
[∑
f

ψ
f
α,c(x)

(
[γµ]α,β(δcd∂µ + igsA

a
µ(x)λacd/2) (7.6)

+mfδαβδcd

)
ψfβ,d(x) +

1

4g2s
F aµν(x)F aµν(x)

]
.

The Euclidean gamma matrices γµ obey

{γµ, γν} = 2δµ,ν1. (7.7)

They are responsible for the mixing of the different Dirac components and ensure the correct
behavior under Euclidean space-time rotations. We implicitly summed over repeated indices
like Dirac indices α, β ∈ {1, 2, 3, 4}, vector indices µ, ν ∈ {1, 2, 3, 4}, color indices c, d ∈
{1, 2, 3}, and the gluon index a = {1, 2, . . . , 8}.



7.2. Wilson’s Formulation of Lattice Gauge Theory for QCD 39

7.2.2. Symmetries of the Continuum QCD Action

We have discussed the behavior of the different fields under SU(3) gauge transformations. It
is easy to check that the QCD action (7.5) is invariant under these gauge transformations.
Besides the local gauge symmetry, there are also various global symmetries. One of them

is the Euclidean symmetry group (the analog of the Poincaré symmetry in Minkowski space).
The Euclidean group operates on the coordinates of the fields, while preserving the Euclidean
distance xµxµ. This symmetry group contains rotations and translations in space-time. Be-
cause the QCD action (7.5) is invariant under this symmetry, angular momentum, the energy,
and the momenta are conserved. The Euclidean group further contains the discrete parity
and time reversal symmetry. Parity inverts the spacial coordinates ~x −→ −~x, whereas the
time reversal inverts the temporal direction t −→ −t. The QCD action is also invariant under
charge conjugation, which interchanges the fields of particles and anti-particles.
Another important symmetry of QCD is the chiral symmetry (see section 6.3). Let us first

study the chiral symmetry for only one flavor of fermions which transforms the fermion fields
as

ψ(x) −→ ψ′(x) = exp(iαγ5)ψ(x), ψ(x) −→ ψ
′
(x) = ψ(x) exp(iαγ5), (7.8)

where α is a real parameter of the transformation and we have dropped the color, Dirac, and
flavor indices. Using that γ5 = γ1γ2γ3γ4 anticommutes with γµ (γµγ5 = −γ5γµ), we can check
that almost all terms of the action (7.5) are invariant under this transformation. The only
term, which breaks this chiral symmetry is the mass term, which transforms as

mψψ −→ mψ exp(2iαγ5)ψ.

The reason for this symmetry is that in all terms (apart from the mass term) the “left-
handed” and “right-handed” components are independent, which means that they do not
couple to each other. Left (ψL, ψL) and right-handed components (ψR, ψR) of the fermion
fields are defined using the projection operators

PL =
1− γ5

2
, PR =

1 + γ5
2

to be ψL(x) = PLψ(x), ψR(x) = PRψ(x), ψL(x) = ψ(x)PR, and ψR(x) = ψ(x)PL.
For QCD with Nf flavors this symmetry can be extended. Let T i be the generators

of SU(Nf ) matrices which act on the flavor index f of the fermion fields ψf , ψf . The
SU(Nf )L ⊗ SU(Nf )R chiral symmetry mixes the different flavors of left- and right-handed
fermions, respectively, as

SU(Nf )L : ψL(x) −→ exp(iαiLT
i)ψL(x), ψR(x) −→ ψR(x),

SU(Nf )R : ψL(x) −→ ψL(x), ψR(x) −→ exp(iαiRT
i)ψR(x). (7.9)

In addition there are also two U(1) chiral symmetries, which transform the fermion fields as

U(1)V : ψ(x) −→ exp(iαV 1)ψ(x),

U(1)A : ψ(x) −→ exp(iαAγ51)ψ(x). (7.10)
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These two symmetries are called vector chiral symmetry (also known as baryon number
symmetry) and axial chiral symmetry, because the corresponding Noether currents trans-
form as vectors and pseudo (axial) vectors. This means that in total we encounter an
SU(Nf )L⊗SU(Nf )R⊗U(1)V ⊗U(1)A chiral symmetry of the QCD the action (7.5) with Nf

massless fermions. The axial U(1)A symmetry is broken explicitly by an anomaly. By intro-
ducing non-zero (but equal) masses m for all fermions, the symmetry gets further explicitly
broken down to SU(Nf )V ⊗U(1)V . Allowing distinct masses for each fermion flavor f reduces
the symmetry to U(1)Nf .
Due to the small quark masses of Nf = 2 (or Nf = 3) flavors, the explicit breaking of

the SU(Nf )L⊗SU(Nf )R chiral symmetry is small and the symmetry is approximately intact.
Nevertheless such a symmetry is not observed in the spectrum. As correctly described by QCD,
this symmetry gets spontaneously broken to SU(Nf )V (for Nf = 2 the resulting SU(2)V
symmetry is known as “strong isospin”). This spontaneous breaking (of the approximate
symmetry) implies the existence of (pseudo) Goldstone bosons, which we find as the pions.
The U(1)V symmetry does not get broken and thus gives rise to the baryon number con-

servation.

7.2.3. Discretization on a Lattice
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Figure 7.1.: Two dimensional Lattice with a fermion field ψ.

After having discussed the QCD action in the continuum, it can now be discretized on a
lattice, as shown in figure 7.1. The fermion fields ψ(x), ψ(x) are defined on the sites of the
lattice x = a (n1, n2, n3, n4), where a is the lattice spacing and nµ are integers. To keep this
in mind, we denote the position as a subscript to the field variables ψx, ψx. To discretize the
derivative in a symmetric way one replaces

∂xψ(x) ∼ 1

2a
(ψx+µ̂ − ψx−µ̂) ,

where µ̂ is a vector (of length a) in the µ-direction. To define a proper lattice action, one
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must note that terms like ψxγµψx+µ̂ are not gauge invariant, since they transforms as

ψxγµψx+µ̂ −→ ψxΩ†xγµΩx+µ̂ψx+µ̂ = ψxΩ†xΩx+µ̂γµψx+µ̂.

To circumvent this problem one has to introduce a gauge field, which is represented by a
matrix-valued field ux,x+µ̂ ∈ SU(3). This matrix field is associated with the link x, x+ µ̂ and
therefore known as link variable. It is the fundamental object representing the gauge field and
can be thought of as being related to the gauge field Aµ(x) of the continuum theory as

ux,x+µ̂ ∼ P exp

(
i

∫ x+µ̂

x
Aµ dsµ

)
,

where P is the path ordering operator and the integral follows a straight line connecting x
and x+ µ̂. Under a gauge transformation this object transforms as

ux,x+µ̂ −→ u′x,x+µ̂ = Ωxux,x+µ̂Ω†x+µ̂. (7.11)

This is exactly what we need in order to construct a gauge invariant quantity:

1

2a

(
ψxγµux,x+µ̂ψx+µ̂ − ψxγµu

†
x−µ̂,xψx−µ̂

)
a→0−−−→ ψ(x) (γµ∂µ + iAµ(x))ψ(x) (7.12)

One can show that this expression converges to the correct naive continuum expression when
a → 0. The field ψx at position x is coupled via the matrix field ux,x+µ̂ with its neighbor
ψx+µ̂. Therefore the field ux,x+µ̂ is associated with the link between x and x+ µ̂, as shown in
figure 7.2.
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Figure 7.2.: An elementary plaquette of gauge link variables u. The arrow indicates the orientation
of the plaquette term.

Also the pure gauge part of the action (involving the field strength tensor) needs to be
discretized and expressed in terms of the link variables ux,x+µ̂. One can build a gauge invariant
combination of link variables by taking the trace of a product of link variables along a closed
loop. The simplest closed loop is an elementary plaquette. One can therefore define the action
as a product of four link variables around the plaquette, respecting the orientation (see figure
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7.2). It can be shown that this plaquette action converges to its continuum counterpart in the
naive continuum limit a→ 0:

2

g2s

∑
µ<ν

Re Tr
[
1− ux,x+µ̂ ux+µ̂,x+µ̂+ν̂ u†x+ν̂,x+µ̂+ν̂ u

†
x,x+ν̂

]
a→0−−−→ a4

4g2s
F aµν(x)F aµν(x).

(7.13)
Finally, we replace the integral over space-time by a sum over all lattice points∫

d4x ∼
∑
x

a4

and we obtain an action, which follow from discretizing the QCD action in a naive way on the
lattice:

S[ψ,ψ, u] = a4
∑
x

ψ
f
x

 4∑
µ=1

γµ
ux,x+µ̂ψ

f
x+µ̂ − u

†
x−µ̂,xψ

f
x−µ̂

2a
+mfψfx


+

2

g2s

∑
x

∑
µ<ν

Re Tr
[
1− ux,x+µ̂ ux+µ̂,x+µ̂+ν̂ u†x+ν̂,x+µ̂+ν̂ u

†
x,x+ν̂

]
(7.14)

This action is known as the naive fermion action, because it suffers from the so-called
fermion doubling problem (see section 7.3.1), where one observes additional fermions in the
spectrum. This lattice artifact can be removed, for example, by introducing an additional
so-called Wilson term. The Wilson term, on the other hand, brings in new problems, since
it breaks chiral symmetry (see section 6.3) explicitly. Another approach is to use staggered
fermions, which is what we are going to do in section 7.3.2.
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7.3. Staggered Fermions

7.3.1. Fermion Doubling Problem

Let us consider the naive lattice action (7.14). As already mentioned, this action suffers
from a fermion doubling problem, which means that we encounter additional particles in the
spectrum, which do not appear in the continuum formulation. To see this, we study the free
fermion propagator.
The free fermion propagator can be calculated most easily in momentum space. Therefore

we Fourier transform the action, while switching off the gauge fields (setting the link variables
ux,y to the unit matrix). We define the Fourier transformation of the fermion fields as

ψp =
∑
x

exp (ipµx
µ)ψx, ψx =

1

V

∑
p

exp (−ipµxµ)ψp, (7.15)

where pµ =
2πkµ
aLµ

∈
{
−π
a + 2π

aLµ
, . . . ,+π

a −
2π
aLµ

, πa
}
is the momentum vector in the Brillouin

zone and V = L1L2L3L4 is the number of lattice sites. We omitted the flavor index, since we
only consider one kind of flavor. Using that∑

x

exp(−i(p− p′)x) = δp,p′V,

we can express the action (7.14) as

S[ψ,ψ] = a4
∑
p

ψp

(
4∑

µ=1

γµ
i

a
sin(apµ) +m

)
ψp. (7.16)

The part in brackets is the Dirac operator D(p) and its inverse is the fermion propagator in
momentum space 〈ψ−pψp〉 = D(p)−1. Obviously this operator is diagonal in the momenta p.
Therefore, to invert the Dirac operator, we only need to invert the 4× 4 matrix of the Dirac
operator, which is

〈ψ−pψp〉 = D(p)−1 =
m− i/a

∑
µ γµ sin(pµa)

m2 + 1/a2
∑

µ sin2(pµa)
. (7.17)

The poles of the propagator determine the energy of a fermion state. We find poles at

0 = (ma)2 +
∑
µ

sin2(pµa) = (ma)2 +
∑
i

sin2(pia)− sinh2(E(~p)a),

where we have used that in Euclidean space-time we can express the energy as p4 = iE(~p)

and that sin2(iEa) = − sinh2(Ea). We therefore read off the dispersion relation of the naive
lattice fermions as

sinh2(E(~p)a) = (ma)2 +
∑
i

sin2(pia). (7.18)

This equation indeed reduces to the dispersion relation in the continuum (a→ 0):

E(~p)2 = m2 + ~p 2. (7.19)
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The minimum of the energy is reached for ~p = 0, which corresponds to the correct physical
fermion state. In equation (7.18), on the other hand, we also find additional minima of the
energy. Every state, which has some pi = π/a and some pj = 0 is also a minimum. These
states do not disappear in the continuum limit, but are absent in the continuum dispersion
relation (7.19). They are called fermion doublers and appear, because we have discretized the
fermions on the lattice in a too naive way.
These doubler fermions can be removed by adding an additional term in the action, known

as the Wilson term [73]. This term shifts the energy of the doubler fermions, leaving only the
~p = 0 state as a minimum of the energy. This shifting term goes to zero in the continuum limit
(a → 0), therefore it does not change the continuum limit of the action. The disadvantage
of the Wilson term is that it breaks chiral symmetry explicitly. The chiral symmetry is only
recovered in the continuum limit through a delicate fine-tuning of the mass parameter, which
is seen as unnatural.
In fact, there is even a no-go theorem by Nielsen and Ninomiya [74], which states that any

free fermion lattice action, which is local, translation invariant, real, and is invariant under
chiral transformations, necessarily suffers from fermion doubling. It should be noted that the
theorem does not specify the number of doubler fermions. It is indeed possible to reduce the
number of doublers from 2d − 1 to 1, but it is impossible to eliminate the doubler fermions
completely.
Nevertheless, this problem has been solved quite elegantly, by introducing an additional

spatial dimension of finite extent. Both ends of this dimension form a so-called domain wall,
where left- and right-handed fermions are localized [75,76]. By introducing a Wilson term the
fermion doublers disappear. Remarkably in this five-dimensional action the chiral symmetry
of the light four-dimensional domain wall fermions is not broken when the distance of the
domain walls is set to infinity.
Since later we want to implement gauge theories with fermions in an optical lattice setup,

we use even another kind of fermions, the so-called staggered fermions. Staggered fermions,
which are discussed in the next section, have a simpler structure and reduce the number of
fermion doublers by a factor of 4 in 4 dimensions.
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7.3.2. Introducing Staggered Fermions

The idea of staggered fermions is to reduce the number of fermionic degrees of freedom in the
Dirac space by a process known as spin diagonalization. We will see that after the staggered
transformation, the different Dirac components of the fermions decouple [77]. This allows to
neglect three of four components, which reduces the number of fermions in the spectrum by
a factor of 4. Instead of observing 16 fermion states in 4 dimensions, we only encounter 4

of them which are referred to as different “tastes” of fermions. In addition, there is still a
remnant of the chiral symmetry, as we will see in section 7.6.4.
To construct staggered fermions we first define transformed fermion fields ψ′x, ψ

′
x as

ψx = γx11 γx22 γx33 γx44 ψ′x, ψx = ψ
′
xγ

x4
4 γx33 γx22 γx11 . (7.20)

The fermionic part of the naive lattice action (7.14) contains the combinations of the fermion
fields ψxγµψy and mψxψx, where y = x + µ̂. Using γ2µ = 1, these terms can be rewritten in
terms of the transformed fermion fields as

ψ
′
xγ

x4
4 γx33 γx22 γx11 γµγ

y1
1 γ

y2
2 γ

y3
3 γ

y4
4 ψ

′
y = sx,yψ

′
xψ
′
y,

mψ
′
xγ

x4
4 γx33 γx22 γx11 γx11 γx22 γx33 γx44 ψ′x = mψ

′
xψ
′
x, (7.21)

where sx,x+µ̂ = (−1)x1+...+xµ−1 . In this step the gamma matrices disappeared from the action,
implying that the different Dirac components do not mix anymore. In this way, the action
describes four identical copies of a one-component fermion. Staggered fermions χ, χ can now
be defined as just one of the four Dirac components of ψ′, ψ′, while ignoring all the other
components. This reduces the number of doublers by a factor of four, which means that in 4

dimension we are left with just four fermion states, known as different tastes of the fermions.
The action (7.14) can be rewritten in terms of the staggered fermion fields χ, χ as

S[ψ,ψ,A] = a4
∑
x

χx

 4∑
µ=1

sx,x+µ̂ux,x+µ̂χx+µ̂ − sx−µ̂,xu†x−µ̂,xχx−µ̂
2a

+mχx


+

2

g2

∑
x

∑
µ<ν

Re Tr
[
1− ux,x+µ̂ ux+µ̂,x+µ̂+ν̂ u†x+ν̂,x+µ̂+ν̂ u

†
x,x+ν̂

]
, (7.22)

where χ, χ are the Grassmann-valued staggered fermion fields, which only have color indices
but no Dirac structure. One can think of the Dirac structure to be spread out over the lattice.
This will become evident, when we discuss the chiral symmetry transformation of staggered
fermions in section 7.6.4.
The action (7.22) can be used to study Euclidean correlators using Monte Carlo simulations.

One thereby usually integrates out the staggered fermion degrees of freedom in the partition
function, leaving behind a fermion determinant. This is, however, not what we are going to
do in this work. In the following we will work in a Hamiltonian formulation. This will allow
us to study physical phenomena in real (Minkowski) time.
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7.4. Hamiltonian Formulation of Wilson’s Lattice Gauge
Theory

7.4.1. Gauge Part of the Lagrangian in Temporal Gauge in the Time
Continuum

Let us construct the Hamiltonian formulation of the pure gauge part of the action (7.14). To
do so, we choose the temporal gauge, which means that we perform a gauge transformation
which sets all link variables in the temporal direction to the unit matrix (see figure 7.3):

ux,x+4̂ −→ Ωxux,x+4̂Ω
†
x+4̂

!
= 1 (7.23)

In a system with a finite extent and periodic boundary conditions in the temporal direction,
there is only one time-step in which the temporal links can not be set so 1. Let us only
consider time-steps, where the temporal links were set to 1. After choosing the temporal
gauge, we can still perform time-independent gauge transformations, leaving the action (7.14)
invariant.
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Figure 7.3.: An elementary space-time plaquette of gauge link variables u in the temporal gauge.

To construct the Hamiltonian formulation of lattice gauge theory [78], time and space are
considered separately and ultimately the time continuum limit is taken

∑
x

a4 −→
∫

dx4
∑
~x

a3, (7.24)

where the sum over all lattice points x in the whole space-time is replaced with a sum over
all ~x in one time-slice x4 combined with an integral over Euclidean time.

The terms of the pure gauge part of the lattice action (7.14), which connect different time-
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slices read

2

g2s

∑
~x

3∑
k=1

Re Tr
[
1− ux,x+k̂ ux+k̂,x+k̂+4̂ u

†
x+4̂,x+k̂+4̂

u†
x,x+4̂

]
=

2

g2s

∑
〈xy〉

Re Tr
[
1− ux,y u†x+4̂,y+4̂

]
,

where we introduced the sum over all nearest neighbors 〈xy〉 in one time-slice and k ∈ {1, 2, 3}
is a spatial index. Using the fact that we can rewrite the term

−2Re Tr
[
ux,y u

†
x+4̂,y+4̂

]
= Tr

[
(ux+4̂,y+4̂ − ux,y)(u

†
x+4̂,y+4̂

− u†x,y)
]

+ const.,

we can take the time continuum limit by rewriting this term as a time-derivative

a2

g2s

∑
〈xy〉

Tr

ux+4̂,y+4̂ − ux,y
a

u†
x+4̂,y+4̂

− u†x,y
a

 ∼ dx4
a

g2s

∑
〈xy〉

Tr
[
(∂x4ux,y)(∂x4u

†
x,y)
]

+ const.

Now we can write the pure gauge part of the action (7.14) as

S[u] =

∫
dx4

 a

g2s

∑
〈xy〉

Tr
[
(∂x4ux,y)(∂x4u

†
x,y)
]
− 2

ag2s

∑
�

Re Tr u�

 , (7.25)

where we have ignored constant terms and introduced the sum over all spatial plaquettes �
in a time-slice. u� is the plaquette matrix from (7.13).
Let us change to real time t (in Minkowski space), by performing the transformation t =

−ix4. By defining the action in Minkowski space as SM = iS, the Lagrange function L can
be calculated as

SM [u] =

∫
dt L, L =

a

g2s

∑
〈xy〉

Tr
[
u̇x,yu̇

†
x,y

]
+

2

ag2s

∑
�

Re Tr u�. (7.26)

In the following, we will be more general by changing the gauge group from SU(3) to SU(N)

and by defining the system in d instead of 3 spatial dimensions. We therefore have color indices
c ∈ {1, . . . , N} and vector indices k ∈ {1, . . . , d} instead of µ ∈ {1, 2, 3, 4}. The link variables
are now elements of the group ux,y ∈ SU(N).
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7.4.2. Hamilton Functional

To build a Hamiltonian from a general Lagrange function L(qi, q̇i), we need to identify the
momenta pi conjugate to the degrees of freedom qi. The conjugate momenta are defined as
pi = ∂

∂q̇i
L(qi, q̇i). With this, the variables q̇i can be expressed as a function of qi and pi.

Therefore the Hamiltonian H = piq̇i−L(qi, q̇i) can then also be written as a function of q and
p only. Later, one quantizes the system, by setting up a Hilbert space and promoting pi and
qi to operators acting in this Hilbert space and obeying canonical commutation relations.
Identifying the correct degrees of freedom in the lattice gauge theory Lagrange function

L(u, u†, u̇, u̇†) and determining their conjugate momenta is a non-trivial task. Instead of going
through the difficult calculation of using generalized Euler angles to parametrize the SU(N)

matrices ux,y and associate the canonical conjugate momenta to these angles, we will study the
behavior under time-independent gauge transformations. This will allow us to replace u̇x,y and
u̇†x,y in favor of contributions to the conserved charges of gauge transformations. Ultimately,
after quantization, the conserved charges of gauge transformations are then identified with
contributions to the generators of the gauge symmetry [79]. Let us summarize this procedure:

i. Gauge transformations are a symmetry of the Lagrange function L(u, u†, u̇, u̇†), therefore
according to Noether’s theorem there must be conserved charges. Since gauge transfor-
mations are a local symmetry, we obtain a conserved charge at each site x, which we
denote as Gax.

ii. The Gax are functions of ux,y, u
†
x,y, u̇x,y, u̇

†
x,y and can be used to express the Hamiltonian

as a function of the link variables ux,y, u
†
x,y and contributions to Gax only. These two

steps are performed in this section.

iii. After quantization, the operators of the conserved charges are the generators of a sym-
metry. Therefore the Gax become the generators of gauge transformations. Since they
are not the canonical conjugate momenta, they do not just obey canonical commutation
relations with the link variables. The commutation relation between Gax and the link
variables ux,y and u†x,y have to be derived from properties of the gauge transformations.
This is what we do in the next section.

Let us consider points i. and ii. in more detail. The aim is to determine the conserved
charges of gauge transformations and express the Hamiltonian in terms of contributions to
these charges and the link variables. Since gauge transformations at each site x leave the
Lagrange function invariant, we can use Noether’s theorem, which predicts a conserved charge
for each generator Gax:

Gax =
∑
〈x′y〉

δx′,x

(
∂L

∂u̇ijx,y
δua,ijx,y +

∂L

∂u̇†ijx,y
δu†a,ijx,y

)
, (7.27)

where the variation of the link variable δuax,y will be defined below. Obviously not all the links
in the sum over 〈x′y〉 contribute to this charge, since the variation of most of the link variables
are zero. The contributions to the charge Gax originate only from variations of links emanating
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Figure 7.4.: Two links with the associated generators Lax,y and Rax,y in the 1-2 plane.

from the site x. In figure 7.4 some of the links, contributing to the conserved charge Gax, are
shown. Gax can be separated into these contributions from each link x′, y, denoted as Lax′,y or
Rax′,y depending on whether the site x is on the left or the right end of the link x′, y (see figure
figure 7.4). We therefore split the charge Gax into the contributions from each link emanating
from the site x as

Gax =
d∑

k=1

(
La
x,x+k̂

+Ra
x−k̂,x

)
. (7.28)

To construct Lax,y and Rax,y, we need to perform a gauge transformation at the site x and
calculate the variations of the link variables.
According to section 7.2.3, under gauge transformations the link matrices transform as

uijx,y −→ u′ijx,y = Ωik
x u

kl
x,yΩ

†lj
y , (7.29)

where the SU(N) matrices of the gauge transformations Ωx and Ωy can be written as

Ωx = exp (iαaxλ
a) , Ωy = exp

(
iαayλ

a
)
. (7.30)

λa are the generalized SU(N) Gell-Mann matrices. A transformation with infinitesimally
small αax can be written as

Ωxux,yΩ
†
y ≈ (1 + iαaxλ

a)ux,y
(
1− iαayλa

)
. (7.31)

Let us first study the contribution to the charge Gax from a link (x, x + k̂) = (x, y), which
we denote as Lax,y. The gauge transformation is performed on the left end of the link, we
therefore set Ωy = 1. With this, the infinitesimal gauge transformation becomes

ux,y −→ ux,y + αax δu
a
x,y, with δua,ijx,y = iλaik u

kj
x,y. (7.32)
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The contributions to the conserved charges therefore are

Lax,y =
∂L

∂u̇ijx,y
δua,ijx,y +

∂L

∂u̇†ijx,y
δu†a,ijx,y = i

a

g2s

(
u̇†jix,y λ

a
ik u

kj
x,y − u̇jix,y u†ikx,y λakj

)
= i

a

g2s
Tr
(
u̇†x,yλ

aux,y − u̇x,yu†x,yλa
)
. (7.33)

To obtain the contribution to the charge Gax from a link (x− k̂, x) = (y, x), which we denote
as Ray,x, we consider a gauge transformation, which acts on the right end of the link only.
According to equation (7.31) the variation now becomes[

δuay,x
]
ij

= −iuiky,xλakj (7.34)

and the contribution to the conserved charges Ray,x, can be obtained as

Ray,x =
∂L

∂u̇ijy,x
δua,ijy,x +

∂L

∂u̇†ijy,x
δu†a,ijy,x = −i a

g2s

(
u̇†jiy,x u

ik
y,x λ

a
kj − u̇jiy,x λaik u†kjy,x

)
= −i a

g2s
Tr
(
u̇†x,yux,yλ

a − u̇x,yλau†x,y
)
. (7.35)

Obviously Lax,y and Rax,y are not independent but can be related by

u†x,yL
a
x,yλ

aux,y = −Rax,yλa. (7.36)

With this one can even show that
∑

a L
a
x,yL

a
x,y =

∑
aR

a
x,yR

a
x,y.

Next, we show that the combination Lax,yL
a
x,y + Rax,yR

a
x,y (summed over the index a =

1, . . . , N2−1) is exactly what we need to construct the electric contribution to the Hamiltonian.
Using the completeness relation of the generalized Gell-Mann matrices

N2−1∑
a=1

λaijλ
a
kl = 2δilδjk −

2

N
δijδkl (7.37)

and the identities
u†u = 1, u̇†u+ u†u̇ = 0 (7.38)

we obtain

Lax,yL
a
x,y +Rax,yR

a
x,y = −a

2

g4s
λaijλ

a
kl

{(
u̇†mix,y u

jm
x,y − u̇jmx,yu†mix,y

)(
u̇†nkx,y u

ln
x,y − u̇lnx,yu†nkx,y

)
+
(
u̇†jmx,y u

mi
x,y − u̇mix,yu†jmx,y

)(
u̇†lnx,yu

nk
x,y − u̇nkx,yu†lnx,y

)}
(7.39)

=
16a2

g4s
Tr
[
u̇†x,yu̇x,y

]
.

Collecting everything together, we write the Hamiltonian as

H =
∑
〈xy〉

{
∂L

∂u̇ijx,y
u̇ijx,y +

∂L

∂u̇†ijx,y
u̇†ijx,y

}
− L

=
a

g2s

∑
〈xy〉

Tr
[
u̇x,yu̇

†
x,y

]
− 2

ag2s

∑
�

Re Tr u� (7.40)

=
g2s

16a

∑
〈xy〉

(
Lax,yL

a
x,y +Rax,yR

a
x,y

)
− 1

ag2s

∑
�

Tr(u� + u†�).
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7.4.3. Quantizing the Hamiltonian and Deriving Commutation Relations

The Hamiltonian in equation (7.40) is quantized by promoting ux,y and Gx to operators. The
Hilbert space is the direct product space, containing square-integrable functions of SU(N)

matrices for each link x, y. We can choose a basis in which the operator ux,y is diagonal. After
this quantization the operators Gax are the generators of gauge transformations, operating in
the Hilbert space. As for the conserved charges, also the generators of gauge transformations
can be broken down to operators Lax,y and Rax,y, which are associated with the left and right
end of a link x, y: Lax,y generate gauge transformations on the left end of the link (at the site
x), while Rax,y do so on the right end of the link (at the position y, see figure 7.4).
Since Lax,y and Rax,y are now operators, they no longer commute with the operators of the

link variables ux,y. To determine the corresponding commutation relations, we study the
operator definition of Lax,y and Rax,y. Both operators generate SU(N) gauge transformations,
therefore they obey

[Lax,y, L
b
x,y] = 2ifabcLcx,y, [Rax,y, R

b
x,y] = 2ifabcRcx,y, (7.41)

where fabc are the structure constants of SU(N). Since we can apply the transformation
independently on the left or on the right side, Lax,y and Rax,y commute

[Lax,y, R
b
x,y] = 0, (7.42)

as do operators on different links. The operators Lax,y generate gauge transformation on the
left end of the link x, y, which reads according to equation (7.29)

exp
(
−iαaxLax,y

)
ux,y exp

(
iαaxL

a
x,y

)
= exp (iαaxλ

a)ux,y.

This equation, explicitly written with all the matrix indices, reads

exp
(
−iαaxLax,y

)
uijx,y exp

(
iαaxL

a
x,y

)
= [exp (iαaxλ

a)]ik u
kj
x,y,

where from now on we use indices like i, j for the color degrees of freedom. Expanding this
equation to first order in αax leads to(

1− iαaxLax,y
)
uijx,y

(
1 + iαaxL

a
x,y

)
+O(α2) = uijx,y + iαaxλ

a
iku

kj
x,y +O(α2)

uijx,y − iαax
[
Lax,y, u

ij
x,y

]
+O(α2) = uijx,y + iαaxλ

a
iku

kj
x,y +O(α2)

and we obtain the commutation relation[
Lax,y, u

ij
x,y

]
= −λaikukjx,y, (7.43)

which is consistent in all orders in αax.
In a similar fashion using

exp
(
−iαayRax,y

)
ux,y exp

(
iαayR

a
x,y

)
= ux,y exp

(
−iαayλa

)
,

we get for the commutation relation for the operator Ra:[
Rax,y, u

ij
x,y

]
= uikx,yλ

a
kj . (7.44)

Operators on different links commute with each other.
As in equation (7.36), the operators Lax,y and Rax,y are not independent. In fact they also

satisfy
∑

a L
a
x,yL

a
x,y =

∑
aR

a
x,yR

a
x,y.
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7.4.4. Gauss Law

The physical Hilbert space only contains gauge invariant states. Because we want gauge
variant states to be eliminated from the Hilbert space, the Gauss law is implemented. To see
that, we study the gauge transformations in more details. As stated earlier, the operators
Lax,y and Rax,y generate gauge transformations on the left and on the right end of a link x, y
and are associated with the left and right end of the link, as shown in figure 7.4.
Applying a gauge transformation at the position x, of course, not only transforms the link

variable ux,x+1̂ but also all other link variables emanating from the site x. If, for example, the
link variable ux,x+1̂ gets transformed as

ux,x+1̂ −→ u′
x,x+1̂

= exp
(
−iαaxLax,x+1̂

)
ux,x+1̂ exp

(
iαaxL

a
x,x+1̂

)
,

also all other link variables including ux−1̂,x, ux,x+2̂, . . . need to be transformed as

ux−1̂,x −→ u′
x−1̂,x = exp

(
−iαaxRax−1̂,x

)
ux−1̂,x exp

(
iαaxR

a
x−1̂,x

)
ux,x+2̂ −→ u′

x,x+2̂
= exp

(
−iαaxLax,x+2̂

)
ux,x+2̂ exp

(
iαaxL

a
x,x+2̂

)
ux−2̂,x −→ u′

x−2̂,x = exp
(
−iαaxRax−2̂,x

)
ux−2̂,x exp

(
iαaxR

a
x−2̂,x

)
.

This has to be done in every spatial direction and therefore one defines generators of gauge
transformations at the site x as

Gax =

d∑
k=1

(
La
x,x+k̂

+Ra
x−k̂,x

)
. (7.45)

The operators Gax generate a local su(N) algebra

[Gax, G
b
y] = 2iδxyf

abcGcx. (7.46)

The unitary operator, representing a general gauge transformation in the Hilbert space is
defined as

V =
∏
x

exp (iαaxG
a
x) . (7.47)

From now on sums and products, like the one here, are meant to extend over all spacial sites
x and do not include a sum or product over time-slices. Since the generators Lax,y and Rax,y
associated with different links commute with each other, the transformation rule of a link
variable is

ux,y −→ u′x,y = V †ux,yV = exp
(
−i
(
αaxL

a
x,y + αayR

a
x,y

))
ux,y exp

(
i
(
αaxL

a
x,y + αayR

a
x,y

))
= exp (iαaxλ

a)ux,y exp
(
−iαayλa

)
. (7.48)

One can show that we have constructed a Hamiltonian, which is gauge invariant (V †HV =

H). Therefore all generators Gax commute with the Hamiltonian ([Gax, H] = 0). We can thus
choose a basis in the Hilbert space by classifying the different states by their Gax quantum
numbers. Later one can diagonalize each sector of the HamiltonianH in this basis individually.
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Let us consider the states |ψ〉, which are elements of the Hilbert space on which the operators
act. Let us choose a basis in which the states are classified by their quantum numbers with
respect to the generators of gauge transformations Gax. In this basis, there are certain states
for which

Gax|ψ〉 = 0 for all a, (7.49)

which are gauge invariant, because they obey V †|ψ〉 = |ψ〉. Only the gauge invariant states
are physical.
Equation (7.49) is known as the Gauss law. One can think of the operators Lax,y and Rax,y

acting on the Hilbert space of square-integrable functions in SU(N). These operators generate
an su(N) algebra on the left and on the right end of every link x, y. Due to the Gauss law
(conditions (7.49) and (7.45)), applying the generators of the su(N) algebra to the states of
the links adjacent to a site x have to add up to zero. This means that they need to form an
su(N) singlet (also known as a color-singlet).

7.4.5. Hamilton Formulation of U(N) Gauge Theories

So far, we have considered a pure lattice gauge theory with an SU(N) gauge group. Neverthe-
less, the lattice Hamiltonian formulation can also be realized for other gauge groups, including
U(N). In chapter 8, we will study a model with a U(N) gauge symmetry and in chapter 9 we
will discuss an SO(3) gauge theory, which are both not more complicated to formulate.
The most simple case is probably the study of a U(1) gauge group. This is a special case,

because in U(1) the link variables ux,y and the gauge transformation “matrices” Ωx and Ωy

are just complex phases: Ωx = exp(iαx), Ωy = exp(iαy). Applying a gauge transformation
at the left or at the right end of the link therefore only changes the phase of the link variable
ux,y ∈ U(1)

ux,y −→ u′x,y = Ωxux,yΩ
†
y = exp (i (αx − αy))ux,y.

There are again conserved charges due to local gauge invariance, which we denote as Gx.
These charges can be broken down to contributions from the links emanating from the site x
as

Gx =

N∑
k=1

(
Ex−k̂,x − Ex,x+k̂

)
. (7.50)

Ex,y can be constructed as the contribution to the conserved charge Gx according to Noether’s
theorem in the same way as we did it in the non-Abelian case:

Ex,y = −i a
g2
(
u̇∗x,yux,y − u̇x,yu∗x,y

)
(7.51)

One can show that the term Ex,yEx,y is again proportional to the u̇u̇∗ term in the Lagrange
function. Therefore the Hamiltonian can be written as

H =
g2

4a

∑
〈xy〉

Eax,yE
a
x,y −

1

ag2

∑
�

(u� + u∗�) . (7.52)
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After quantization, Ex,y are promoted to operators. Instead of two generators Lx,y and Rx,y,
only the generator Ex,y is needed. Using equation (7.50) and defining W =

∏
x exp (iαxGx),

the link variables indeed transform as

ux,y −→ W †ux,yW = exp (i (αx − αy)Ex,y)ux,y exp (−i (αx − αy)Ex,y)
= exp (i (αx − αy))ux,y.

The commutation relation of the link field ux,y and its conjugate momentum Ex,y can be
derived from

exp (i (αx − αy)Ex,y)ux,y exp (−i (αx − αy)Ex,y) = exp (i (αx − αy))ux,y,

which reads on a link x, y
[Ex,y, ux,y] = ux,y, (7.53)

while operators on different links commute.
The Gauss law (G|ψ〉 = 0) is intuitive to understand. On each link, we have an integer

quantum numbers, representing the electric flux. At each site x, the sum of the fluxes of all
emanating links have to add up to zero.
To build a general U(N) lattice gauge theory, one notes that U(N) is nothing else than the

direct product of the two gauge groups U(N) = SU(N)⊗U(1). Therefore, one has generators
Lax,y and Rax,y of SU(N) and Ex,y, which is the generator of the U(1) symmetry.
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7.4.6. Staggered Fermions in the Hamiltonian Formulation

In the Hamiltonian formulation, we can no longer use the Grassmann valued variables χix, χix
of the staggered fermions (see section 7.3.2). Instead, fermion creation ψi†x and annihilation
operators ψix, which act in a Hilbert space, have to be introduced. Since they generate and
annihilate staggered fermions, they do not have a Dirac index, they only have the SU(N) color
index i. These operators obey the usual anti-commutation relations of fermion operators

{ψi†x , ψj†y } = {ψix, ψjy} = 0, {ψix, ψj†y } = δxyδij . (7.54)

A careful analysis [77] shows that the U(N) Hamiltonian, including fermions, can be written
as

H =− t
∑
x

d∑
k=1

(
sx,x+k̂ψ

†
xux,x+k̂ψx+k̂ + H.c.

)
+m

∑
x

sxψ
†
xψx

+
g2

2

∑
〈xy〉

(
Lax,yL

a
x,y +Rax,yR

a
x,y

)
+
g′2

2

∑
〈xy〉

Eax,yE
a
x,y −

2

4g2

∑
�

Re Tr u�, (7.55)

where we have redefined the coupling constants t, g, and g′ and a new staggered sign factor
had to be introduced as sx = (−1)x1+···+xd . For a U(N) gauge symmetry, these new coupling
parameters g and g′ do not directly correspond to gs from the Lagrange function.
Let us study how the fermion operators transform under gauge transformations. Since the

fermions are in the fundamental representation of SU(N)⊗ U(1) they transform as

SU(N) : ψix −→ V †ψixV =
[
exp
(
iαaxλ

a
)]ij

ψjx,

U(1) : ψix −→W †ψixW = exp
(
iαx
)
ψix. (7.56)

The generators of the SU(N) gauge transformation, Gax, and the generator of the additional
U(1) symmetry, Gx, can be extended in order to transform the fermions correctly. These
generators can be expressed in terms of the flux operators La, Ra, E, and the fermion field
operators ψi, ψ†i as

SU(N) : Gax = ψ†ix λ
a
ijψ

j
x +

d∑
k=1

(
La
x,x+k̂

+Ra
x−k̂,x

)
,

U(1) : Gx = ψ†ix ψ
i
x +

d∑
k=1

(
Ex−k̂,x − Ex,x+k̂

)
. (7.57)

It is straight forward to check that by using the site based generators of gauge transformations

V =
∏
x

exp (iαaxG
a
x) , W =

∏
x

exp (iαxGx) , (7.58)

equation (7.56) is satisfied.
These operators leave the Hamiltonian invariant [Gax, H] = [Gx, H] = 0. Again, the physical

states |ψ〉 have to be gauge invariant, which means

Gax|ψ〉 = 0, Gx|ψ〉 = 0. (7.59)

This implies that the links emanating from a site x have to form a color-singlet state together
with the fermion at the site x.
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7.5. Quantum Link Formulation of Lattice Gauge Theory

7.5.1. What is a Quantum Link Model?

In the previous section, we have worked out the gauge invariant Hamiltonian (7.40) of Wilson’s
lattice gauge theory. As we have seen, the momenta conjugate to the gauge link variables ux,y
and u†x,y are the operators Lax,y and Rax,y, which generate SU(N) gauge transformations on
the left and on the right end of the link x, y, respectively. These so-called SU(N) electric flux
operators Lax,y and Rax,y (a = 1, . . . , N2 − 1) are associated with the left and right end of the
link (see figure 7.5). The two operators generate an su(N)L ⊕ su(N)R algebra on each link
(see equation (7.60)). For models with an additional U(1) gauge symmetry, we also encounter
the generator Ex,y, representing the Abelian U(1) electric flux. In case the Hamiltonian is also
invariant under this additional U(1) symmetry, we also encounter the commutation relations
for Ex,y. The commutation relations of all these operators have been derived as

[Ra, Rb] = 2ifabcRc, [Ra, uij ] = uikλakj , [La, uij ] = −λaikukj , [E, uij ] = uij ,

[La, Lb] = 2ifabcLc, [Ra, Lb] = 0, [E,Ra] = 0, [E,La] = 0, (7.60)

for operators on the same link, while operators associated with different links commute. Here,
λa are the SU(N) Gell-Mann matrices and fabc are the SU(N) structure constants.
The states on each link are elements of the Hilbert space of square-integrable wave functions

of SU(N) (or U(N)) matrices. This Hilbert space is infinite-dimensional. Quantum link
models, on the other hand, operate in a finite-dimensional Hilbert space per link.

r r
x yU ijx,y

Ex,yLax,y Rax,y

Figure 7.5.: The quantum link operator Ux,y and the electric flux operators defined on the link
x, y.

Quantum link models are an alternative formulation of lattice gauge theory, where the
elements the link matrices are replaced by non-commuting operators acting in a new Hilbert
space. We can thus reduce the number of states per link to a finite number, which is allows
the implementation in a quantum simulator [60,67,68]. Due to their finite dimensional Hilbert
space, quantum link models can also be addressed using exact diagonalization methods [60,
68, 69] (see chapter 8 and 9) and even allow to use cluster algorithms to improve quantum
Monte Carlo methods [80, 81]. This allows to study phenomena that can not be addressed in
the context of standard lattice gauge theory.
Quantum link models are an extension of ordinary Wilson-type lattice gauge theory, in the

same way as quantum spin models are an extension of classical spin models. It is well known
how to extend classical spin models to a quantized version by introducing a spin operator for
each spin component. The spin operator replaces the ordinary C number, therefore giving up
the commutativity of the different components of the spin. In a similar way, we can introduce
quantum operators for each element of the link matrix U ijx,y, replacing the C number by an
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operator, which we call a quantum link operator. We thus give up the commutativity of the
elements of the link matrices U ijx,y and U ij†x,y .
To realize the physics in a finite-dimensional Hilbert space, one quantizes the elements of

the link matrices uijx,y in a similar fashion as we quantize the elements of a classical spin
by forming quantum spin operators. These newly quantized link variables are then denoted
as U ijxy. As in Wilson’s lattice gauge theory, these operators build up a Hamiltonian, which
evolves the system in real-time. To take the continuum limit of this lattice gauge theory, one
can introduce an additional spatial dimension of finite extent (similar to the procedure in [37]).
For example, to regularize QCD in (3 + 1) dimensions in a quantum link model, one uses a
(4 + 1) dimensional system. The extent of the extra dimension resembles the inverse coupling
constant 1/g2s of the corresponding (3 + 1)-d lattice gauge theory. Hence, varying the extent
of the extra dimension allows one to approach the continuum limit, in case the system is in
the Coulomb phase. In this limit dimensional reduction to four dimensions occurs. Since the
symmetries, including gauge symmetry, stay intact, universality implies that quantum link
models correspond to the same continuum field theory as its classical counterpart.
In this work, however, we will not attempt to take the continuum limit of full QCD in (3+1)

dimensions. We rather study the intrinsic nature of quantum link models in lower dimensions.
Therefore we will not introduce extra dimensions and perform dimensional reductions. As it
will turn out, already quantum link models in low dimensions show interesting physics like
confinement [60], spontaneous chiral symmetry breaking [68] (see section 8), and restoration
at finite baryon density [69] (see section 9).

7.5.2. U(1) Quantum Link Model

Hamiltonian and Commutation Relations

For pedagogical reasons, we first discuss quantum link models with a U(1) gauge symmetry,
in order to illustrate the basic idea. In section 7.5.3, we extend this formalism to SU(N) and
U(N) gauge groups, which contain further technical difficulties.
The objects, which build up the Hamiltonian are the quantum link operators Ux,y and its

conjugate momenta Ex,y, associated with each link x, y. As in Wilson’s lattice gauge theory
(see section 7.4.5), the Ex,y are responsible for the transformation of the link operators Ux,y
under U(1) gauge transformations:

Ux,y −→ U ′x,y = exp (i (αx − αy)Ex,y)Ux,y exp (−i (αx − αy)Ex,y)
= exp (iαx)Ux,y exp (−iαy) .

This transformation rule leads us to the commutation relation:

[Ex,y, Ux,y] = Ux,y. (7.61)

The Hermitian conjugate of this equation is

[Ex,y, U
†
x,y] = −U †x,y, (7.62)

since the generators of gauge transformations are Hermitian operators E†x,y = Ex,y.
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As for Wilson’s lattice gauge theory, we define the U(1) Hamiltonian as

H =
g2

4a

∑
〈xy〉

Eax,yE
a
x,y −

1

ag2

∑
�

(
U� + U †�

)
, (7.63)

where the plaquette operator in the spatial k-l plane is defined as

U� = Ux,x+k̂Ux+k̂,x+k̂+l̂U
†
x+l̂,x+k̂+l̂

U †
x,x+l̂

. (7.64)

Compared to equation (7.52), we have replaced the link variables ux,y and u∗x,y with quantum
link operators Ux,y and U †x,y, which are non-commuting operators.

Embedding Algebra su(2)

The simplest way to satisfy the two commutation relations (7.61) and (7.62) is by representing
the three operators by spin operators

Ux,y = S+
x,y, U †x,y = S−x,y, Ex,y = S3

x,y, (7.65)

since spin operators satisfy

[S3, S+] = S+, [S3, S−] = −S−.

With this replacement, we can calculate the commutation relation among the quantum link
operators

[Ux,y, U
†
x,y] = [S+

x,y, S
−
x,y] = 2S3

x,y = 2Ex,y. (7.66)

The quantum link operators can be expressed as: Ux,y = S1
x,y + iS2

x,y, U
†
x,y = S1

x,y − iS2
x,y.

The three Hermitian operators S1
x,y, S

2
x,y, S

3
x,y generate an su(2) algebra on each link x, y.

By choosing an irreducible representation of su(2) on a link, the Hilbert space is only finite-
dimensional. Choosing a basis, where S3

x,y is a diagonal operator, each basis state can be
characterized by its eigenvalue with respect to S3

x,y. In the context of su(2), we usually talk
about spin. We can think of the degrees of freedom as being spins, one associated with each
link. These spin states represent the electric flux. In this basis, Ux,y is a spin raising operator
(or flux raising operator), U †x,y is a flux lowering operator, Ex,y is the diagonal flux operator.
In quantum link models, the Hilbert space is restricted to states of exactly one representation

of these operators. We can choose among different representations:

• The fundamental (two-dimensional) spin representation, is the spin (or flux) 1/2 repre-
sentation. The fluxes of each link x, y can either be up |↑〉x,y or down |↓〉x,y. Two sample
configurations are illustrated in figure 7.6, where flux up states are represented by an
arrow in the right or upwards direction, flux down states are represented by left or down
arrows.

The quantum link operators act as raising and lowering operators Ux,y| ↑〉x,y = 0,
U †x,y|↑〉x,y = |↓〉x,y, Ux,y|↓〉x,y = |↑〉x,y, U †x,y|↓〉x,y = 0, while the generator of gauge
transformations is diagonal in this basis: Ex,y|↑〉x,y = 1

2 |↑〉x,y, Ex,y|↓〉x,y = −1
2 |↓〉x,y.



7.5. Quantum Link Formulation of Lattice Gauge Theory 59

In this representation, the term Ex,yEx,y = 1/4 is a trivial constant and can therefore
be omitted in the Hamiltonian. Only the plaquette term is then responsible for the
dynamics. From the definition of the plaquette (7.64), it can be seen that the plaquette
operators raise the flux on two links and lower the flux on the two other links around
a plaquette. Figure 7.6 illustrates the action of U�, which raises the flux on the link
x1, x2 and x2, x3 and lowers the flux on the links x4, x3 and x1, x4. U

†
� does the exact

opposite. The operators U� and U †� annihilate any other configuration of fluxes around
a plaquette.
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Figure 7.6.: The plaquette operators U� and U†
� flip the electric flux around the plaquette.

• In any higher-dimensional representation (for example the three-dimensional flux 1 rep-
resentation), there is an interplay between the two terms in the Hamiltonian. The
Ex,yEx,y term favors links with a flux that is close to zero. The plaquette term again
raises and lowers fluxes around a plaquette.

Gauss Law

As in section 7.4.5, the operator generating gauge transformations at the site x is defined as

Gx =
d∑

k=1

(
Ex−k̂,x − Ex,x+k̂

)
. (7.67)

A general gauge transformation can again be parametrized as W =
∏
x exp (iαxGx), which

transforms quantum link operators as

Ux,y −→ W †Ux,yW = exp (i (αx − αy)Ex,y)Ux,y exp (−i (αx − αy)Ex,y)
= exp (iαx)Ux,y exp (−iαy) .

Since the Hamiltonian is gauge invariant ([Gx, H] = 0), the generators of gauge transfor-
mations Gx and the Hamiltonian can be diagonalized simultaneously. The eigenstates of Gx
with zero eigenvalue are the gauge invariant states, because then W †|ψ〉 = |ψ〉.
As in section 7.4.5, we reduce the Hilbert space to the gauge invariant states, requiring

Gx|ψ〉 = 0 at any site x. This condition causes the “continuity of flux”. This means that (as
long as we do not have fermions in the system) at every site x, the number of “incoming”
fluxes is the same as the number of “outgoing” fluxes. Incoming flux is the sum of fluxes of
links on the “left” of the site x (links x − k̂, x), whereas outgoing flux is the sum of fluxes of
links on the “right” of the site x (links x, x + k̂). This condition is known as the Gauss law.
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In the illustrations, this means that at every site the number of incoming arrows is the same
as the number of outgoing arrows. A sample configuration for a flux 1/2 system satisfying
Gauss’s law, is shown in figure 7.7.
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Figure 7.7.: A sample configuration for a flux 1/2 system, which fulfills the Gauss law at every
site.

Study

The U(1) quantum link model coupled to dynamical staggered fermions (see section 7.5.4) has
been studied in [60]. This study addresses interesting physical phenomena like string breaking
and the evolution after a quench, which are both inaccessible to classical simulation methods.
The string breaking happens, when an external Q̄Q pair is separated over a long distance,

while a dynamical qq̄ pair is crated. The electric flux profile is the order parameter of the
breaking, which can be observed in real-time. The large value of the electric flux, which is due
to the confining string of the static Q̄Q pair spontaneously breaks down when a dynamical qq̄
pair is generated.
The real-time evolution after a quench happens in nature for example after a heavy-ion

collision when the quark-gluon plasma returns to the ordinary hadronic vacuum and thus
breaks the chiral symmetry spontaneously. In this work the spontaneous breaking of the
parity symmetry was studied by preparing a parity-invariant initial state in which we find
a staggered electric flux configuration. When approaching the true vacuum this state will
spontaneously break parity, which can also be observed in real-time.
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7.5.3. SU(N) and U(N) Quantum Link Models

Hamiltonian and Commutation Relations

The objects which build up the Hamiltonian with an SU(N) gauge symmetry are the quantum
link operators U ijx,y, which are N × N matrices of operators, as well as the operators Lax,y
and Rax,y. For a Hamiltonian with an additional U(1) gauge symmetry, there is also the
operator Ex,y. As in Wilson’s lattice gauge theory (see section 7.4.3), Lax,y, Rax,y, and Ex,y
are responsible for the transformation of the link operators U ijx,y under gauge transformations
(7.76). The transformation rules lead us to the same commutation relation as the ones derived
in section 7.4.3:

[Rax,y, U
ij
x,y] = U ikx,yλ

a
kj , [Lax,y, U

ij
x,y] = −λaikUkjx,y, [Ex,y, U

ij
x,y] = U ijx,y. (7.68)

The Hermitian conjugate of these equations are

[Rax,y, U
ij†
x,y ] = −U ik†x,yλajk, [Lax,y, U

ij†
x,y ] = λakiU

kj†
x,y , [Ex,y, U

ij†
x,y ] = −U ij†x,y . (7.69)

Combining the Hamiltonian of SU(N) lattice gauge theory from section 7.4.3 with the U(1)

quantum link Hamiltonian, one gets

H =
g2

2

∑
〈xy〉

(
Lax,yL

a
x,y +Rax,yR

a
x,y

)
+
g′2

2

∑
〈x,y〉

E2
x,y −

1

4g2

∑
�

(TrU� + H.c.) , (7.70)

where we have redefined the coupling constants g and g′. The trace of the plaquette operator
in the k-l plane is defined as

TrU� = U ij
x,x+k̂

U jm
x+k̂,x+k̂+l̂

Unm†
x+l̂,x+k̂+l̂

U in†
x,x+l̂

. (7.71)

We have replaced the elements of the link variables uijx,y and uij∗x,y with quantum link opera-
tors U ijx,y and U ij†x,y , which are non-commuting operators. U ij†x,y is meant to be the Hermitian
conjugate of the operator U ijx,y, indices are not interchanged. Lax,y and Rax,y are the generators
of SU(N) gauge transformations on a link x, y from the left and from the right, respectively.
Ex,y are the generators of an additional U(1) gauge symmetry.
In the form (7.72), the Hamiltonian is invariant under SU(N)⊗U(1) gauge transformations.

If the system should only be invariant under SU(N) gauge transformation, the additional U(1)

symmetry can be broken by adding a determinant term to the Hamiltonian:

H =
g2

2

∑
〈xy〉

(
Lax,yL

a
x,y +Rax,yR

a
x,y

)
+
g′2

2

∑
〈x,y〉

E2
x,y

− 1

4g2

∑
�

(TrU� + H.c.)− γ
∑
〈x,y〉

(detUx,y + H.c.) . (7.72)

For γ 6= 0, this Hamiltonian is still invariant under SU(N) gauge transformation, but not
under the additional U(1) symmetry, generated by the operators Ex,y.
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Embedding Algebra su(2N)

The simplest way to satisfy the commutation relations (7.68) and (7.69) is by embedding
the quantum link operators and the generators of U(N) gauge transformations in an su(2N)

algebra. In appendix A we present the generators of an su(2N) algebra and show that they
can be combined in order to represent quantum link operators and the generators of gauge
transformations, satisfying the above commutation relations. We further present the explicit
matrix representation for the fundamental representation of the su(2N) algebra.

As shown in appendix A, by embedding the quantum link operators in the su(2N) algebra,
they satisfy the commutation relations (7.68) and (7.69), as well as commutation relations
among the quantum link operators

[U ij , Ukl†] = 2( 4
N δikδjlE + δikλ

a
ljR

a − δjlλaikLa), [U †ij , Ukl†] = [U ij , Ukl] = 0. (7.73)

By choosing an irreducible representation of su(2N) on each link, the link Hilbert space is
only finite-dimensional. There are (N − 1) operators among the Lax,y and (N − 1) operators
among the Rax,y, which are diagonal, so together with the diagonal operator Ex,y, we have
(2N − 1) diagonal operators. This means that there are (2N − 1) quantum numbers, which
are the eigenvalues with respect to each of these diagonal operators. These quantum numbers
again represent the electric fluxes. We thus have (2N −1) independent fluxes per link. This is
in close analogy to the U(1) quantum link model (see section 7.5.2), where we just encountered
one flux variable. Again, the quantum link operators U ijx,y and U ij†x,y raise or lower some of the
fluxes.

In appendix A we have given an explicit expression for the operators in the fundamen-
tal representation, which is 2N -dimensional. The 2N basis vectors at each link x, y are
the eigenstates of the diagonal operators among the Lax,y and Rax,y and of Ex,y. The terms
Lax,yL

a
x,y + Rax,yR

a
x,y and Ex,yEx,y are all proportional to the unit matrix in the fundamen-

tal representation and have thus no effect on the dynamics. It can further be shown that
the γ-term in the Hamiltonian (7.72) is always zero in the fundamental representation. This
term is responsible for breaking explicitly the additional U(1) gauge symmetry. Therefore, in
order to work with an SU(N) (instead of a U(N)) gauge symmetry, one has to work with
higher-dimensional representations. The smallest representation, for which det(Ux,y) 6= 0, is
a [(2N)!/(N !)2]-dimensional representation [65].

Gauss Law

As already discussed, we consider quantum link models with an SU(N) or a U(N) gauge
symmetry. In section 7.4.4, we introduced the site based generators of SU(N) gauge trans-
formations Gax, where a is the index of the generator (a = 1, 2, . . . , N2 − 1). These operators
obey [Gax, G

b
y] = 2iδxyf

abcGcx. The Gx are again the generators of the additional U(1) gauge
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symmetry. Generators of the SU(N) and U(N) gauge transformations read

SU(N) : Gax =
∑
k

(
La
x,x+k̂

+Ra
x−k̂,x

)
,

U(1) : Gx =
∑
k

(
Ex−k̂,x − Ex,x+k̂

)
. (7.74)

A general U(N) gauge transformation can then be parametrized by the unitary operators

V = exp

(
i
∑
x

αaxG
a
x

)
, W = exp

(
i
∑
x

αxGx

)
. (7.75)

At each site x, these operators generate gauge transformations, which affect all the links
x, x+ k̂ and x− k̂, x emanating from the point x:

SU(N) : U ijx,y −→ V †U ijx,yV = exp
(
−i
(
αaxL

a
x,y + αayR

a
x,y

))
U ijx,y exp

(
i
(
αaxL

a
x,y + αayR

a
x,y

))
=
[
exp
(
iαaxλ

a
)]ik

Uklx,y
[
exp
(
−iαayλa

)]lj
, (7.76)

U(1) : U ijx,y −→ W †U ijx,yW = exp (i (αx − αy)Ex,y)U ijx,y exp (−i (αx − αy)Ex,y)
= exp (iαx)U ijx,y exp (−iαy) .

The SU(N) transformations indeed leave the Hamiltonian invariant ([Gax, H] = 0). For
a U(N) quantum link Hamiltonian, also the additional U(1) transformation commutes with
the Hamiltonian ([Gx, H] = 0). This allows us define a basis with respect to the operators
Gax (and Gx) before diagonalizing the Hamiltonian. We then only choose the physical states,
which are gauge invariant. These are the singlet states of Gax (and Gx), which means that we
require the Gauss law

Gax|ψ〉 = 0, (Gx|ψ〉 = 0). (7.77)

The reason is that then W †|ψ〉 = |ψ〉 (and V †|ψ〉 = |ψ〉).
By imposing the Gauss law, the dimension of the physical Hilbert space is reduced. This

again, leads to a “continuity of flux” at every site x. This is exactly what we already experienced
when imposing the Gauss law in the U(1) quantum link model (see section 7.5.2) except that
now we encounter flux from the Abelian and the non-Abelian generators.

7.5.4. Staggered Fermions in Quantum Link Models

In the quantum link model, staggered fermions are introduced in the same way as for ordinary
lattice gauge theory in the Hamiltonian formalism (see section 7.4.6).
Again, the creation ψ†ix and annihilation operators ψix obey the usual anti-commuting rela-

tions

{ψix, ψjy} = {ψ†ix , ψ†jy } = 0, {ψix, ψ†jy } = δxyδij . (7.78)

These operators act on a Hilbert space and have a color index i. The Dirac structure is spread
out over the space-time lattice. The quantum link model Hamiltonian (7.72) together with
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the fermionic part reads

H =− t
∑
x

d∑
k=1

(
sx,x+k̂ψ

†
xUx,x+k̂ψx+k̂ + H.c.

)
+m

∑
x

sxψ
†
xψx

+
g2

2

∑
〈xy〉

(
Lax,yL

a
x,y +Rax,yR

a
x,y

)
+
g′2

2

∑
〈x,y〉

E2
x,y (7.79)

− 1

4g2

∑
�

(TrU� + H.c.)− γ
∑
〈x,y〉

(detUx,y + H.c.) ,

where sx = (−1)x1+···+xd and sx,x+k̂ = (−1)x1+···+xk−1 , g, g′ are gauge couplings, and m is the
mass parameter of the fermions. We have also introduced the hopping parameter t.
As for the Hilbert space of the fermions, also the Hilbert space on which the quantum

link operators U ij , U ij† and the generators of gauge transformation La, Ra, and Ex,y act is
finite-dimensional. In section 7.5.3 these operators have been discussed in detail.
For γ = 0, this Hamiltonian is invariant under SU(N) ⊗ U(1) = U(N) gauge transforma-

tions. Again, the site-based generators of gauge transformations are defined as

V =
∏
x

exp (iαaxG
a
x) , W =

∏
x

exp (iαxGx) (7.80)

and transform the quantum link operators U ijx,y and the fermion field operators ψix as

SU(N) : V †U ijx,yV =
[
exp
(
iαaxλ

a
)]ik

Uklx,y
[
exp
(
−iαayλa

)]lj
, V †ψixV =

[
exp
(
iαaxλ

a
)]ij

ψjx,

(7.81)

U(1) : W †U ijx,yW = exp
(
iαx
)
U ijx,y exp

(
−iαy

)
, W †ψixW = exp

(
iαx
)
ψix.

In order for the fermion field operators ψix to transform correctly under gauge transformations,
the generators of gauge transformations are expressed in terms of the flux operators La, Ra, E,
and the fermion field operators ψi, ψ†i as

SU(N) : Gax = ψ†ix λ
a
ijψ

j
x +

∑
k

(
La
x,x+k̂

+Ra
x−k̂,x

)
,

U(1) : Gx = ψ†ix ψ
i
x +

∑
k

(
Ex−k̂,x − Ex,x+k̂

)
. (7.82)

The SU(N) transformations indeed leave the Hamiltonian invariant ([Gax, H] = 0). For a
U(N) quantum link Hamiltonian, also the additional U(1) transformation commutes with the
Hamiltonian ([Gx, H] = 0). Again, the physical states |ψ〉 have to be gauge invariant, which
means

Gax|ψ〉 = 0, (Gx|ψ〉 = 0). (7.83)

The Gauss law of the non-Abelian generators (left part of 7.83) requires at every site x that
the sum of all fluxes of each links emanating from the site x have to form a color-singlet state
together with the fermion at the site x.
We will work out the fundamental representation of a U(2) quantum link Hamiltonian with

fermions and quantum link operators in (1+1) dimensions explicitly and discuss all the gauge
invariant states in section 8.3.
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7.6. Global Symmetries of Quantum Link Models

Besides the local gauge symmetry, which has been discussed in the previous sections, the
Hamiltonian of quantum link models is also invariant under certain global symmetries. A
prominent global symmetry in field theory is the Euclidean group (see section 7.2.2), which
gets, however, explicitly broken by the lattice. Only a discrete subgroup thereof remains a
symmetry of the Hamiltonian. This subgroup consists of

• the spacial translations,

• rotations by 90◦,

• charge conjugation,

• and the parity transformation.

Chiral symmetry poses a delicate problem, when implementing gauge theories on the lattice.
Staggered fermions still have a remnant of chiral symmetry, which is in the Hamiltonian
formulation reduced to

• a Z2 chiral symmetry.

For an SU(N) quantum link model, we further have

• an additional global U(1) symmetry,

which is responsible for a conservation of baryon number. For U(N) quantum link models this
U(1) symmetry is a local symmetry and thus Gauss’ law eliminates baryons from the physical
Hilbert space.
Some of these symmetries are important for our applications in the following chapters and

are therefore discussed in more details in this section.

7.6.1. Spatial Translations

When we introduced staggered fermions in section 7.3.2, we noted that the Dirac components
got spread out over the lattice. Simply shifting the whole system by one lattice spacing means
that we are considering a different Dirac component of the fermions. The Hamiltonian is
therefore not invariant under this transformation. This becomes evident when we look at the
mass term of the Hamiltonian (7.79), which is not invariant against a translation by one lattice
spacing due to the staggered phase factor sx = (−1)x1+···+xd .
A correct translation operation Tk (translating in the k-direction) has to transform the

system by two lattice spacings. This means that the fermion field operators ψx and the
quantum link operators Ux,y have to be transformed as

Tk : TkUx,y = Ux+2k̂,y+2k̂,
Tkψx = ψx+2k̂. (7.84)

Also the generators of gauge transformations Lax,y, Rax,y, Ex,y have to be transformed as

Tk : TkLax,y = La
x+2k̂,y+2k̂

, TkRax,y = Ra
x+2k̂,y+2k̂

, TkEx,y = Ex+2k̂,y+2k̂. (7.85)
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Note that the lattice is periodic, therefore all coordinates are given modulo the number of
lattice sites in the k-direction, denoted as Lk. It is easy to check that this transformation
leaves the Hamiltonian (7.79) invariant.
Let us consider a periodic lattice with Lk sites in the k-direction. Lk/2 consecutive trans-

lations Tk (in the k-direction by two lattice spacings) shift the system once around the lattice
ending at the original position, which implies that TLk/2k = 1. Therefore the eigenvalues of Tk
are complex phases:

Tk|ψ〉 = exp (ipk) |ψ〉 (7.86)

We find that for

Lk/2 even : pk ∈
{

0,± 4π
Lk
,± 8π

Lk
, . . . , π

}
,

Lk/2 odd : pk ∈
{

0,± 4π
Lk
,± 8π

Lk
, . . . ,±πLk−2Lk

}
. (7.87)

pk is known as the momentum (or true momentum) of the translation eigenstate |ψ〉. Since
Tk is a symmetry, the eigenstates of the Hamiltonian can simultaneously be diagonalized with
respect to Tk. Therefore each eigenstate of the Hamiltonian has a definite momentum pk in
each direction.

7.6.2. Charge Conjugation

What we define here as a charge conjugation operation Ck is in fact a combination of a charge
conjugation and a flavor transformation in the k-direction (see 7.6.4). A charge conjugation
transforms particles into antiparticles and changes the representation of the generators of the
embedding su(2N) algebra (see appendix A) to its conjugate representation. The fermion
operators and the operators of the embedding su(2N) algebra of therefore transform as

Ck : CkU ijx,y = U ij†
x+k̂,y+k̂

, Ckψix = (−1)x1+···+xkψi†
x+k̂

, (7.88)
CkLax,y = −La∗

x+k̂,y+k̂
, CkRax,y = −Ra∗

x+k̂,y+k̂
, CkEx,y = −Ex+k̂,y+k̂.

Note that the hopping term (the one with the parameter t) in the Hamiltonian (7.79) trans-
forms to its Hermitian conjugate. Note further, that we can choose a representation in which
the matrix of the operator

∑
a L

aLa + RaRa is real and therefore not affected by complex
conjugation.
Two consecutive charge conjugation operations correspond to a spatial translation, which

implies that C2
k = Tk. We can therefore separate the eigenvalue of Ck into a momentum pk

and a charge parity sign ck ∈ {+1,−1}:

Ck|ψ〉 = (−1)ck exp(ipk/2)|ψ〉 =⇒ C2
k |ψ〉 = exp(ipk)|ψ〉 = Tk|ψ〉 (7.89)

When charge conjugation Ck is a symmetry, the eigenstates of the Hamiltonian can simulta-
neously be diagonalized with respect to Ck. Each eigenstate of the Hamiltonian has then a
definite charge conjugation parity ck in each k-direction.
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There is, however, a subtlety with these charge conjugation symmetries, because we have
transformed the quantum link operators and the generators of gauge transformations to op-
erators in the conjugate representation. Only for representations which are equivalent to
their conjugate representation charge conjugation is a symmetry. Such representations of the
su(2N) algebra exist. One of them corresponds to a Young tableau with N vertically aligned
boxes. This is a (2N)!

(N !)2
-dimensional representation of the embedding su(2N) algebra. This will

become evident when we talk about the rishon representation in section 8.2.1. Only for a rep-
resentation with exactly N rishons, the operators are transformed to the same representation.

7.6.3. Parity Transformation

In odd dimensions d, a parity transformation P inverts all coordinates. The inversion has an
additional consequence on the generators of gauge transformations: The operators generating
gauge transformations on the left end of a link are now associated with the right end of a link
and vice versa. Therefore the operators of the Hamiltonian transform as

P : PU ijx,y = U ji†−y,−x,
Pψix = ψi−x, (7.90)

PLax,y = Ra−y,−x,
PRax,y = La−y,−x,

PEx,y = −E−y,−x.

Note the periodicity of the lattice: A coordinate −x corresponds to the lattice site (−x1 +

L1,−x2 + L2, . . . ,−xd + Ld). Note further that the hopping term in the Hamiltonian (7.79)
transforms to its Hermitian conjugate.
For a system in even dimensions d, this kind of parity transformation corresponds to a

rotation of the system by 180◦. This is not what we mean, when we talk about parity
transformations. Instead we would therefore consider a reflection, for example, on the 2-axis
as a parity transformation P .
Two consecutive parity transformations flip the system back in the original state, which

implies that P 2 = 1. Therefore the eigenvalues of P are p ∈ {+1,−1}:

P |ψ〉 = p|ψ〉 (7.91)

Since parity P is a symmetry, the eigenstates of the Hamiltonian can simultaneously be diag-
onalized with respect to P . Therefore each eigenstate of the Hamiltonian has a definite parity
p. Note that a parity transformation does not commute with, for example, a translation.
Therefore the states can not simultaneously be associated with the parity p and momentum
pk quantum numbers.
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7.6.4. Chiral Transformation

In section 7.2.2 we have introduced the chiral symmetry as an operation which mixes the
different flavor components of the fermions separately for the left and right-handed chirality.
Since we are working with staggered fermions, the different flavors are identified with the
different “tastes” of the staggered fermions. These tastes correspond to the different fermion
doublers and are (together with the Dirac components) spread out over the lattice. Therefore,
a chiral transformation has to move the fermions in some way over the lattice. We see that
the mass term breaks explicitly a symmetry which shifts the system by one lattice spacing.
This is exactly what we expect to happen for the chiral symmetry. On the other hand, the
symmetry of shifting the system consecutively by one lattice spacing in an even number of
different directions corresponds to a “taste symmetry”.
Let us define the shift symmetry by one lattice spacing in the k-direction. The operators

transform as

Sk : SkU ijx,y = U ij
x+k̂,y+k̂

, Skψix = (−1)xk+1+···+xdψi
x+k̂

, (7.92)
SkLax,y = La

x+k̂,y+k̂
, SkRax,y = Ra

x+k̂,y+k̂
, SkEx,y = Ex+k̂,y+k̂.

For massless fermions (m = 0), we find an exact chiral symmetry, which is broken explicitly
by the lattice from SU(Nf )L ⊗ SU(Nf )R ⊗ U(1)V (see section 7.2.2) to a (Z2)

d chiral sym-
metry. Since in this case, this shift transformation Sk is a symmetry, the eigenstates of the
Hamiltonian can simultaneously be diagonalized with respect to Sk. Two consecutive shift
transformations correspond to a spatial translation, i.e. S2

k = Tk. We can therefore associate
each eigenstate of the Hamiltonian with a definite so-called fake momentum in the k-direction,
denoted as p′k which is p′k = ±pk/2:

Sk|ψ〉 = exp(ip′k)|ψ〉 =⇒ S2
k |ψ〉 = exp(ipk)|ψ〉 = Tk|ψ〉 (7.93)

For a non-zero massm term in the Hamiltonianm
∑

x(−1)x1+···xdψi†x ψix the chiral symmetry
is broken explicitly to a (Z2)

d−1 taste symmetry.
As it is encountered in nature (see section 7.2.2), we try to find a spontaneous breaking

of the chiral symmetry in the massless case (m = 0). A spontaneously broken symmetry
gives rise to two degenerate vacuum states, which can be observed when diagonalizing the
Hamiltonian. Since we work in a finite spatial volume V , this degeneracy is not exact. The
energy difference of the two lowest states in the spectrum ∆E = E1 − E0 scales as

∆E ∼ exp (−αV ) , (7.94)

where α is some constant.
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Chapter 8.

Application I: U(N) Quantum Link Model

8.1. Motivating the U(N) Quantum Link Model

U(N) quantum link models are ideal toy models to study phenomena including spontaneous
breaking of the chiral symmetry in a gauge theory. Due to their finite-dimensional Hilbert
space per link, these models can be quantum simulated by implementing them in ultra-cold
matter in an optical lattice, which is explained in section 8.2. In section 8.3 all operators
appearing in the U(2) quantum link model are constructed explicitly. Results of exact di-
agonalization calculations are presented, which show the spontaneous breaking of the chiral
symmetry even already in (1 + 1) dimensions. These results can be used to validate an imple-
mentation in a quantum simulator.

8.2. Implementation of U(N) Quantum Link Models in an
Optical Lattice

8.2.1. Rishon Representation

For implementing quantum link models in a quantum simulator it turns out to be advantageous
to use the so called rishon representation. This representation is based on the fact that the
quantum link operators can be represented as fermion bi-linears. These fermions are called
rishons. An optical lattice setup can then be used to simulate the dynamics of these rishons,
by studying the fermions evolving on an optical lattice setup.
Rishons are fermions associated with the left and right end of a link. In d dimensions, the

creation ci†x,±k and annihilation operators cix,±k obey the usual anti-commuting relations

{cix,±k, c
j
y,±l} = {ci†x,±k, c

j†
y,±l} = 0, {cix,±k, c

j†
y,±l} = δxyδ±k,±lδij , (8.1)

where i, j ∈ {1, . . . , N} are color indices and k, l label the spacial direction. The quantum link
operators and the link based generators of gauge transformations can be expressed in terms
of these rishon creation and annihilation operators as

Ra
x,x+k̂

= ci†
x+k̂,−k

λaij c
j

x+k̂,−k
, La

x,x+k̂
= ci†x,+k λ

a
ij c

j
x,+k,

Ex,x+k̂ =
1

2

(
ci†
x+k̂,−k

ci
x+k̂,−k − c

i†
x,+k c

i
x,+k

)
, U ij

x,x+k̂
= cix,+k c

j†
x+1,−k. (8.2)



70 Chapter 8. Application I: U(N) Quantum Link Model

This representation fulfills the commutation relations of the quantum link model (7.68) and
(7.73), as it can be checked straightforwardly. Figure 8.1 sketches for example how the quan-
tum link operator Ux,y in one dimension is replaced with the rishons cx,+ and cy,− associated
with the left and right end of the link x, y.

Figure 8.1.: A superlattice with rishon and fermion sites. Quantum link operators U can be
represented in terms of rishon operators c, c†.

The quantum link Hamiltonian can be expressed in terms of the rishons. We leave out the
part with the electric flux operators, since we will not need it in the future to study interesting
dynamics. The fermionic and plaquette part of the Hamiltonian (7.79) then reads

H =− t
∑
〈xy〉

(
sx,yψ

i†
x U

ij
x,yψ

j
y + H.c.

)
+m

∑
x

sxψ
i†
x ψ

i
x −

1

4g2

∑
�

(TrU� + H.c.) (8.3)

=− t
∑

〈x,y=x+k̂〉
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sx,yψ

i†
x c

i
x,+k c

j†
y,−kψ

j
y + H.c.

)
+m

∑
x

sxψ
i†
x ψ

i
x −

1

4g2

∑
�

(TrU� + H.c.) ,

where the plaquette term in the k-l plane can be expressed as

TrU� = U ij
x,x+k̂

U jm
x+k̂,x+k̂+l̂

Unm†
x+l̂,x+k̂+l̂

U in†
x,x+l̂

= (cix,+kc
j†
x+k̂,−k

)(cj
x+k̂,+l

cm†
x+k̂+l̂,−l

)(cm
x+k̂+l̂,−kc

n†
x+l̂,+k

)(cn
x+l̂,−lc

i†
x,+l). (8.4)

Let us study the terms involving rishons in more details. The hopping term, proportional
to t, induces a hop of a fermion from site y to x and simultaneously induces a hop of a
rishon from (x,+k) to (y,−k). This term therefore describes the hopping of different kinds
of fermions, one fermion hopping from y to x, while another one (the rishon) hops from x

to y. The plaquette term, on the other hand, only involves the rishons. On each link at the
boundary of a plaquette it induces a hop of a rishon from one end of the link to the other end
(see figure 8.2).
The hopping of the rishons underlies certain constraints. In particular, the Hamiltonian

(8.3) conserves the total number of rishons per link. We identify the number of rishons on
each link as

Nx,x+k̂ = ci†x,+kc
i
x,+k + ci†

x+k̂,−k
ci
x+k̂,−k (8.5)

and notice that this operator commutes with the Hamiltonian. The number of rishons per link
is fixed by choosing a certain representation of the embedding quantum link algebra su(2N)

(see section 7.5.3). For example, in the fundamental representation, which is 2N -dimensional
(corresponding to a Young tableau with one box), we find one rishon per link. The reason
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Tr(U�)

Figure 8.2.: The plaquette term lets the rishons hop around the plaquette.

for this is that one rishon can be found in one of 2N states: The rishon can have N different
colors and sit either on the left end of the link (at (x,+k)) or on the right end of the link (at
(x + k̂,−k)). For two rishons we find N(2N − 1) possible ways for them to arrange on the
left or right end of the link, corresponding to an N(2N − 1)-dimensional representation of the
quantum link algebra (corresponding to a Young tableau with two vertically aligned boxes).
It turns out that a representation with N = n rishons corresponds to a Young tableau with n
vertically aligned boxes.
In order to study the Gauss law, we represent the generators of gauge transformations in

terms of the rishon operators:

SU(N) : Gax = ψ†ix λ
a
ijψ

j
x +

∑
k

(
La
x,x+k̂

+Ra
x−k̂,x

)
= ψ†ix λ

a
ijψ

j
x +

∑
k

(
ci†x,+kλ

a
ijc

j
x,+k + ci†x,−kλ

a
ijc

j
x,−k

)
,

U(1) : Gx = ψ†ix ψ
i
x +

∑
k

(
Ex−k̂,x − Ex,x+k̂

)
(8.6)

= ψ†ix ψ
i
x +

∑
k

1

2

(
ci†x,−kc

i
x,−k − c

i†
x−k̂,+k

ci
x−k̂,+k − c

i†
x+k̂,−k

ci
x+k̂,−k + ci†x,+kc

i
x,+k

)
.

In order for a state |ψ〉 to be gauge invariant under U(N) gauge transformations, we require
the Gauss law Ga|ψ〉 = 0 and G|ψ〉 = 0. From equation (8.6) we see that the Gauss law for
the SU(N) generators require that at every site x the rishons and the fermions need to form
a color singlet state. The physical meaning of the Gauss law of the U(1) generator is less
obvious. Let us first study the electric flux operator Ex,x+k̂ from equation (8.2). This flux
operator measures the difference of the number of rishons on the right end of the link minus
the number of rishons on the left end of the link. The Gauss law of the U(1) generator requires
that at every site x on both links, the link x − k̂, x and the link x, x + k̂, this difference of
rishons is constant, unless there is a fermion on the site x.
In section 7.5.3 we explained that it is also possible to study SU(N) quantum link models

with no additional U(1) symmetry by introducing the γ-term. This term involves the deter-
minant of the quantum link operator and thus breaks the additional U(1) symmetry. It is
also possible to represent this term using rishons [65]. We will, however, not study this term
in more details.
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8.2.2. Gauge Invariant Operators

In the previous section the Gauss law in the rishon representation was interpreted as a re-
quirement to find color singlet combinations of fermions and rishons at every site x. Since the
Hamiltonian transforms gauge invariant states into other gauge invariant states, it is obvious
to ask whether the Hamiltonian of equation (8.3) itself can also be expressed entirely in terms
of gauge invariant operators. This is indeed possible by defining the following gauge invariant
operators

Qx,±k = ψixc
i†
x,±k, Mx = ψi†x ψ

i
x, Φx,±k,±l = ci†x,±kc

i
x,±l. (8.7)

Q†x,±k (Qx,±k) create (annihilate) fermions, while annihilating (creating) a rishon. Q†x,±k and
Qx,±k are called constituent quark operators. The so-called meson operator Mx counts the
number of fermions at the site x. The glueball operator Φx,±k,±l lets a rishon hop from the
link x, x± l̂ to the link x, x± k̂. This allows us to write the Hamiltonian of equation (8.3) in
terms of the gauge invariant operators

H =− t
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i
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j
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1

4g2
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(TrU� + H.c.) ,
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†
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)
+m

∑
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sxMx −
1

4g2

∑
�

(TrU� + H.c.) , (8.8)

where the plaquette term in the k-l plane can be expressed as

TrU� = (cix,+kc
j†
x+k̂,−k

)(cj
x+k̂,+l

cm†
x+k̂+l̂,−l

)(cm
x+k̂+l̂,−kc

n†
x+l̂,+k

)(cn
x+l̂,−lc

i†
x,+l)

= −Φx,+l,+kΦx+k̂,−k,+lΦx+k̂+l̂,−l,−kΦx+l̂,+k,−l. (8.9)

8.2.3. Symmetry Transformations

The symmetry transformations discussed in section 7.6 can also be implemented on the rishons
and be used to study the transformation properties of the gauge invariant operators.

Spatial Translations Spatial translations just shift the rishons by two lattice spacings in
the k-direction

Tk : Tkcix,+l = ci
x+2k̂,+l

, Tkcix,−l = ci
x+2k̂,−l, (8.10)

which leads to the transformation rules (7.84) and (7.85). This implies that the gauge
invariant operators transform as

Tk : TkQx,±l = Qx+2k̂,±l,
TkMx = Mx+2k̂,

TkΦx,±l,±l′ = Φx+2k̂,±l,±l′ . (8.11)

Charge Conjugation The charge conjugation maps particles to anti-particles, therefore we
transform the rishons as

Ck : Ckcix,+l = ci†
x+k̂,+l

, Ckcix,−l = −ci†
x+k̂,−l

, (8.12)
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which leads to the transformation rules of equation (7.88). Note that by performing
a charge conjugation, we transform to operators to the conjugate representation. For
the rishons this implies that the number of rishons Nx,y does not stay constant, but
transforms as

CkNx,y = 2N −Nx,y. (8.13)

This means that only for a representation with Nx,y = N (N rishons per link), the
operators are transformed to the same representation. This representation corresponds
to a Young tableau of N vertically aligned boxes, which has (2N)!

(N !)2
dimensions.

The gauge invariant operators transform as

Ck : CkQx,±l = ∓(−1)x1+···+xkQ†
x+k̂,±l

, CkMx = N −Mx+k̂,

CkΦx,±l,±l′ = sign(±l) sign(±l′)
(
Nδ±l,±l′ − Φx+k̂,±l′,±l

)
. (8.14)

Parity Transformation The parity transformation inverts all coordinates of the operators
and interchanges the operator on the left end of the link with the ones on the right end.
Therefore the rishons transform as

P : P cix,+l = ci−x,−l,
P cix,−l = ci−x,+l, (8.15)

which leads to the transformation rules of equation (7.90). This implies that the gauge
invariant operators transform as

P : PQx,±l = Q−x,∓l,
PMx = M−x

PΦx,±l,±l′ = Φ−x,∓l,∓l′ . (8.16)

Chiral Transformation A chiral translation shifts the rishons by one lattice spacings in the
k-direction

Sk : Skcix,+l = ci
x+k̂,+l

, Skcix,−l = ci
x+k̂,−l, (8.17)

which leads to the transformation rules of equation (7.92). This implies that the gauge
invariant operators transform as

Sk : SkQx,±l = (−1)xk+1+···xxQx+k̂,±l,
SkMx = Mx+k̂,

SkΦx,±l,±l′ = Φx+k̂,±l,±l′ .

(8.18)
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8.2.4. Microscopic Atomic Hamiltonian

Now we are ready to describe the implementation of the quantum link Hamiltonian with ultra-
cold atoms in an optical lattice setup. The implementation can be realized with a single species
of alkaline-earth atoms (e.g. 87Sr or 173Yb), representing either the rishons or the staggered
fermions, depending on their location in an optical superlattice [68]. We choose alkaline-earth
atoms because they have a large nuclear spin I in which the color degrees of freedom can
be encoded. Due to their large size (compared to the nucleus), the interaction of alkaline-
earth atoms is almost independent of the nuclear spin. This guarantees the color-independent
interactions of fermions and rishons.
The rishon representation allowed us to rewrite the quantum link Hamiltonian as a system

of hopping fermions in equation (8.3). For simplicity, let us restrict ourselves to a system in
(1 + 1) dimensions. Instead of an actual hop of a fermion from x + 1 to x and a hop of the
rishon from (x,+) to (x+1,−) (see figure 8.1), it is more convenient to move the alkaline-earth
atom from x+ 1 to the rishon position (x+ 1,−), while moving another atom from the rishon
position (x,+) to the fermion position x. An optical superlattice guarantees this behavior by
restricting some atoms only to move within the bright part in figure 8.1 and some atoms only
within the darker region.
These dynamics can be described by the following microscopic atomic Hamiltonian:

H̃ = U
∑
x

(Nx,x+1 − n)2 − t̃
∑
x

(
ψi†x c

i
x,+ + ψj†x c

j
x,− + H.c.

)
+m

∑
x

sxψ
i†
x ψ

i
x. (8.19)

The t̃ term allows the hop of a fermion to a rishon position, while the U term keeps the
number of rishons Nx,x+1 on each link constant to n rishons, as long as U is chosen to be
sufficiently large. By identifying t = t̃2/U , we recover the quantum link Hamiltonian in terms
of the rishons of equation (8.3) in (1 + 1) dimensions in second order perturbation theory.
To implement this system in an optical lattice setup one needs only one species of fermions,

which hop between neighboring sites, keeping the total number of rishons per link constant.
Instead of a complicated interaction between the fermionic degrees of freedom (ψ) and the
bosonic degrees of freedom (Ux,y), all the degrees of freedom can be represented by just one
kind of fermions hopping in an optical lattice. The hopping of these fermions is restricted to a
certain range on the lattice. Depending on the position of a fermion, it represents the fermion
ψ or a rishon c (see figure 8.1). In our proposed implementation we use alkaline-earth atoms
(e.g. 87Sr or 173Yb). The color degrees of freedom are encoded in the Zeeman levels of these
atoms, where due to their nuclear spin I, we have an SU(2I+1) symmetry in which the gauge
group SU(N) or U(N) can be embedded.
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8.3. U(2) Quantum Link Model in (1 + 1) Dimensions

8.3.1. Hamiltonian

The quantum link Hamilton in the rishon representation in (1 + 1) dimensions reads

H = −t
∑
x

(
ψi†x c

i
x,+ cj†x+1,−ψ

j
x+1 + H.c.

)
+m

∑
x

(−1)xψi†x ψ
i
x

= −t
∑
x

(
Q†x,+ Qx+1,− + H.c.

)
+m

∑
x

(−1)xMx. (8.20)

Because we are in (1 + 1) dimensions, the plaquette term is absent. Let us quickly review all
ingredients of this Hamiltonian: The term proportional to the hopping parameter t is respon-
sible for the interaction between the fermionic and the gauge degrees of freedom. The gauge
fields are represented in terms of rishons, where ci† and ci are the creation and annihilation
operators of the rishons (see section 8.2.1). They are associated with the left and right end of
a link (see figure 8.1). The operators ψi† and ψi create and annihilate staggered fermions of
color i (see section 7.3.2) and mass m. In section 8.2.2 we have defined the gauge invariant
operators Qx,± = ψixc

i†
x,± and Mx = ψi†x ψix.

To investigate whether this model actually shows interesting physics, we now present some
exact diagonalization results for a (1 + 1)-dimensional system with a U(2) gauge symmetry.
We first show the spontaneous breaking of the chiral symmetry, before we study the evolution
process of a chirally restored hot-spot in real-time.
In the U(2) quantum link model, two fermions can form a bosonic baryon described by the

creation operator εi,jψi†ψj†. This is in contrast to QCD, where three fermions (quarks) build
up a fermionic baryon.
It turns out that, in its original form, the Hamiltonian of equation (8.20) does not break

chiral symmetry spontaneously. It is only possible to induce an explicit breaking for non-zero
masses m 6= 0. To find spontaneously broken chiral symmetry (for m = 0), we extend the
Hamiltonian by a 4-fermi interaction. This can be done by introducing an additional term,
which favors a staggered pattern

H =− t
∑
x

(
Q†x,+ Qx+1,− + H.c.

)
+m

∑
x

(−1)xMx +G
∑
x

(Mx − 1)2. (8.21)

This G-term is invariant under the various symmetries, including the chiral symmetry (see
section 8.2.3). This means that the chiral symmetry is not broken explicitly. Nevertheless,
the G-term with G < 0 disfavors the states |2〉x and |3〉x explicitly. This eventually leads
to a ground state, which can be qualitatively illustrated as a “cartoon-state” |414 . . . 41〉 =

|4〉0|1〉1|4〉2 · · · |4〉L−2|1〉L−1 or a “cartoon-state” |141 . . . 14〉. Both of these states break the
chiral symmetry spontaneously.
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8.3.2. Gauss Law

The physical states |ψ〉 have to be gauge invariant under U(2) gauge transformations, i.e.
Gax|ψ〉 = Gx|ψ〉 = 0 (see section 7.5.3 and 8.2.1). If we work in the fundamental representation
(corresponding to one rishon per link), we see that only four states at each site x are gauge
invariant:

|1〉x =
1√
2

(
c†1x,−c

†2
x,+ − c

†2
x,−c

†1
x,+

)
|0〉x, |2〉x =

1√
2

(
c†2x,−ψ

†1
x − c

†1
x,−ψ

†2
x

)
|0〉x,

|3〉x =
1√
2

(
c†2x,+ψ

†1
x − c

†1
x,+ψ

†2
x

)
|0〉x, |4〉x = ψ†2x ψ

†1
x |0〉x. (8.22)

These states are illustrated in figure 8.3. In state |1〉x, there are two rishons close to the site
x, one on the link to the left and one on the link to the right of the site x. The two rishons
form a color-singlet. In state |2〉x and |3〉x, there is one fermion at the site x and one rishon
on the link to the left (right) of the site x. The fermion and the rishon form a color-singlet.
In state |4〉x two fermions on the site x form a color-singlet.

r
x

|1〉x

c†x,− c†x,+u u r
x

|2〉x

c†x,− ψ†xu e r
x

|3〉x

c†x,+ψ†xe u r
x

|4〉x

ψ†xψ†xee
Figure 8.3.: Illustration of the four different gauge invariant states in a (1 + 1)-dimensional U(2)

quantum link model. The filled circles represent rishons, while the empty circles
represents the fermions (“quarks”). The two objects must be of opposite color in order
to form a color-singlet.

One can use the states {|1〉x, |2〉x, |3〉x, |4〉x} as a basis at each site x. By acting with the
operators Qx,± and Mx on these basis states one obtains

Mx =


0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 2

 , Qx,+ =


0 1 0 0

0 0 0 0

0 0 0
√

2

0 0 0 0

 , Qx,− =


0 0 1 0

0 0 0
√

2

0 0 0 0

0 0 0 0

 . (8.23)

Because we have four possible states at each site x, we might naively expect the dimension
of the Hilbert space to scale as 4L with the number L of lattice sites. However, there is a
reduction of the Hilbert space: since we deal with a representation with just one rishon per
link, the rishon is restricted to be either on the left or on the right end of the link. This
restricts the states of neighboring sites to only two possibilities. For example a state |1〉x
corresponds to two rishons next to the site x. This means that on the link x, x+ 1, the rishon
is on the left side, which forbids the states |1〉x+1 or |2〉x+1 at the site x+1, since both require
the rishon to be on the right side of the link x, x + 1. On the other hand, |1〉x requires the
rishon to be on the right side of the link x − 1, x, which forbids the states |1〉x−1 and |3〉x−1
at the site x− 1.
One can convince oneself that only the following combinations of neighboring states are
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allowed:

|1〉x|3〉x+1, |2〉x|2〉x+1, |3〉x|3〉x+1, |4〉x|2〉x+1,

|1〉x|4〉x+1, |2〉x|1〉x+1, |3〉x|4〉x+1, |4〉x|1〉x+1. (8.24)

This means that for each state only two possible neighboring states are allowed. Therefore
the dimension of the total Hilbert space only scales as 2L.

8.3.3. Spontaneous Chiral Symmetry Breaking

0

1

2

3

-1 -0.5 0 0.5 1

∆
E
/t

=
(E

i
−
E

0
)/
t

p/π

0

2

4

6

8

-1 -0.5 0 0.5 1
p/π

Figure 8.4.: Spectrum of the quantum link Hamiltonian for a system size L = 18 in the chirally
symmetric phase (G/t = 0, left) and a phase, where chiral symmetry is broken spon-
taneously (G/t = −6, right).

Let us study the spectrum of this U(2) quantum link Hamiltonian. As discussed in sec-
tion 7.6.4, in a system in which a discrete Z2 chiral symmetry is broken spontaneously, we
should find an almost degenerate spectrum, as long as the system is in a finite volume. This
means that the spectrum always contains pairs of states, which have almost the same energy.
These pairs of states are related by the spontaneously broken chiral symmetry and the energy
difference ∆E between those two states decreases exponentially with the volume L.
In figure 8.4 we show the spectrum of the quantum link Hamiltonian obtained by exact

diagonalization for L = 18. We plot the energy (in units of the hopping parameter t) of the
lowest few eigenstates against the true momentum p (see section 7.6.1). In order to distinguish
degenerate states, we slightly move the symbols in the plot to the left and to the right in a
staggered fashion. The energy is normalized to be zero for the ground state. In the left plot
(for a zero four fermi-parameter G/t = 0 in units of the hopping parameter t), we do not find
an almost degenerate spectrum, since the different states do not appear in pairs. Already the
first exited state has a non-zero true momentum p. We conclude that, in this case, the chiral
symmetry is not spontaneously broken. On the other hand, in the right plot (for a parameter
G/t = −6), we find a spectrum where the states always appear in pairs. We assume that the
chiral symmetry is broken spontaneously in this case.
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To verify the spontaneous chiral symmetry breaking, we study the scaling behavior of the
energy difference of the two lowest energy states ∆E = E1−E0 as a function of the volume. In
case of a spontaneously broken symmetry, this energy difference should vanish exponentially
with the volume L of the system. In figure 8.5 we show these energy differences for G/t = −6,
which indeed confirms spontaneous chiral symmetry breaking.
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Figure 8.5.: The exponential scaling of the energy difference for G/t = −6 of the almost degenerate
vacua indicates spontaneous chiral symmetry breaking.

The spontaneous chiral symmetry breaking would be interesting to observe in an experi-
mental realization of this model in a quantum simulator. The results can then also be used
to validate the implementation.

8.3.4. Real-Time Evolution

The expansion of a chirally restored hot-spot in a chirally broken background is calculated
in real-time. To do this, we prepare the system in an initial configuration, where the chiral
symmetry is broken everywhere (background vacuum) except at two points (hot-spot, here at
x = 5, 6) where chiral symmetry is restored. To measure the chiral symmetry breaking locally,
we define the chiral condensate as

(ψ̄ψ)x = (−1)x · (1−Mx). (8.25)

It is easy to see that the states |2〉x and |3〉x lead to a vanishing chiral condensate, whereas
the states |1〉x and |4〉x have a non-zero expectation value of the chiral condensate

(ψ̄ψ)x|1〉x = (−1)x|1〉x (ψ̄ψ)x|4〉x = (−1)x+1|4〉x. (8.26)

The hot-spot mimics, for example, the quark-gluon plasma in a heavy-ion collision. In our
example in figure 8.6, we prepare an initial state |ψ0〉 = |141413341414〉. This is done by



8.3. U(2) Quantum Link Model in (1 + 1) Dimensions 79

-0.5

0

0.5

1

0 2 4 6 8 10

(ψ̄
ψ

) x

x

τ = 0

τ = 1

τ = 10

Figure 8.6.: Spatial dependance of the chiral order parameter for various real times τ = 0, 1, 10.
We have chosen m/t = 0.001, G/t = −6 and diagonalized an L = 12 system.

diagonalizing the Hamiltonian of a L = 12 system (using the lowest 100 eigenstates) and
projecting the desired initial state |ψ0〉 onto the eigenstates. After certain time-intervals
(τ = 0, τ = 1, τ = 10, measured in units of the inverse hopping parameter 1/t) we measure
the order parameter of the chiral symmetry breaking, the chiral condensate (ψ̄ψ)x. In the plot
shown in figure 8.6, we see how with increasing time the symmetric phase is spreading out on
the lattice until the system equilibrates in a chirally symmetric phase.
Since we only consider a finite volume, the system can not “cool down” to the chirally

broken vacuum state. Instead it equilibrates in a high-temperature state with vanishing chiral
condensate.
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Chapter 9.

Application II: SO(3) Quantum Link Model

9.1. Motivating the SO(3) Quantum Link Model

After having studied SU(N) and U(N) quantum link models, here we extend our work to an
SO(3) quantum link model [66]. This model is interesting, since it has a global (instead of a
local) U(1) symmetry, which gives rise to a conserved baryon number B. The fermions in this
model transform in the vector representation of SO(3), which means that they are triplets
and can therefore couple to a triplet “gluon” to form a color-neutral “baryon”. Therefore the
“baryons” in this model are fermions as they are in QCD. This is in contrast to the U(2)

quantum link model from the previous chapter, where two fermions coupled to each other to
build a bosonic “baryon”. We can further combine a fermion with an anti-fermion to form a
color-neutral “meson” and a pair of “gluons” can form a “glueball”.
We will introduce two four-fermion coupling parameters G and V for which we investigate

the phase diagram. We search for phases, where chiral symmetry is spontaneously broken. By
introducing a finite baryon density, we can study whether chiral symmetry gets restored.
In other regions of the phase diagram we find a massless phase.
It is also possible to study some aspects of “nuclear” physics by measuring binding energies

at finite baryon densities. For example the lowest states in the baryon number B = 2 or
B = 3 sectors correspond to bound states of “deuterium” or “tritium”. These results will be
published in [69].
This chapter is organized as follows: We first introduce SO(3) quantum link models by

discussing the Hamiltonian and the embedding so(6) algebra in section 9.2. This algebra can
be represented by two spinors per link, which is explained in section 9.3 and works very similar
to the rishon representation for U(N) quantum link models (see section 8.2.1). After that we
present exact diagonalization results for a system in (1 + 1) dimensions in section 9.4.

9.2. Introducing the SO(3) Quantum Link Model

9.2.1. Hamiltonian and Commutation Relations

Let us denote the quantum link operators of SO(3) gauge models as Oabx,y (a, b ∈ {1, 2, 3}).
These are 3×3 matrices, where each element is a Hermitian operator acting in a Hilbert space.
In close analogy to the previous sections, we define the link-based generators of SO(3) gauge
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transformations as Lax,y and Rax,y, which obey

[Rax,y, R
b
x,y] = 2iεabcR

c
x,y, [Lax,y, L

b
x,y] = 2iεabcL

c
x,y, [Rax,y, L

b
x,y] = 0 (9.1)

for operators on the same link, while operators associated with different links commute. They
transform the quantum link operators as

SO(3) : Oabx,y −→ exp
(
−i
(
αa
′
x L

a′
x,y + αa

′
y R

a′
x,y

))
Oabx,y exp

(
i
(
αa
′
x L

a′
x,y + αa

′
y R

a′
x,y

))
=
[
exp
(
iαa

′
x t

a′
)]ac

Ocdx,y
[
exp
(
−iαa′y ta

′)]db
, (9.2)

where tabc = −2iεabc form the 3× 3 matrix representation of the SO(3). From these transfor-
mation rules we can derive the commutation relations (similar to section 7.4.3) as

[Lax,y, O
bc
x,y] = −tabdOdcx,y, [Rax,y, O

bc
x,y] = Obdx,yt

a
dc. (9.3)

It will turn out that, besides the operators Lax,y and Rax,y, also the operators Oabx,y are all
Hermitian.
Let us also add staggered fermions (see section 7.4.6) to the system. The fermion creation

and annihilation operators ψa†x and ψax transform under the SO(3) vector representation

SO(3) : ψax −→
[
exp
(
iαa

′
x t

a′
)]ab

ψbx, ψa†x −→ ψb†x
[
exp
(
−iαa′x ta

′)]ba
. (9.4)

With this we define the SO(3) quantum link model Hamiltonian with staggered fermions

H =− t
∑
x

d∑
k=1

(
sx,x+k̂ψ

†
xOx,x+k̂ψx+k̂ + H.c.

)
+m

∑
x

sxψ
†
xψx

+
g2

2

∑
〈xy〉

(
Lax,yL

a
x,y +Rax,yR

a
x,y

)
− 1

4g2

∑
�

TrO�, (9.5)

where sx = (−1)x1+···+xd and sx,x+k̂ = (−1)x1+···+xk−1 . The trace of the plaquette operator
in the k-l plane is defined as

TrO� = Oab
x,x+k̂

Obc
x+k̂,x+k̂+l̂

Ocd
x+l̂,x+k̂+l̂

Oda
x,x+l̂

. (9.6)

Let us contrast SO(3) quantum link models with the previously discussed U(2) quantum
link model. For the U(2) quantum link model, we found that the link-based generators of
U(2) gauge transformations (the seven generators Lax,y, Rax,y, and Ex,y) and the quantum link
operators U ijx,y and U ij†x,y (corresponding to eight Hermitian operators M ij

x,y and N ij
x,y) generate

the link-based su(4) algebra. As it will turn out, it is possible to embed the six generators of
SO(3) gauge transformations (Lax,y and Rax,y) and the nine quantum link operators Oabx,y in an
so(6) algebra. Even though both embedding algebras are generated by 15 Hermitian operators
and, in fact, so(6) = su(4), the quantum link models are very different. The SO(3) quantum
link operators are for themselves Hermitian operators Oab†x,y = Oabx,y and are generators of the
so(6) algebra as will be explained in the next section.
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9.2.2. Embedding Algebra so(6)

The simplest way to satisfy the commutation relations of equations (9.1) and (9.3) is by embed-
ding the quantum link operators and the link-based generators of SO(3) gauge transformations
in an so(6) algebra. We write down the explicit 6-dimensional vector-representation of the
generators of the so(6) algebra and show that they are exactly the quantum link operators
and the generators of gauge transformations, satisfying the above commutation relations.
The algebra so(6) has 15 Hermitian generators, where 6 generators are the generators of the

subalgebra so(3)⊕ so(3). We identify these operators with Lax,y and Rax,y, which generate the
so(3)L⊕so(3)R subalgebra. In the vector-representation of so(6), we can write these operators
explicitly as

Lax,y =

[
0 0

0 ta

]
, Rax,y =

[
ta 0

0 0

]
, (9.7)

where again tabc = −2iεabc are 3 × 3 matrices generating an so(3) algebra. The remaining 9

Hermitian generators can be written as:

Oabx,y =

[
0 2iD(ab)

−2iD(ba) 0

]
, (9.8)

where D(ab)
cd = δadδbc are 3 × 3 matrices with all elements being zero, except the one in the

column a, row b, which is equal to 1. It is straightforward to show that this representation
satisfies the commutation relations (9.1) and (9.3). Also commutation relations among the
quantum link operators can be derived as

[Oab, Ocd] = −δactebdRe − δbdteacLe. (9.9)

By choosing an irreducible representation of so(6) on each link, the link Hilbert space is
finite-dimensional.

9.2.3. Gauss Law

A general SO(3) gauge transformation can be parametrized by the unitary operator

V =
∏
x

exp (iαaxG
a
x) , (9.10)

where the site-based generators of SO(3) gauge transformations Gax obey

[Gax, G
b
y] = 2iδx,yεabcG

c
x.

Similar to the generators of SU(N) gauge transformations (see section 8.3.2), we define the
generators of SO(3) as

Gax = ψ†bx t
a
bcψ

c
x +

∑
k

(
La
x,x+k̂

+Ra
x−k̂,x

)
. (9.11)
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In this way, the fermion field operators ψax and the quantum link operators Oabx,y transform
correctly under gauge transformations

SO(3) : V †Oabx,yV =
[
exp
(
iαa

′
x t

a′
)]ac

Ocdx,y
[
exp
(
−iαa′y ta

′)]db
, V †ψaxV =

[
exp
(
iαa

′
x t

a′
)]ab

ψbx.

These SO(3) gauge transformations indeed leave the Hamiltonian invariant ([Gax, H] = 0).
The physical states |ψ〉 have to be gauge invariant, which means

Gax|ψ〉 = 0, (9.12)

because then V †|ψ〉 = |ψ〉. This Gauss law requires at every site x that the states on the link
emanating from the site x have to form a color-singlet together with the fermion at the site x.
We will work out the fundamental representation of an SO(3) quantum link Hamiltonian

with fermions and quantum link operators in (1 + 1) dimensions explicitly and discuss all the
gauge invariant states in section 9.4.2.

9.3. Implementation of the SO(3) Quantum Link Model

9.3.1. Spinor Representation

r r
x y

|↑↑〉x,y

- - r r
x y

|↑↓〉x,y

- � r r
x y

|↓↑〉x,y

� - r r
x y

|↓↓〉x,y

� �

Figure 9.1.: Four states of the fundamental representation of the embedding so(6) algebra, repre-
sented in terms of two spin- 12 objects at the left and at the right end of the link.

When studying U(N) or SU(N) quantum link models, we realized that the embedding
su(2N) algebra can be represented as a bi-linear of fermionic rishon operators, associated with
the left and the right end of the link (see section 8.2.1). In a similar way, the embedding su(6)

algebra of SO(3) quantum link models can be represented by a bi-linear of spin operators. We
can associate spin operators with the left and the right end of the link x, x+ k̂ and identify

Oab
x,x+k̂

= σax,+k ⊗ σbx+k̂,−k, La
x,x+k̂

= σax,+k ⊗ 1, Ra
x,x+k̂

= 1⊗ σa
x+k̂,−k. (9.13)

which indeed satisfy the equations (9.1), (9.3), and (9.9). This is the fundamental representa-
tion of so(6), which is 4-dimensional. Choosing the basis, in which σ3 is a diagonal operator,
we can identify the four basis states per link as {|↑↑〉x,y, |↑↓〉x,y, |↓↑〉x,y, |↓↓〉x,y} as illustrated
in figure 9.1.
From now on we omit the tensor product sign ⊗.
The quantum link Hamiltonian can be expressed in terms of the spin operators. We leave

out the part with the operator
∑

a L
aLa + RaRa, since in the fundamental representation it

is proportional to the unit matrix. The fermionic and plaquette part of the Hamiltonian (9.5)
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then reads

H =− t
∑
〈xy〉

(
sx,yψ

a†
x O

ab
x,yψ

b
y + H.c.

)
+m

∑
x

sxψ
a†
x ψ

a
x −

1

4g2

∑
�

TrO�, (9.14)

=− t
∑

〈x,y=x+k̂〉

(
sx,yψ

a†
x σ

a
x,+k σ

b
y,−kψ

b
y + H.c.

)
+m

∑
x

sxψ
a†
x ψ

a
x −

1

4g2

∑
�

TrO�,

where the plaquette term in the k-l plane can be expressed as

TrO� = Oab
x,x+k̂

Obc
x+k̂,x+k̂+l̂

Ocd
x+l̂,x+k̂+l̂

Oda
x,x+l̂

= (σax,+kσ
b
x+k̂,−k)(σ

b
x+k̂,+l

σc
x+k̂+l̂,−l)(σ

c
x+k̂+l̂,−kσ

d
x+l̂,+k

)(σd
x+l̂,−lσ

a
x,+l). (9.15)

The Gauss law (Gax|ψ〉 = 0) requires that the 2d spin states, which touch the site x, form a
singlet together with the fermion at the site x.

9.3.2. Gauge Invariant Operators

As for U(N) quantum link models, it is also possible to express the Hamiltonian of the SO(3)

quantum link model entirely in terms of gauge invariant operators. For this purpose we define
the following operators

Bx,±k = ψaxσ
a
x,±k, Mx = ψa†x ψ

a
x, Φx,±k,±l = σax,±kσ

a
x,±l. (9.16)

Because both, the “quarks” (i.e. the adjoint fermions ψax) and the “gluons” (σax,±k) are color-
triplets, they can form a color neutral “baryon” state. The operators B†x,±k and Bx,±k can
be understood as “baryon” creation and annihilation operators. The operator Mx counts the
number of fermions at the site x. The operator

B =
∑
x

(
Mx −

3

2

)
(9.17)

counts the total number of baryons in the system. Since the baryon number is a conserved
quantity, it commutes with the Hamiltonian ([B,H] = 0) and the system can be diagonalized
in each “baryon” sector individually. Φx,±k,±l is known as the glueball operator. This allows
us to write the Hamiltonian (9.14) in terms of the gauge invariant operators

H =− t
∑

〈x,y=x+k̂〉

(
sx,yψ

a†
x σ

a
x,+k σ

b
y,−kψ

b
y + H.c.

)
+m

∑
x

sxψ
a†
x ψ

a
x −

1

4g2

∑
�

TrO�

=− t
∑

〈x,y=x+k̂〉

(
sx,yB

†
x,+k By,−k + H.c.

)
+m

∑
x

sxMx −
1

4g2

∑
�

TrO�, (9.18)

where the plaquette term in the k-l plane can be expressed as

TrO� = (σax,+kσ
b
x+k̂,−k)(σ

b
x+k̂,+l

σc
x+k̂+l̂,−l)(σ

c
x+k̂+l̂,−kσ

d
x+l̂,+k

)(σd
x+l̂,−lσ

a
x,+l)

= Φx,+l,+kΦx+k̂,−k,+lΦx+k̂+l̂,−l,−kΦx+l̂,+k,−l. (9.19)
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The commutation relations among the different gauge invariant operators are

[Mx,My] = 0, [Bx,±k,My] = δxyBx,±k,

{Bx,±k, By,±l} = δxyδ±k,±l 2iεabc ψ
a
x ψ

b
x σ

c
x,±k, (9.20)

{B†x,±k, By,±l} = δxy

[
2iδ±k,±lεabc ψ

a†
x ψbx σ

c
x,±k + Φx,±k,±l

]
.

Note that Φx,±k,±k = 3 · 1.

9.3.3. Symmetry Transformations

The symmetry transformations have been discussed for U(N) quantum link models in section
7.6 and in section 8.2.3. In this section we work out the symmetries of SO(3) quantum link
models and study the transformation properties of the various operators.

Spatial Translations Spatial translations shift the whole system by two lattice spacings in
the k-direction:

Tk : TkOx,y = Ox+2k̂,y+2k̂,
Tkψx = ψx+2k̂,

TkLax,y = La
x+2k̂,y+2k̂

, TkRax,y = Ra
x+2k̂,y+2k̂

, Tkσax,±l = σa
x+2k̂,±l, (9.21)

TkBx,±l = Bx+2k̂,±l,
TkMx = Mx+2k̂,

TkΦx,±l,±l′ = Φx+2k̂,±l,±l′ .

This transformation is a symmetry of the Hamiltonian and leads to the conservation of
the true momentum pk. This symmetry can be used to prediagonalize the Hamiltonian
with respect to the true momentum pk and calculate the spectrum for each momentum
sector individually (see section 9.4.4).

Charge Conjugation Besides shifting the system by one lattice spacing in the k-direction,
the charge conjugation maps particles to anti-particles and performs a special gauge
transformation, which is constant in space and can be characterized by the gauge trans-
formation matrix

C =

−1

1

−1

 . (9.22)

In the fundamental representation, the operators of the quantum link model transform
as

Ck : CkOabx,y = CacOcd
x+k̂,y+k̂

Cdb = Oab∗
x+k̂,y+k̂

, Ckψax = (−1)x1+···+xkCabψb†
x+k̂

,

CkLax,y = CabLb
x+k̂,y+k̂

= −La∗
x+k̂,y+k̂

, CkRax,y = CabRb
x+k̂,y+k̂

= −Ra∗
x+k̂,y+k̂

,

Ckσax,±l = Cabσb
x+k̂,±l = σa∗

x+k̂,±l,
CkMx = 3−Mx+k̂, (9.23)

CkBx,±l = (−1)x1+···+xkB†
x+k̂,±l

, CkΦx,±l,±l′ = Φx+k̂,±l′,±l.

Note that the hopping term in the Hamiltonian (9.5) transforms to its Hermitian conju-
gate. On the first sight it might seem unnatural to transform the different gauge compo-
nents of the fermions. However, this is what happens for fermions in the adjoint represen-
tation also in the continuum. Note further that the quantum link operators Oabx,y and the
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electric flux operators Lax,y and Rax,y actually undergo a unitary (orthogonal) transforma-
tion. In the fundamental representation with the basis {|↑↑〉x,y, |↑↓〉x,y, |↓↑〉x,y, |↓↓〉x,y},
we obtain
CkOabx,y = WCO

ab
x+k̂,y+k̂

W †C ,
CkLax,y = WCL

a
x+k̂,y+k̂

W †C ,
CkRax,y = WCR

a
x+k̂,y+k̂

W †C ,

(9.24)

where

WC = (iσ2)⊗ (iσ2) =


1

−1

−1

1

 . (9.25)

This means that the representation of the link operators did not change under the charge
conjugation. This implies that the charge conjugation is a symmetry of the Hamiltonian
in the fundamental representation. This is in contrast to U(N) quantum link models,
where for example among the rishon representations, only the one with Nx,y = N rishons
per link was invariant.

One can check that the total number of baryons is transformed to
CkB = −B. (9.26)

This implies that the spectrum is the same for baryon number B and −B.

Parity Transformation The parity transformation inverts all coordinates of the operators
and interchanges the operators on the left end of the link with the ones on the right end.
Therefore the operators transform as

P : POabx,y = Oba−y,−x,
Pψax = ψa−x,

PLax,y = Ra−y,−x,
PRax,y = La−y,−x,

Pσax,±l = σa−x,∓l, (9.27)
PBx,±l = B−x,∓l,

PMx = M−x,
PΦx,±l,±l′ = Φ−x,∓l,∓l′ .

This transformation is a symmetry of the Hamiltonian. Note that the hopping term
transforms to its Hermitian conjugate.

Chiral Transformation As for U(N) quantum link models (see section 7.6.4), the chiral
transformation is a Z2 symmetry. The chiral transformation corresponds to a shift of
the whole system by one lattice spacings in the k-direction. Consecutive shifts of one
lattice spacing in an even number of directions corresponds to a flavor symmetry. The
translation by one lattice spacing is defined as

Sk : SkOabx,y = Oab
x+k̂,y+k̂

, Skψax = (−1)xk+1+···+xdψa
x+k̂

, (9.28)
SkLax,y = La

x+k̂,y+k̂
, SkRax,y = Ra

x+k̂,y+k̂
, Skσax,±l = σa

x+k̂,±l,

SkMx = Mx+k̂,
SkBx,±l = (−1)xk+1+···xxBx+k̂,±l,

SkΦx,±l,±l′ = Φx+k̂,±l,±l′ .

For a non-zero mass m, the chiral symmetry is explicitly broken. The flavor symmetry
is, however, always a symmetry of the Hamiltonian. For the massless case, m = 0, we
associate a fake momentum with each energy eigenstate (see section 7.6.4).
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9.4. SO(3) Quantum Link Model in (1 + 1) Dimensions

9.4.1. Hamiltonian

Let us write down the quantum link Hamilton in (1 + 1) dimensions

H =− t
∑
x

(
ψa†x σ

a
x,+ σbx+1,−ψ

b
x+1 + H.c.

)
+m

∑
x

(−1)xψa†x ψ
a
x

= −t
∑
x

(
B†x,+ Bx+1,− + H.c.

)
+m

∑
x

(−1)xMx. (9.29)

Because we are in (1 + 1) dimensions, the plaquette term is absent. Let us quickly review
all ingredients of this Hamiltonian: The term proportional to the hopping parameter t is
responsible for the interaction between the fermionic (ψa) and the gauge degrees of freedom
(represented by spin operators σa), which are associated with the left and right end of a link
(see section 9.3.1). The operators ψa† and ψa are the creation and annihilation operators of
staggered fermions in the adjoint representation with a color index a (see section 7.3.2) and
mass m. In section 9.3.2 we have defined the gauge invariant operators Bx,± = ψaxσ

a
a,± and

Mx = ψa†x ψax.
To investigate whether this model actually shows interesting physics, we now present some

exact diagonalization results for a (1+1)-dimensional system with an SO(3) gauge symmetry.
It turns out, that in its original form, the Hamiltonian of equation (9.29) does not break chiral
symmetry spontaneously. It is only possible to introduce an explicit breaking for non-zero
masses m 6= 0. To obtain spontaneously broken chiral symmetry (for m = 0), we extend
the Hamiltonian. This can be done by introducing additional terms, which favor a staggered
pattern

H =− t
∑
x

(
B†x,+ Bx+1,− + H.c.

)
+m

∑
x

(−1)xMx

+G
∑
x

(
Mx − 3

2

)2
+ V

∑
x

(
Mx − 3

2

) (
Mx+1 − 3

2

)
. (9.30)

The two additional terms (the G-term and the V -term) are invariant under the various
symmetries including the chiral symmetry (see section 9.3.3). This means that chiral symmetry
is not broken explicitly. Nevertheless, the G-term with G < 0 disfavors the states |2〉x and
|3〉x. The V -term with V > 0, on the other hand, explicitly favors a staggered pattern. For
example, the combinations of neighboring sites |4〉x|1〉x+1 or |1〉x|4〉x+1 are favored over states
|2〉x|3〉x+1 or |3〉x|3〉x+1 and even more favored over states like |4〉x|4〉x+1.
Both of these terms eventually lead to a ground state, which can be qualitatively illus-

trated of as a “cartoon-state” |414 . . . 41〉 = |4〉0|1〉1|4〉2 · · · |4〉L−2|1〉L−1 or a “cartoon-state”
|141 . . . 14〉. Both of these ground states break the chiral symmetry spontaneously.
In the following we will investigate the G-V phase diagram and search for phases with

spontaneous broken chiral symmetry as well as for massless phases.
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9.4.2. Gauss Law

The Hilbert space is a direct product space of a fermionic and a gauge part. The fermionic part
can be characterized by the number of “baryons” bx per site x. In this basis the operatorMx is
diagonal and counts the number of “baryons” (Mx|bx〉x = bx|bx〉x), while the operators ψa†x and
ψax raise and lower these numbers. When we work in the fundamental spinor-representation
of the quantum link operators, the gauge part consists of two spins per site x, one on the left
and one on the right side of x (denoted for example as |↑↓〉x). The spin operators act on these
states, for example, as

σ3x,−|↑↓〉x = +|↑↓〉x, σ3x,+|↑↓〉x = −|↑↓〉x. (9.31)

The physical states |ψ〉 have to be invariant under SO(3) gauge transformations, i.e.Ga|ψ〉 =

0 (see section 9.2.3). It will turn out that (up to a phase) there are only four possible gauge
invariant states at each site x. These states are characterized by the number of “baryons”
at this site. For example, a state with zero baryons (bx = 0) requires the two spins to form
a singlet, which is possible only in one way: 1√

2
(|↑↓〉 − |↓↑〉). For a state with one baryon,

we find that the two spins have to form a color triplet, which then couples with the triplet
fermion to form a total color singlet, which is only possible in one way. Also the states with
two and three fermions are built in a unique way, which are exactly:

|bx = 0〉x =
1√
2

(|↑↓〉 − |↓↑〉) |0〉x

|bx = 1〉x =
1√
6

[
(|↓↓〉 − |↑↑)ψ1† + i (|↓↓〉+ |↑↑〉)ψ2† + (|↑↓〉+ |↓↑〉)ψ3†

]
|0〉x (9.32)

|bx = 2〉x =
i√
6

[
(|↑↓〉+ |↓↑〉)ψ1†ψ2† + (|↓↓〉 − |↑↑)ψ2†ψ3† + i (|↓↓〉+ |↑↑〉)ψ3†ψ1†

]
|0〉x

|bx = 3〉x =
i√
2

(|↑↓〉 − |↓↑〉)ψ1†ψ2†ψ3†|0〉x

We use the states {|0〉x, |1〉x, |2〉x, |3〉x} as a basis at each site x. By acting with the operators
Bx,±,Mx on the basis states one obtains

Mx =


0 0 0 0

0 1 0 0

0 0 2 0

0 0 0 3

 , Bx,+ =


0
√

3 0 0

0 0 2 0

0 0 0
√

3

0 0 0 0

 , Bx,− =


0 −

√
3 0 0

0 0 2 0

0 0 0 −
√

3

0 0 0 0

 .
(9.33)

Because we have four possible states at each site x, we expect the dimension of the Hilbert
space to scale as 4L with the number L of lattice sites. However, we will use certain symmetries
to prediagonalize the Hamiltonian, which reduces the dimension of the Hilbert space (see
section 9.4.4). For example, we will fix the total number of baryons B and diagonalize each
sector individually. This is possible because [B,H] = 0.
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9.4.3. Boundary Conditions

It turns out that, in order to observe least perturbed physical spectra, it helps to choose
adequate boundary conditions for the fermion operators in the spatial direction. We use
periodic boundary conditions if L/2+B = odd and antiperiodic boundary conditions if L/2+

B = even, where B is the baryon number as defined in equation (9.17) and L is the number
of lattice sites in the spatial direction. Antiperiodic boundary conditions have consequences
for the hopping terms and the symmetry transformations.
The hopping term in the Hamiltonian, which reads −t

∑
x(B†x,+ Bx+1,− + B†x+1,− Bx,+)

acquires some negative signs in the sum when using antiperiodic boundary conditions. The
terms that reach over the boundary, will change sign as

−t
(
B†L−1,+ BL,− +B†L,− BL−1,+

)
= +t

(
B†L−1,+ B0,− +B†0,− BL−1,+

)
. (9.34)

In a similar way, after a symmetry transformation, which shifts the system by one or two
lattice spacings, physical states acquire additional negative signs, when operators get shifted
over the boundary.

9.4.4. Prediagonalizing the Hamiltonian

In order to reduce the dimension of the Hilbert space, we use certain symmetries to predi-
agonalize the system. One of these symmetries is the global U(1) baryon number symmetry,
which leads to the conservation of the total number of baryons

B =
∑
x

(
Mx −

3

2

)
, (9.35)

with [B,H] = 0. This implies that we can choose a sub-basis of the Hilbert space including
only states with a fixed total number of baryons and diagonalize the Hamiltonian only in this
sector. The Hamiltonian can be diagonalized independently in each of these baryon number
sectors. For example, if we choose the total baryon number to be B = 0 in an L = 4 system, we
only have the basis states |0033〉, |0132〉, |0123〉, |0231〉, |0222〉, |0213〉, |0330〉, . . . On the other
hand, if, for example, B = 1, we have |0133〉, |0232〉, |0223〉, |0331〉, |0322〉, |0313〉, |1033〉, . . .
In the (1+1)-dimensional U(2) quantum link model, we were able to diagonalize the Hamil-

tonian up to a system size of L = 18, thanks to the 2L scaling of the dimension of the Hilbert
space. In the (1 + 1)-dimensional SO(3) quantum link model, the dimension of the Hilbert
space scales as 4L with the system size, which poses a great challenge. Even when prediag-
onalizing the Hamiltonian in the different baryon sectors, we only reach systems sizes up to
L = 12.
In order to reach larger spatial volumes (L = 14, 16), we prediagonalized the Hamiltonian

with respect to the true momentum p, which has been defined in section 7.6.1. In order to
do so, we search for a basis, in which all states are eigenstates of the translation operations
(by two lattice spacings) and all have the same true momentum p. This can be achieved by
applying the following procedure: Some states are already a translation eigenstate with the
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required momentum T |ψ0〉 = exp(ip)|ψ0〉. If a state is not an eigenstate of the translation
operator, it is transformed back to the original state after n ≤ L/2 consecutive translations

T |ψ0〉 = |ψ1〉, T |ψ1〉 = |ψ2〉, . . . , T |ψn−1〉 = |ψn〉 = |ψ0〉 =⇒ Tn|ψ0〉 = |ψ0〉. (9.36)

Based on this, we can construct an eigenstate of the translation operator with momentum p

as

|ψ′p〉 =
1√
n

n−1∑
l=0

exp(−ipl)T l|ψ0〉 =⇒ T |ψ′p〉 = exp(ip)|ψ′p〉. (9.37)

All the other states are not included in this basis. For our purpose, we only choose p = 0. This
may seem as a severe restriction, but, in fact, it is not. We are only interested in large system
sizes L, when investigating the spontaneous breaking of the chiral symmetry by studying
whether there is an “almost degenerate” ground state. Both of these vacua are expected to
have a zero true momentum p = 0.

9.4.5. Spontaneous Chiral Symmetry Breaking

In section 8.3.3, we have studied spontaneous chiral symmetry breaking in the U(2) quantum
link model. In this section we perform a similar study for the SO(3) quantum link model by
searching for spectra, where the ground state is almost degenerate. This means that the two
lowest states in the spectrum are very close to each other and their energy difference scales as

∆E = E1 − E0 ∼ exp(−αL), (9.38)

with the system size L, and they both have momentum p = 0.
In figure 9.2 we show the spectrum of the quantum link Hamiltonian for L = 12. We plot

the energy (in units of the hopping parameter t) of the lowest few eigenstates against the true
momentum p (see section 7.6.1). In order to distinguish degenerate states, we slightly move
the symbols in the plot to the left and to the right in a staggered fashion. The energy is
normalized to be zero for the ground state in the zero baryon number sector (B = 0).
The upper two plots show spectra in the sector with baryon number B = 0. In the left

plot (for a parameter G/t = −4) we find an almost degenerate spectrum. This suggests that
we are in a phase, where the chiral symmetry is broken spontaneously. In the right plot we
increased the parameter G to (G/t = −3) and we do not find an almost degenerate spectrum
any more. We conclude that in this phase the chiral symmetry is no longer spontaneously
broken. The state which was almost degenerate with the vacuum before, has now moved to
higher energies. When we further increase the parameter G, this state goes even higher and
we ultimately reach the spectrum, which corresponds to the one of a massless particle (see
next section).
The two lower plots in figure 9.2 show the spectrum for a finite baryon density ρB = B/L =

1/4. Here, we have B = 3 baryons in a system of size L = 12. The energy difference ∆E

is measured with respect to the ground state of the zero baryon number sector B = 0. The
left plot again shows the spectrum at G/t = −4. We see that the spectrum is not degenerate
any more, which implies that the chiral symmetry got restored at the finite baryon density.
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Figure 9.2.: Spectra of the SO(3) quantum link Hamiltonian for system size L = 12. On the top,
we find spectra for the baryon number zero sector B = 0. In the top left plot we find
that chiral symmetry is spontaneously broken (G/t = −4, V/t = 0) and in the top
right plot it is restored (G/t = −3, V/t = 0). The two lower plots show spectra in the
sector with B = 3 baryons. In the left we do not find spontaneous breaking of chiral
symmetry (G/t = −4, V/t = 0), but in the right plot we do (G/t = 4, V/t = 8).

On the other hand, there are also regions in the phase diagram, where chiral symmetry is
spontaneously broken even at finite baryon density. This is shown in the plot on the right
hand side, where we have incorporated the V term (G/t = 4, V/t = 8).
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To verify spontaneous chiral symmetry breaking, we study the scaling behavior of the energy
difference of the two lowest states ∆E = E1 − E0 as a function of the volume. In case of
spontaneous symmetry breaking, this energy difference vanishes exponentially with the volume
L of the system. In figure 9.3 we show these energy differences for G/t = 2, V/t = 6. The
exponential fall-off is obvious in the sector of zero baryons, which indeed confirms spontaneous
chiral symmetry breaking. Also as we switch on a finite baryon density ρB = 1/4 the three
points at L = 8, 12, 16 indicate an exponential fall-off. For ρB = 1/2 this scaling is lost and
we conclude that chiral symmetry is restored at this finite baryon density.
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)/
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Figure 9.3.: The exponential scaling of the energy difference for G/t = 2, V/t = 6 of the almost
degenerate vacua indicates the chiral symmetry breaking for zero baryon density ρB =

0. Chiral symmetry is restored for non-zero baryon densities.

We searched for spontaneous chiral symmetry breaking systematically in the whole G-
V phase diagram and checked whether the symmetry gets restored at finite baryon density
ρB = B/L. This is done by fitting the logarithm of the energy difference ∆E of the two lowest
states (with p = 0) with a linear function

log (∆E) = a · L+ b (9.39)

for L ≥ 6. The fit is done by minimizing the sum of the squares of the deviations to the
measurements

∑
L δ

2
L. We say that we find a broken chiral symmetry if this linear fit works

fine. A fine fit requires the deviations to the measurements δL to be small compared to the
whole range of values R = maxL(log(∆EL)) − minL(log(∆EL)). It turned out that it is
optimal to choose the fit limit to be

max
L

δL/R < 0.035. (9.40)

In addition we require the fit to be steep in order not to include a flat scaling with the volume
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as we found it, for example, for ρB = 1/2 in figure 9.3. A minimal value of the slope of

|a| > 0.2 (9.41)

turns out to be sufficient.
Figure 9.4 shows the phase diagram in the zero baryon number sector B = 0. In the green

region, we find an exponential scaling of the energy difference ∆E with the volume L of the
system. All spectra in this phase look qualitatively like the spectrum in figure 9.2 on the top
left. We conclude that in the green region, chiral symmetry is broken spontaneously. This is
just the region, where we expected the chiral symmetry to break spontaneously (for G < 0

and/or V > 0, see section 9.4.1). In the white region, we do not find an exponential scaling
and thus conclude that in this region chiral symmetry is not spontaneously broken.
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Figure 9.4.: G-V phase diagram of the quantum link Hamiltonian in the zero baryon number sector
(B = 0) extracted from system sizes L = 2 to L = 16. In the green region we find a
spontaneously broken chiral symmetry, while in the white region chiral symmetry is
not broken.
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In Figure 9.5 we present the same analysis at a finite baryon density ρB = 1/4 and ρB = 1/2.
We see that only a small fraction of the chirally broken phase remains. This means that, in
most regions of the phase diagram, chiral symmetry gets restored at finite baryon density ρB.
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Figure 9.5.: G-V phase diagram of the quantum link Hamiltonian for finite baryon densities ρB =

1/4 (top) and ρB = 1/2 (bottom) extracted from system sizes L = 2 to L = 16. In
the green region we find a spontaneously broken chiral symmetry, while in the white
region chiral symmetry is not broken.
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9.4.6. Massless Phase

The spectrum of a massless particle is characterized by a linear relation between the energy
E and the momentum p

E(p) = cp, (9.42)

where c is the “speed of light” (in appropriate units). In figure 9.6, we illustrate such a
dispersion relation for the four-Fermi parameters G/t = 2, V/t = −1. It is remarkable that
the linear behavior extends throughout the whole Brillouin zone and it does not flatten out
for p ≈ π.
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Figure 9.6.: Spectrum of the SO(3) quantum link Hamiltonian for system size L = 12 in the baryon
number zero sector B = 0. We find the spectrum of a massless particle for parameters
G/t = 2, V/t = −1.
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We search for massless phases in the G-V phase diagram by trying to fit linear functions
to the dispersion relations. The result is shown in figure 9.7. In the yellow and the brown
region we find spectra with a linear energy-momentum dispersion relation for all system sizes
between L = 6 and L = 12. For each system size L we obtain the “speed of light” c as a fit
parameter. This parameter should be more or less constant and not depend on the system size
L. This is the case in the brown region, where the speed of light does not vary more than 5%

for different system sizes L. This means that in the brown region we find a massless phase.
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Figure 9.7.: G-V phase diagram of the quantum link Hamiltonian in the zero baryon number sector
(B = 0) extracted from system sizes L = 6 to L = 12. In the yellow and the brown
region we find a linear dispersion relation. In the brown region the estimated “speed
of light” c is almost independent of system size L, indicating a massless phase. In the
white region, there are no linear dispersion relations.
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Chapter 10.

Conclusions and Outlook

In this thesis we investigated quantum link models in many details. These models are an
extension of the Hamiltonian formulation of ordinary Wilson lattice gauge theory. The aim is
to study non-perturbative effects, which also show up in QCD and can not be simulated on a
classical computer. For example, we studied the spontaneous breaking of the chiral symmetry
and its restoration at finite baryon density. The real-time evolution of a chirally restored
hot-spot in a vacuum has also been calculated.
These studies are a preparatory work to motivate experiments in the field of quantum simu-

lations. The quantum link formalism allowed us to suggest a possible implementation of lattice
gauge theories in ultra-cold atomic gases in an optical lattice setup. Exact diagonalization
results confirmed that these models indeed show interesting physics. The results also allow to
validate a future experimental realization.
We have started with an introduction in lattice field theory and motivated Wilson’s ap-

proach as a regulator of QCD. After rewriting and discussing this theory in the Hamiltonian
formulation, we showed how to extend it to quantum link models. This was done by choosing
a finite-dimensional Hilbert space, while giving up the commutativity of the elements of the
link variables. We assigned a Hermitian operator to each matrix element of the link variables.
These so-called quantum link operators act in an alternative Hilbert space.
We have presented an explicit construction of quantum simulators for U(N) or SU(N)

gauge theories using an ultra-cold gas of alkaline-earth atoms in an optical lattice setup. This
is realized by using quantum link operators coupled to staggered fermions. The rishon repre-
sentation allowed us to rewrite the Hamiltonian in a Hubbard-like form, with only fermions
hopping on the lattice. This is then used for the implementation in a quantum simulator. We
presented exact diagonalization results for a (1 + 1)-d U(2) quantum link model. Already in a
simple model like this, we were able to demonstrate non-trivial physics including the real-time
dynamics of a chirally restored hot-spot.
We further studied a quantum link model with an SO(3) gauge symmetry. This model has

a conserved baryon number and thus allows to simulate a system at finite baryon density. The
spinor representation allowed to represent the Hilbert space in a pictorial form and will also
help to implement this model in a quantum simulator. We investigated the phase diagram of
this model by searching for a spontaneously broken chiral symmetry at different parameters.
This was done at zero and non-zero baryon density. We observed that chiral symmetry got
restored at finite baryon density in most parts of the phase diagram. We also found a massless
phase.
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In the future, we plan to further extend these models towards QCD, which requires to
incorporate the SU(3) gauge group, multi-component Dirac fermions, and higher dimensions,
which needs to be done in several steps. It would also be interesting to simulate phenomena
like baryon superfluidity, color superconductivity at high densities. A long-term goal is to
quantum simulate full QCD in real-time and simulate systems at large baryon density or the
real-time evolution of a heavy-ion collision for example. This requires a dimensional reduction
of a (4 + 1)d quantum link model to (3 + 1) dimensional QCD [65].
Of course it is a long way to reach this ultimate goal, so this work should be seen as a first

step in this direction. Regarding the interesting results, we hope to encourage experimentalists
to realize one of these models in a laboratory.
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Appendix A.

Commutation Relations of the Embedding
Algebra su(2N)

The algebra su(2N) has (2N)2 − 1 Hermitian generators, with 2(N2 − 1) of them generating
of the subalgebra su(N) ⊕ su(N). We identify these operators with Lax,y and Rax,y, which
generate the su(N)L ⊕ su(N)R subalgebra. In the fundamental representation of su(2N), we
express these operators explicitly as

Lax,y =

[
0 0

0 λa

]
, Rax,y =

[
λa 0

0 0

]
, (A.1)

where λa are the N ×N generators of su(N). The remaining 2N2 + 1 generators are written
as

M ij
x,y =

[
0 D(ij)

D(ji) 0

]
, N ij

x,y =

[
0 −iD(ij)

iD(ji) 0

]
, Ex,y =

1

2

[
1 0

0 −1

]
, (A.2)

where D(ij)
kl = δilδjk are N ×N matrices with all elements being zero, except the one in the

column i, row j, which is equal to 1.
The commutation relations among the generators are

[La, Lb] = 2ifabcLc, [Ra, Rb] = 2ifabcRc, [Ra, Lb] = 0,

[La, E] = 0, [Ra, E] = 0,

[M ij , E] = −iN ij , [N ij , E] = iM ij ,

[M ij ,Mkl] = [N ij , Nkl] = −i
(
δikIm(λajl)R

a + δjlIm(λaik)L
a
)
,

[M ij , Nkl] = i
(
4
N δikδjlE + δikRe(λajl)R

a − δjlRe(λaik)La
)
, (A.3)

[M ij , La] = i
N∑
k=1

(
Re(λaik)N

kj + Im(λaik)M
kj
)
,

[N ij , La] = −i
N∑
k=1

(
Re(λaik)M

kj − Im(λaik)N
kj
)
,

[M ij , Ra] = −i
N∑
k=1

(
Re(λakj)N

ik + Im(λakj)M
ik
)
,

[N ij , Ra] = i
N∑
k=1

(
Re(λakj)M

ik − Im(λakj)N
ik
)
.
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Using the Hermitian generators of su(2N), we represent the quantum link operators as [65]

U ijx,y = M ij
x,y + iN ij

x,y, U ij†x,y = M ij
x,y − iN ij

x,y, (A.4)

which are written in the fundamental representation of su(2N) as

U ijx,y =

[
0 2D(ij)

0 0

]
, U ij†x,y =

[
0 0

2D(ji) 0

]
.

Using equation (A.3), it is straightforward to show that this representation of the quantum
link operators satisfies the commutation relations (7.68) and (7.69). Also the commutation
relations among the quantum link operators can be derived as

[U ij , Ukl†] = 2( 4
N δikδjlE + δikλ

a
ljR

a − δjlλaikLa), [U †ij , Ukl†] = [U ij , Ukl] = 0. (A.5)
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