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Abstract

We explore the two-dimensional CP(N − 1) model in the limit N → ∞. In order to do this,
the D-theory formalism is employed. D-theory allows us to formulate the two-dimensional
CP(N − 1) model at zero vacuum angle through a ferromagnetic SU(N) quantum Heisenberg
model on a (2 + 1)-dimensional lattice with a Euclidean extra dimension. We confirm, that this
formalism works in the large N limit. We work towards an analytic description of the CP(N−1)
model at large N by using clusters of spins in the SU(N) lattice model. On a lattice with two
sites a phase transition that originates form an infinite number of spin-flavors is discovered.
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1. Introduction

The (1 + 1)-dimensional CP(N − 1) model, like other two-dimensional non-linear σ models,
displays a series of interesting similarities to the Yang-Mills theories in (3 + 1) dimensions.
This makes them very attractive toy models for quantum chromodynamics (QCD). As part of
the standard model, QCD, an SU(3) non-abelian gauge theory, describes the strong interaction
between quarks mediated by gluons. While we are unable to solve QCD analytically, there are
a number of methods that are used to produce accurate predictions. Due to the asymptotic free-
dom of QCD we can apply perturbation theory only at high energies. At low energies the theory
becomes non-perturbative. In this low-energy regime, chiral perturbation theory (ChPT) can be
used to describe QCD using hadrons as the degrees of freedom. Non-perturbative effects are
often investigated using lattice QCD. Another approach is the large N expansion, also known
as the 1/N -expansion, in which properties of the theory are expressed perturbatively in powers
of the small parameter 1/N . Despite the number of colors in QCD being NC = 3, the method
has been successfully used to produce new insights, such as the Witten-Veneziano mechanism
for explaining why the η′-meson is not a massless Goldstone boson. Unfortunately, even at an
infinite number of colors currently an analytic solution of QCD is not known.

For theories as complex as QCD it is common practice to test new methods on toy models.
Such toy models need to be more simple than the original and share key characteristics that are
relevant to the method or problem at hand. As mentioned above, two-dimensional non-linear
σ models are a popular choice of toy models for QCD. A comprehensive definition of a gen-
eral non-linear σ model is given in a paper by D’Adda, Lüscher and Di Vecchia [5]. What
makes CP(N − 1) models stand out is that they seem to be the simplest series of topologi-
cally non-trivial, non-linear σ models. Indeed, while in the CP(N − 1) models topologically
non-trivial configuration have been found for all values of N , the O(N) σ models are topolog-
ically trivial for N ≥ 4 [5]. Topological non-triviality gives rise to a topological charge term
Q and a vacuum angle θ. This characteristic is essential to making CP(N − 1) models such
powerful toy models for QCD. There are a number of problems directly related to the topology
of QCD, such as the ”strong CP problem” and the ”U(1) problem” which was solved by ’t
Hooft [9]. Other characteristics the (1 + 1)-dimensional CP(N − 1) model shares with QCD
are a dynamically generated mass gap and asymptotic freedom. The (N − 1) dimensional com-
plex projective space CP(N − 1) can be identified with the coset space SU(N)/U(N − 1). At
higher space-time dimensions d the particles in this model are therefore massless Goldstone
bosons generated in the symmetry breaking SU(N) → U(N − 1). In d = 2 however, according
to the Mermin-Wagner theorem [1], continuous symmetries cannot be broken spontaneously;
therefore, no massless modes exist and the particles pick up a mass non-perturbatively. In the
classical formulation, the model contains no dimensionful parameters. However, upon quanti-
zation, dimensional transmutation takes place. The regularization of divergences implies that
the bare coupling is characterized by a typical energy scale. This is essential for the generation
of the mass-gap.
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1. Introduction

D-theory provides an alternative to the standard quantum field theory (QFT) approach of quan-
tizing physical systems, which uses path integrals of classical fields. First proposed in 1996 by
Chandrasekharan and Wiese [18], it aims to provide a resource efficient way of quantizing field
theories via the dimensional reduction of discrete variables. A paper by Brower, Chandrasekha-
ran, Riederer, and Wiese [22] provides a thorough introduction with a number of applications.
In this method the classical fields of a d-dimensional field theory are found to be the low-energy
degrees of freedom of a system of discrete quantized variables. It is imperative for the (d+ 1)-
dimensional low-energy degrees of freedom to be massless. The quantized variables live on a
d-dimensional lattice and evolve in an extra dimension. When the extent of the extra dimension
becomes small compared to the correlation length, dimensional reduction takes place and the
original d-dimensional QFT emerges.

The aim of this thesis is to explore the large N limit of the two-dimensional CP(N − 1) non-
linear σ model at zero vacuum angle and work towards an analytic solution of the theory in this
limit. In Chapter 2, we consider the standard field theory formulation of CP(N−1) models. We
derive the self-duality equation which defines instanton solutions that arise as a consequence of
the non-trivial topology, and we confirm the existence of a mass-gap. In Chapter 3, we confirm
that the ferromagnetic SU(N) quantum Heisenberg model can indeed be used as a D-theory
regularization of the CP(N − 1) model at zero vacuum angle and we discuss the constraints
under which this is applicable. We also show that D-theory is applicable even in the large N
limit. In Chapter 4, we discuss the potential of clusters, originating from the concept of cluster
algorithms in Monte Carlo calculations, to be used in the formulation of an analytic solution of
the CP(N − 1) model. In Chapter 5, we describe how in the calculation of the SU(N) quantum
ferromagnet on a two-site lattice as a test case for potential cluster descriptions, we encountered
an interesting phase transition. Finally, we draw conclusions and point out potential for future
research in Chapter 6.
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2. Field theory formulation of
CP(N − 1) non-linear σ models

The CP(N − 1) non-linear σ model in two space-time dimensions is a topologically non-trivial
toy model for QCD in four space-time dimensions. In the following we introduce two repre-
sentations of the CP(N − 1) model in (1 + 1)-dimensional space-time with a Euclidean time
dimension using classical field variables. More prevalent in the literature are complex N -vector
field variables, this will be referred to as the z-notation. An alternative representation was in-
troduced by Lüscher [8] that uses NxN -matrices as field variables for the Goldestone bosons.
Both are subject to constraints. This chapter is mainly based on the paper by D’Adda, Lüscher,
and Vecchia [5]. We introduce the classical formulation of the CP(N−1) model and investigate
its topology. The self-duality equation defining instantons and the leading order of the mass-gap
in a large N expansion are derived.

2.1. Definition of the two-dimensional CP(N − 1) model

In a first step we identify the building blocks used to construct the action. We remind ourselves
that the field variables are elements of the coset space CP(N−1) = SU(N)/U(N−1). To fully
capture the action’s symmetries we make use of complex N component scalar-fields normalized
to 1,

zT = (z1, z2, ..., zN), zizi = 1, (2.1)

upon which we impose an equivalence relation. Two vectors z and z′ are considered to be
equivalent if

z′i(x) = eiΛ(x)zi(x) (2.2)

for all i ∈ {1, ..., N}, Λ ∈ C and space-time positions x ∈ R2. We have imposed a U(1)
gauge symmetry to deal with the artificial degree of freedom introduced by using vector-fields
z instead of the equivalence classes [z] that make up SU(N)/U(N − 1). In order to build the
gauge invariant action

S[z, Aµ] =

∫
d2x

2

g2
DµziDµzi, Dµ = ∂µ + iAµ (2.3)

the gauge field Aµ(x) which transforms as

A′
µ(x) = Aµ(x)− ∂µΛ(x). (2.4)

is introduced. This action is invariant under global SU(N) transformations z′(x) = Ωz(x),
where Ω ∈ SU(N). Note that Aµ is a dimensionful field variable. Consequently, a dynamical
term for the gauge field would break the theory’s classical scale invariance. Therefore, it cannot
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2. Field theory formulation of CP(N − 1) non-linear σ models

be included in the action. Since (2.3) is quadratic in Aµ, the field can be integrated out. This
results in

Aµ =
1

2
i (zi∂µzi − (∂µzi)zi) , (2.5)

which is also the classical equation of motion. We have now successfully built a classical action
that is invariant under global SU(N) transformation and has a U(N − 1) ambiguity. Before
we discuss the model’s topology, we introduce an alternative formalism that allows us to work
without gauge fields. It works by using inherently U(1)-invariant field variables P (x) as defined
by

P = |z⟩ ⟨z| = zz†, Pij = zizj. (2.6)

From the construction of P and (2.1) follow directly the characteristics

P 2 = P, TrP = 1, P † = P. (2.7)

The local U(1) symmetry also follows directly from the construction of P ,

P ′
ij(x) = z′i(x)z

′
j(x) = eiΛ(x)zi(x)eiΛ(x)zj(x) = eiΛ(x)e−iΛ(x)zi(x)zj(x) = Pij(x). (2.8)

Under global SU(N) transformations, P (x) transforms in the adjoint representation

P ′(x) = ΩP (x)Ω†, Ω ∈ SU(N). (2.9)

We now have everything to build the classical action

S[P ] =

∫
d2x

1

g2
Tr (∂µP∂µP ) . (2.10)

In the following we work with the formulation that is more suited to the task at hand.
We have mentioned in the introduction that the CP(N − 1) models exhibit an interesting topo-
logical structure. The fields map the two-dimensional space-time onto a coset space G/H . At
space-time infinity they cannot necessarily be continuously deformed into each other. The fields
are classified by their behavior at infinity. The set of these so-called homotopy classes is the
second homotopy group π2(G/H) of G/H . Homotopy theory provides us with a very useful
theorem [6] to identify models with an interesting topology. Under the assumption, that G is
both simply connected as well as connected, meaning

π0(G) = 0, π1(G) = 0, (2.11)

there exists an isomorphism between the second homotopy group of G/H and the first homo-
topy group of H

π2(G/H) ≃ π1(H). (2.12)

Let us consider the manifolds that locally correspond to the group and subgroup of the coset
that is the complex projective space,

SU(N) ∼ S3 ⊗ S5 ⊗ S7 ⊗ ...⊗ S2N−1,

U(N − 1) = SU(N − 1)⊗ U(1) ∼ S1 ⊗ S3 ⊗ ...⊗ S2N−3,

CP (N − 1) = SU(N)/U(N − 1) ∼ S2N−1/S1.

(2.13)
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2. Field theory formulation of CP(N − 1) non-linear σ models

We combine this with the above mentioned theorem to find for N ≥ 2

π2(CP(N − 1)) ≃ π1(S
1) = Z. (2.14)

Therefore CP(N − 1) indeed has non-trivial topology. The valid field configurations are sorted
into classes of fields that can be continuously deformed into each other. Each class is labeled
by its topological charge Q; an integer. The topological charge expressions for both notations
are

Q[z] =
1

2π

∫
d2xϵµν∂µAν , (2.15)

and
Q[P ] =

i

2π

∫
d2xϵµν Tr(P∂µP∂νP ) (2.16)

respectively. We check, that Q is a real valued quantity by showing that the integrand is com-
pletely imaginary.

ϵµν Tr(P∂µP∂νP )∗
P †=P
= ϵµν Tr(P

T∂µP
T∂νP

T)

= ϵµν Tr((∂νP∂µPP )T)

= −ϵµν Tr(P∂µP∂νP ).

(2.17)

A proof that Q[z] is indeed an integer can be found in [25]. In Appendix A.1 we prove the
equivalence of the two expressions (2.15) and (2.16).

The full expression for the partition function for the two-dimensional CP(N − 1) non-linear σ
model is finally given by

Z =

∫
DzDz exp(−S[z] + iθQ[z]) (2.18)

or
Z =

∫
DP exp(−S[P ] + iθQ[P ]) (2.19)

respectively.

2.2. Self-duality equations for instantons

It is found that the topological charge puts a lower bound on the action of a field configuration.
Consider the inequalities

0 ≤
∫

d2xTr (|P (a∂µP ± ibϵµν∂νP )(a∂µP ∓ ibϵµν∂νP )|) (2.20)

0 ≤
∫

d2x |aDµzi ± ibϵµνDνzi|2 (2.21)

to find that

S ≥ 8π

g2

∣∣∣∣ ab

a2 + b2
Q

∣∣∣∣ . (2.22)
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2. Field theory formulation of CP(N − 1) non-linear σ models

For non-zero values of a and b the inequality is strongest when a = b. Field configurations that
minimize the action within a sector of definite topological charge are called instantons. They
are defined as solutions of the self-duality equations

∂µP = ±iϵµν∂νP and Dµzi = ±iϵµνDνzi, (2.23)

respectively. The minus signs define anti-instantons. Instantons describe the tunnelling pro-
cess between classical vacuum states. Any solution of the first-order self-duality equation is
automatically also a solution of the second-order Euler-Lagrange field equation

DµDµzi +
(
DµziDµzi

)
z = 0. (2.24)

Deriving the Euler-Lagrange equation is non-trivial, due to the constrains acting on the fields z
and P . For the z-formalism this is done in Appendix A.2, in the P -formalism the constraints
become more difficult to implement explicitly, therefore this is left out here. A special property
of CP(N − 1) models is that the self-duality equations (2.23) are completely solvable. This is
done explicitly in the paper by D’Adda, Lüscher, and Vecchia [5].

2.3. Leading order mass-gap equation

In this section we derive the leading order expression of the mass-gap equation for the quantum
CP(N − 1) model using the 1/N -expansion. For this task the z-formalism is chosen, since, as
mentioned in the previous section, in the P -formalism the explicit formulation of the constraints
on the field variables by means of Lagrange multipliers is difficult. The following section is
based on the work by D’Adda et al. [5]. To take the limit of N → ∞ is conceptually more
complicated than to take a limit of other parameters of the model. After all, to change N is to
change the symmetry of system. It is therefore necessary to ask if any special conditions apply.
One can argue that the so called ’t Hooft coupling [3]

f =
Ng2

4
(2.25)

must be kept fixed as N goes to infinity for the limit to be well defined. The rough idea behind
this can be outlined by considering diagrams in perturbation theory. Each time a loop is added
without crossing over any existing lines in the diagram, the amplitude gains a factor proportional
to Ng2; the N arises from the possible flavors of the new virtual particle. In order for the
amplitudes not to diverge, the ’t Hooft coupling must remain fixed. It should be noted that f is
a bare coupling. Our goal is to express the mass-gap via the saddle-point equation that arises,
when taking the limit N → ∞. This concept only holds for the quantum CP(N − 1) model
since the coupling only gains a scale through dimensional transmutation. We begin by writing
down the partition function and integrating out the gauge fields which appear quadratically in
the action. Note that we do not keep track of overall factors in front of Z,

Z =

∫
DzDz

∫
DAµ exp

{
−N

∫
d2x

1

2f
DµziDµzi

}
=

∫
DzDz

∫
DAµ exp

{
−N

∫
d2x

1

2f
(∂µzi∂µzi + AµAµzizi − Aµ(izi∂⃗

⃗

µzi))

}
=

∫
DzDz

∫
DAµ exp

{
−N

∫
d2x

1

2f
(∂µzi∂µzi +

1

4
(zi∂⃗

⃗

µzi)
2)

}
.

(2.26)
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2. Field theory formulation of CP(N − 1) non-linear σ models

Integrating out the gauge field has the same effect as plugging in the solution of the classical
equation of motion. We made use of the notation

zi∂⃗

⃗

µzi = zi∂µzi − (∂µzi)zi. (2.27)

For later convenience we rescale the field variable z̃i =
√

N
2f
zi,

Z =

∫
DzDz

∫
DAµ exp

{
−N

∫
d2x(∂µzi∂µzi +

f

2N
(zi∂⃗

⃗

µzi)
2)

}
. (2.28)

In a next step we introduce the auxiliary field variables λµ with the identity∫
Dλµ exp

{
−
∫

d2x
1

N
|z|2λµλµ ±

i√
N
(zi∂⃗

⃗

µzi)λµ

}
=

√
π2N

|z|2
exp

{∫
d2x

−(zi∂⃗

⃗

µzi)
2

4|z|2

}
=
√
2πf exp

{
−
∫

d2x
f

2N
(zi∂⃗

⃗

µzi)
2

} (2.29)

in order to make the action quadratic in z. We realize the constraint on z by introducing a
Lagrange multiplier field α(x).∫

Dα exp

{
±
∫

d2x
iα√
N
(zizi −

N

2f
)

}
= δ

(
|z|2 − N

2f

)
(2.30)

Demanding U(1) gauge invariance of the action, we find the transformation behavior of the new
field variables to be

z′(x) = eiΛ(x)z(x), λ′
µ(x) = λµ + ∂µΛ(x), α′(x) = α(x). (2.31)

Considering that |z|2 = zizi is constant, we are free to rescale Z by a constant factor

exp

{
−
∫

d2x m2|z|2
}

(2.32)

that carries the meaning of a mass term in the action. Plugging in all the above relations, the
partition function takes the form

Z =

∫
DλµDα

[∫
DziDzi exp

{
−
∫

d2x zi∆zi

}]N
exp

{∫
d2x

i
√
N

2f
α

}
, (2.33)

where

∆ : = −∂µ∂µ +
1

N
λµλµ +

i√
N
∂µ · λµ +

i√
N
λµ∂µ +

iα√
N

+m2

= −
(
∂µ −

i√
N
λµ

)2

︸ ︷︷ ︸
DµDµ

+
iα√
N

+m2.
(2.34)
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2. Field theory formulation of CP(N − 1) non-linear σ models

The dot in the third term of the operator ∆ signifies that the derivative acts on both λµ and the
field zi that the operator is applied to. Note that in (2.33) the index i of z is no longer summed
over. Also, we find that DµDµ is Hermitian, while iα(x) is anti-Hermitian. However, we find
that, at leading order, α is constant; therefore the integral over zi and zi is Gaussian. At higher
orders it is not obvious that the integral should remain Gaussian and we recommend consulting
[5]. Performing the Gaussian integral reduces the partition function to the highly symbolic
expression

Z =

∫
DλµDα exp

{
−N Tr(log∆) +

i
√
N

2f

∫
d2xα(x)

}
︸ ︷︷ ︸

−Seff

. (2.35)

The effective action may now be expanded in a power series of 1/
√
N :

Seff = NS
(0)
eff +

√
NS

(1)
eff + S

(2)
eff +O

(
1√
N

)
. (2.36)

It turns out that S(0)
eff is a constant with respect to the fields α and λµ; consequently, it only

contributes to the partition function as an irrelevant overall factor. At large N the exponent is
therefore dominated by

S
(1)
eff =

i

2f

∫
d2x α(x)− Tr

(
i∂µ · λµ + iλµ∂µ + iα

−□+m2

)
= iα̃(0)

(
1

2f
−
∫

d2q

(2π)2
1

q2 +m2

)
.

(2.37)

In Appendix A.3 the derivation of the explicit form of S(1)
eff and S

(0)
eff can be found. α̃(p) is the

Fourier transform of α(x) using the convention

α̃(p) =

∫
d2x exp(−ipx)α(x). (2.38)

The momentum integral in the second line of (2.37) displays a logarithmic ultraviolet diver-
gence. We employ a Pauli-Villars cutoff to regularize the integral. This results in∫

d2q

(2π)2
1

q2 +m2
= 1/(4π) log(Λ2/m2). (2.39)

Let the bare coupling run with the cutoff such that the divergence at Λ → ∞ cancels:

1

2f
=

1

4π
log

(
Λ2

µ2

)
+

1

2fR(µ)
. (2.40)

The quantity fR(µ) is the renormalized coupling and µ is the so-called normalization point.
Unless

√
NS

(1)
eff vanishes, it will introduce rapid oscillations to the partition function Z in the

limit N → ∞. However, since m is a free parameter, we impose on it the mass-gap equation

m2 = µ2 exp

(
− 2π

fR(µ)

)
. (2.41)

8



2. Field theory formulation of CP(N − 1) non-linear σ models

The physical particles of the two-dimensional CP(N − 1) non-linear σ model indeed gain a
mass dynamically. D’Adda et al. go on to discuss the quadratic part S(2)

eff of the effective
action. In 1990 the exact mass-gap was derived in the MS renormalization scheme for some
two-dimensional asymptotically free field theories by Hasenfratz and Niedermayer [13]. One
such theory is the O(3) model, which is equivalent to the CP(1) model. For any other CP(N−1)
models with 2 < N < ∞ the mass gap cannot be determined using their technique. In order to
compare the two results, one would have to match the different renormalization schemes.
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3. D-theory regularization

In D-theory we recover the classical fields of a d-dimensional QFT as the low-energy degrees
of freedom of quantized variables on a (d + 1)-dimensional lattice after dimensional reduc-
tion. The (d+1)-dimensional theory must produce massless Goldstone bosons at low energies.
If the extent of the extra Euclidean dimension becomes small with respect to the correlation
length, dimensional reduction takes place. In the following we go step-by-step through the D-
theory regularization of the 2-dimensional CP(N − 1) model with vacuum angle θ = 0. There
are a multitude of possible D-theory formulations of this model. We will use the ferromag-
netic SU(N) quantum Heisenberg model as the underlying lattice model. Quantization of the
CP(N − 1) model at vacuum angle θ = 0, π using SU(N) quantum spin-ladders has also been
explored in [23].

3.1. SU(N) quantum ferromagnet

The SU(N) quantum Heisenberg models are built from a set of quantum spin operators on a
lattice, where each spin typically interacts with its nearest neighbors. Their main purpose is the
description of ferromagnetism and anti-ferromagnetism in solids. In this first section we give
an introduction to said models and investigate the characteristics necessary for retrieving the
CP(N − 1) models. Explicitly this includes the symmetries of the system and its ground states.
It is found that, in order to achieve the desired symmetry breaking, one is restricted to symmet-
ric representations of SU(N). Furthermore, magnon states are investigated in preparation for
formulating the low-energy effective field theory (EFT) in the next section.

Let us introduce the ferromagnetic Heisenberg model on a d-dimensional hypercubic lattice
with a lattice spacing a and with sides of length L with periodic boundary conditions. It is
customary to set a = 1. For important results, however, we will reinsert a for completeness
and to ensure that the dimensions match. For the application to a regularization of the (1 + 1)-
dimensional CP(N − 1) model we only need to consider the case of d = 2. Nonetheless, in
this section it is not yet necessary to restrict d, therefore we leave it arbitrary for now. The
Hamiltonian associated with the ferromagnetic quantum Heisenberg model is given by

H = −J
∑
⟨xy⟩

T a
xT

a
y , (3.1)

where J > 0 is the coupling constant that controls the strength of the interaction. The indices x
and y are d-dimensional position vectors of the lattice sites. The quantum spins located on the
lattice sites x are represented by operators T a

x . They are generators of the su(N) Lie algebra
with the normalization condition Tr(T aT b) = δab/2. The representation of the generators plays
a significant role later, since only for certain representations the desired symmetry breaking

10



3. D-theory regularization

arises. As mentioned above, our main interest lies with symmetric representations that are
described by Young tableaux of n boxes in a row

. . .︸ ︷︷ ︸
n

. (3.2)

We therefore use the value of n to identify the representations. As generators of su(N), the
matrices T a

x are Hermitian and traceless with the structure constants f and the d-coefficients
defining the commutation and anti-commutation relations, respectively. Therefore, in the fun-
damental representation n = 1, the matrices T a are generalized Gell-Mann matrices rescaled
by a factor of 1/2. The summation in (3.1) denotes the sum over all pairs of nearest neighbors
on the lattice. By the Einstein summation convention the index a, which is not to be confused
with the lattice spacing, is summed over a ∈ {1, . . . , N2−1}, where N2−1 is the dimension of
the SU(N) group. Note that J has the dimension of an energy [J ] = 1. The partition function
for such a canonical ensemble is given by

Z = Tr
(
e−βH

)
. (3.3)

Since H is time-independent, the time evolution operator in imaginary time takes the form
U = exp(−tH). As a consequence, the inverse temperature β = 1/T (kB = 1) can also be
interpreted as the extent of a Euclidean time dimension in which the system evolves. The cyclic-
ity of the trace demands periodic boundary conditions in this direction. This extra dimension
will later disappear via the dimensional reduction step of the D-theory formalism. Then one of
the space dimensions will be reinterpreted as the Euclidean time. The trace extends over the
physical Hilbert space. The system is invariant under global SU(N) transformations

[H,T a] = 0, (3.4)

where T a =
∑

x T
a
x is the total spin. This is shown explicitly in Appendix B.1.

3.1.1. Spontaneous symmetry breaking

It turns out that the ground states do not respect the full symmetry of the system. As mentioned
above, the representation of spin operators on the lattice sites is crucial for determining the
symmetry breaking pattern of the ground state. For simplicity’s sake let us first investigate the
fundamental representation {N} with n = 1. The coupling of Ld spins via a direct product can
be decomposed into irreducible representations

⊗ ⊗ · · · ⊗︸ ︷︷ ︸
Ld

= ...︸ ︷︷ ︸
Ld

⊕ ...︸ ︷︷ ︸
Ld−1

⊕ · · · ⊕ ...

}
Ld. (3.5)

The sum extends over all Young tableaux consisting of Ld boxes. SU(N) in the fundamental
representation has N flavor states |q⟩, q ∈ {u, d, s, ...}. In the ferromagnetic system the energy
is minimized for completely symmetric states, i.e. states that belong to the first Young tableau
on the right hand side of (3.5). Such a ground state breaks the SU(N) symmetry, but still retains
a U(N − 1) symmetry. For example, we may choose the ground state |uu . . . u⟩. It is invariant
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under SU(N−1) transformations that mix the remaining N−1 flavors. The vacuum is also left
unchanged by a global phase factor. This implies an additional U(1) symmetry. We conclude
that completely symmetric vacua display the desired symmetry breaking

SU(N) → SU(N − 1)⊗ U(1) = U(N − 1), (3.6)

where the low-energy degrees of freedom live in the coset space

CP(N − 1) = SU(N)/U(N − 1). (3.7)

Let us now generalize these observations to arbitrary irreducible spin representations. Any
irreducible representation has a corresponding Young tableau, all of which can be generated by
coupling together fundamental representations. In order to experience the desired symmetry
breaking the ground state of the system must be a state of the completely symmetric Young
tableau. By drawing the coupling of Ld spins in terms of their Young tableaux, it becomes
evident that we may only find such a ground state if the spins on each lattice site are themselves
in a symmetric representation. A symmetric ground state is an element of the multiplet in

. . .︸ ︷︷ ︸
nLd

=

{
(N + nLd − 1)!

(N − 1)!(nLd)!

}
. (3.8)

On each site there is now a choice of (N+n−1)!
(N−1)!(n)!

flavors q ∈ {u, d, s, . . . }. Each of these flavors
can be built as a symmetric combination of n fundamental spin states. The vacuum energy of
the system is a quantity of interest needed later in order to construct the low-energy effective
field theory and match it to the underlying SU(N) model. Let |0⟩ be the completely symmetric
ground state with maximum spin projection |0⟩ = |uu . . . u⟩ just like above. Using the identity

T a
xT

a
y =

1

2
(T a

x + T a
y )

2 − 1

2
(T a

x )
2 − 1

2
(T a

y )
2, (3.9)

the Hamiltonian can be written terms of quadratic Casimir operators

C2(R) = T aT a, T a =
∑
x

T a
x , (3.10)

where R determines the representation. Let us use the following notation for symmetric and
antisymmetric representations.

C2( . . .︸ ︷︷ ︸
mS

) = C2(mS)

C2

(
mA

{
...

)
= C2(mA)

(3.11)

This implies the expression

H |0⟩ = −J
∑
⟨xy⟩

(
C2(2nS)

2
− C2(nS)

)
|0⟩

= −Jd

(
L

a

)d
N − 1

2N
n2 |0⟩

= E0 |0⟩

(3.12)
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for the Hamiltonian acting on a completely symmetric ground state of SU(N) spins in the
symmetric representation of n boxes in a row. The value of the Casimir operator in symmetric
and antisymmetric representations was derived in [20].

C2(mS) = Cf
m(N +m)

N + 1
(3.13)

C2(mA) = Cf
m(N −m)

N − 1
(3.14)

Cf =
N2 − 1

2N
(3.15)

The expression for antisymmetric representations will come in handy in a later chapter. The
factor Cf is the quadratic Casimir of the fundamental representation. The summands in (3.12)
are independent of the choice of x and y for this ground state. Thus the sum simply yields a
factor of the number of nearest-neighbors on the lattice with periodic boundary conditions dLd.
Moreover, the lattice spacing a was reinserted L → L/a.

3.1.2. Magnon states

Now that we have determined the vacuum energy let us derive the dispersion relation for
magnons (also known as spin-waves). To this end, we first introduce an alternative basis for
su(N) in the fundamental representation. It consists of N(N − 1)/2 shift operators

T±,1 = T 1 ± iT 2

T±,2 = T 4 ± iT 5

T±,3 = T 6 ± iT 7

. . .

(3.16)

and N − 1 diagonal operators

T̃ a =
1

2

√
2

a(a+ 1)
diag(1, . . . , 1︸ ︷︷ ︸

a

,−a, 0, . . . , 0), a ∈ {1, . . . , N − 1}. (3.17)

The diagonal operators are in fact the same as in the generalized Gell-Mann matrices, only with
different indices. To avoid confusion they are denoted with a tilde. The shift operators T±,b with
b ∈ {1, ..., N(N − 1)/2} are built from pairs of off-diagonal generalized Gell-Mann matrices
with non-zero entries at the same positions just like in (3.16). Each pair of shift operators causes
a shift between two specific spin flavors in the multiplet. Let us consider the example of SU(3)
with n = 1,

T+,1 |u⟩ = 0,

T+,1 |d⟩ = |u⟩ ,
T+,1 |s⟩ = 0,

T−,1 |u⟩ = |d⟩ ,
T−,1 |d⟩ = 0,

T−,1 |s⟩ = 0,

(3.18)

T+,2 |u⟩ = 0,

T+,2 |d⟩ = 0,

T+,2 |s⟩ = 0 |u⟩ ,

T−,2 |u⟩ = |s⟩ ,
T−,2 |d⟩ = 0,

T−,2 |s⟩ = 0,

(3.19)
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T+,3 |u⟩ = 0,

T+,3 |d⟩ = 0,

T+,3 |s⟩ = |d⟩ ,

T−,3 |u⟩ = 0,

T−,3 |d⟩ = |s⟩ ,
T−,3 |s⟩ = 0.

(3.20)

Furthermore, for n ̸= 1 the generators can be constructed via the symmetrization of the direct
product of generators in the fundamental representation. For n = 2 this looks as follows:

T a
⊗ = T a ⊗ 1 + 1⊗T a,

T a = T a
⊗ |symm.

(3.21)

After building the tensor product, one can bring the generators into block-diagonal form by
a change of basis. For n = 2 only the block corresponding to the symmetric representation
survives the symmetrization of the matrices. For higher n other blocks will partially survive
as well. The change of basis introduces factors of 1/

√
n to the generators. The shift operators

connect all states in a multiplet. Figure 3.1 illustrates the example of N = 3 and n = 2.

Figure 3.1.: States of the sextet representation of SU(3).

This formulation of the su(N) generators is very convenient in the definition of magnon states

|p⟩ =
∑
x

exp (ipixi)T
±,b
x |0⟩ , (3.22)

where, in accordance with the previous notation, x is a d-dimensional position vector. The
following treatment of magnons follows [25]. Let |0⟩ again be the completely symmetric ground
state of maximum spin projection and T±,b

x the shift operator that acts on the spin at position x;
here T−,1

x . We proceed by investigating how the Hamiltonian acts on T−,1
x |0⟩. Let Hx contain

all summands of H that act on the site x and Hrest the rest,

H = Hx +Hrest. (3.23)
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The local shift operator T−,1
x commutes with Hrest, thus we find in analogy to (3.12) that

HrestT
−,1
x |0⟩ = −J

(
d

(
L

a

)d

− 2d

)
N − 1

2N
n2 T−,1

x |0⟩ , (3.24)

where the term −2d comes from the missing number of terms in Hrest compared to H . Fur-
thermore we split Hx into a diagonal part Hd

x and an off-diagonal part Hs
x that can be written in

terms of shift operators, hence the index s,

Hd
x = −J

∑
y|<x,y>

N−1∑
a=1

T̃ a
x T̃

a
y ,

Hs
x = −J

∑
y|<x,y>

N(N−1)/2∑
b=1

(T+,b
x T−,b

y + T−,b
x T+,b

y ).

(3.25)

The relation
T 1
xT

1
y + T 2

xT
2
y = T+,1

x T−,1
y + T−,1

x T+,1
y , (3.26)

and its equivalents for higher indices, were used to rewrite Hs
x in (3.25). The expression y|⟨xy⟩

stands for ”y such that y is a neighbor of x”. The eigenvalue of |0′x⟩ = T−
x |0⟩ acted on by Hd

x

is straightforward to calculate,

Hd
x |0′x⟩ = −J2d

(
T̃ 1
x T̃

1
y |0′x⟩+

N−1∑
a=2

T̃ a
x T̃

a
y |0′x⟩

)

= −J2d

((n
2
− 1
) n

2
|0′x⟩+

N−1∑
a=2

n2

2a(a+ 1)
|0′x⟩

)

= −J2d

((n
2
− 1
) n

2
+

n2

2

N − 2

2N

)
|0′x⟩ .

(3.27)

The effect of the shift-operator part Hs
x is derived in Appendix B.2. We find

Hs
x |p⟩ = −nJ

d∑
µ=1

cos(pµ) |p⟩ . (3.28)

Therefore we now have all the necessary information in order to find the dispersion relation of
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magnon states

Ep − E0 = −J

[(
d

(
L

a

)d

− 2d

)
N − 1

2N
n2 + 2d

((n
2
− 1
) n

2
+

n2

2

N − 2

2N

)
+ n

d∑
µ=1

cos(pµ)

]

+ J

[
d

(
L

a

)d
N − 1

2N
n2

]

= −J

[
−d

n2

2
+ 2d

(n
2
− 1
) n

2
+ n

d∑
µ=1

cos(pµ)

]

= −J

[
−dn+ n

d∑
µ=1

cos(pµ)

]

= Jn

d∑
µ=1

(1− cos(pµ)).

(3.29)

For small values of p we may expand the expression to second order and explicitly reintroduce
the lattice spacing a. We find that the difference between the magnon energy and the ground
state energy is

Ep − E0 ≃
Jn

2
a2p2. (3.30)

The energy is not proportional to the magnitude of the momentum, thus the magnons are of a
non-relativistic nature.

3.2. Chiral perturbation theory

We now move toward recovering the CP(N−1) model in the low-energy degrees of freedom by
building an effective field theory for the symmetry breaking SU(N) → U(N − 1). To this end
chiral perturbation theory is utilized. The fields of an effective field theory for the symmetry
breaking G → H reside in the coset space G/H [2]. Here SU(N)/U(N − 1) = CP(N − 1),
thus we use the matrices P introduced in Section 2.1 to express the effective action. In this
section the lattice dimension is set to d = 2 and the extent of all dimensions L and β are set
to infinity. Let us construct the leading order effective Lagrangian that respects the symmetry
relations of the microscopic theory. All terms need to respect global SU(N) invariance, this can
be achieved by working with traces and determinants. It turns out, however, that the determinant
of P and its derivatives only lead to trivial Lagrangian terms. The projector property P 2 = P
in combination with Tr(P ) = 1 implies

det(P ) = 0 (3.31)

and
∂µP = (∂µP )P + P∂µP. (3.32)

Therefore, the determinant of derivatives of P vanishes,

det(∂µP ) = 0, (3.33)
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and all terms of the effective Lagrangian need to be traces. The Hamiltonian (3.1) is invariant
under reflection along either axis, thus space derivatives ∂iP , i = 1, 2 must only appear in pairs.
Note also that, since we are working with a non-relativistic theory, the Lagrangian doesn’t have
to be Lorentz-invariant. Since P is a projector it is naturally dimensionless; therefore, the terms
contributing to the Lagrangian are ordered by the number of derivatives. Terms without any
derivatives are trivial due to the characteristics Tr(P ) = 1 and P 2 = P . The leading order
terms containing spatial derivatives are of the forms∫

d2x

∫
dtTr (f1(P )∂iP∂iP ) (3.34)

and ∫
d2x

∫
dtTr (f2(P )∂i∂iP ) . (3.35)

The projector property of P means that f1,2 are of the form f1,2(P ) = a + bP , where a and b
are real constants. It is also cause for the following three identities:

Tr(∂i∂iP ) = 2Tr(∂iP∂iP ) + 2Tr(P∂i∂iP ),

Tr(P∂i∂iP ) = −2Tr(P∂iP∂iP ),

Tr(∂iP∂iP ) = 2Tr(P∂iP∂iP ).

(3.36)

Using the first two identities we can show that terms of the second form (3.35) can be absorbed
into f1(P ). With the help of the third identity, the term in (3.34) coming from bP can be
absorbed into a. For spatial derivative terms we are thus left with a single term Tr(∂iP∂iP ) in
the Lagrangian. Since the extra time dimension is not restricted by a reflection symmetry, terms
with a single time derivative are allowed. Naively all such terms seem to be trivial,

Tr(∂tP ) (3.37)

is a total derivative and
Tr(P∂tP ) (3.38)

vanishes due to the projector property of P . However, for CP(1) H. Leutwyler [17] found
that by introducing an additional, purely mathematical dimension τ ∈ [0, 1] one can build a
so-called Wess-Zumino-Witten term∫

d2x

∫
dt

∫
dτ Tr (P∂tP∂τP − P∂τP∂tP ) . (3.39)

This is also possible for higher values of N . Where P (x, t) was previously defined on Rd × S1,
S1 being the compactified time dimension, it is now extended to P (x, t, τ) defined on Rd ×H2.
H2 is the 2-dimensional hemisphere in Figure 3.2a. We impose the boundary condition that, at
τ = 1, the interpolated field matches the physical field P (x, t, τ = 1) = P (x, t).

Since τ parametrizes just a mathematical dimension, the physics must be invariant under the
choice of interpolation. Let us consider two different choices P and P ′ interpolated on H2.
We then change the orientation of the hemisphere on which P ′ is defined. The difference in the
action between the two interpolations with a normalization factor results in an integer ambiguity

1

i2π

(∫
H2

dtdτ Tr (P∂tP∂τP − P∂τP∂tP )−
∫
H2′

dtdτ Tr (P∂tP∂τP − P∂τP∂tP )

)
=

1

i2π

∫
S2

dtdτ Tr (P∂tP∂τP − P∂τP∂tP ) = k ∈ Z.

(3.40)
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(a) Interpolation of P (x, t, τ) on hemisphere
H2

(b) Alternative interpolation P ′(x, t, τ) on
hemisphere H2′

Figure 3.2.: Extension of the P -field into the extra dimension parametrized by τ . The interpo-
lated field at τ = 1 corresponds to the physical field.

We used that the union of H2 and H2′ with the direction of the normal vector flipped by the
negative sign, is a 2-sphere S2. In the last step of (3.40) we used that the second homotopy
group of CP(N−1) is π2[CP(N−1)] = Z. The invariance of the physics against this ambiguity
demands the quantization of the prefactor m of the Wess-Zumino-Witten term

SWZW[P ] = −2m

∫
d2x

∫
H2

dtdτ Tr (P∂tP∂τP − P∂τP∂tP ) ,

SWZW[P ]− SWZW[P ′] = i2π(−2m)k

∫
d2x︸ ︷︷ ︸
V

!
∈ 2πZ ⇒ V m ∈ Z

2
.

(3.41)

We now put together the full leading order effective action.

Seff [P ] =

∫
d2x

(∫
S1

dtρs Tr(∂iP∂iP )− 2m

∫
H2

dtdτ Tr (P∂tP∂τP − P∂τP∂tP )

)
(3.42)

The choice of parameters in the microscopic system controls the parameters of the EFT, hence
we want to express the spin stiffness ρs and the magnetization density m in terms of J and n.
The results are derived in Appendix B.3. We find

m =
n

2a2
, ρs =

Jn2

4
. (3.43)

3.3. Dimensional reduction

The EFT derived in (3.42) already bears a lot of similarity to the CP(N − 1) model. However,
to truly recover the desired degrees of freedom, the EFT has to be reduced in its time dimen-
sion. This section is based on [22]. Thus far we have worked with a lattice of infinite extent
L, β = ∞, the spontaneous symmetry breaking in this case gives rise to massless Goldstone
bosons. It follows that the EFT possesses an infinite correlation length ξ. If the extent of the
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time dimension β is taken to be finite, then the existence of massless Goldstone bosons is pro-
hibited by the Mermin-Wagner-theorem. A finite β therefore gives rise to a non-perturbative,
dynamically generated mass m that is the inverse of the correlation length ξ = 1/m. The
dispersion relation is used to find the space-equivalent a′ to β

1

β
=

Jn

2

1

(a′)2
⇒ a′ =

√
βJn

2
a. (3.44)

We assume that the finite correlation length respects the relation

ξ ≫ a′. (3.45)

This will prove to be correct a-posteriori. This condition implies, that the field P (x) doesn’t
change significantly within a cube of dimensions a′ × a′ × β. One can use block spin renor-
malization group transformations to map the (2 + 1)-dimensional EFT onto a 2-dimensional
lattice as depicted in Figure 3.3. This was done in the two-dimensional O(3) model, which is
equivalent to the CP(1) model, by Hasenfratz and Niedermayer [14]. A different, more intu-
itive approach was chosen by [11]. They argue, that the partition function is dominated by the
t-independent field configurations with

∂tP (t, x) = 0. (3.46)

This can also be derived via a Fourier analysis in the time dimension, where the zero-momentum
mode is found to be dominant. We obtain the effective action of a two-dimensional system

Seff [P ] =

∫
d2xβρs Tr(∂iP∂iP ), (3.47)

which takes the form of the CP(N − 1) action

S[P ] =

∫
d2x

1

g2
Tr(∂µP∂µP ) (3.48)

with the bare coupling at the scale a′ being 1/g(a′)2 = βρs. The two expressions differ in
that the effective theory lives in two space dimensions, while the CP(N − 1) model lives in
(1 + 1) dimensions. However, in Euclidean time we may simply reinterpret one of the lattice
dimensions as the imaginary time. What was previously seen as the time dimension in the
microscopic model now becomes some unphysical extra dimension. Let us now check that
(3.45) is indeed satisfied. The CP(N − 1) model in two dimensions is asymptotically free,
consequently one may use the universal asymptotic formula for the correlation length [19]

a′

ξ
= C

(
β1g

2
)− β2

β21 exp

(
− 1

β1g2

)
(1 +O(g2)). (3.49)

The 1- and 2-loop coefficients for this model are β1 = N
4π

and β2 = 8π
N2 [26]. Therefore at

leading order, ξ is given by

ξ

a′
= CN

(
N

4πβρs

) 2
N

exp

(
4πβρs
N

)
. (3.50)
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Figure 3.3.: Reduction of the (2+1)-dimensional EFT in the extra dimension β leads to a 2-
dimensional lattice field theory with spacing a′.

Calculations by B. Beard [24] and experience with O(N) models suggest that the model specific
constant CN doesn’t change significantly with N . Though it may seem counterintuitive, ξ ≫ a′

is satisfied for sufficiently large values of β. The continuum limit is taken by letting β → ∞.
We have mentioned in the previous chapter, that the so-called ’t Hooft coupling

1

g2′tH
=

1

Ng2
=

βρs
N

=
βJn2

4N
(3.51)

must be kept fixed in the large N limit. Since this is a bare coupling, it is not constant when
taking the continuum limit. To check whether dimensional reduction is still possible at large N ,
we express ξ/a′ in terms of g′tH

ξ

a′
= CN

(
g2′tH
4π

) 2
N

︸ ︷︷ ︸
→1

exp

(
4π

g2′tH

)
. (3.52)

Since the exponent is invariant against a change of N and the remaining factors are well be-
haved, we find that ξ ≫ a′ indeed holds for large N . However, we can only retrieve information
about ξ from a finite-size SU(N) lattice model if a′ does not diverge. It follows, that the scaling
of βJ and n must be βJ ∼ 1/N and n ∼ N . D-Theory relies on ensembles of spins to generate
the continuous values of the field variable P . This naturally works only for L > a′. Finite size
lattices also give rise to infrared (IR) effects and we can only hope to recover accurate values
of observables like the correlation length if L ≫ ξ. If all these conditions are met, we have
shown that the d = (1+ 1) CP(N − 1) non-linear σ model is indeed recovered as a low-energy
effective theory of the d = (2 + 1) ferromagnetic SU(N) quantum Heisenberg model.

3.3.1. C, P, and T symmetries

We should check whether the CP(N − 1) model and the SU(N) ferromagnet share the same
behavior under charge conjugation (C), parity transformation (P), and time reversal (T). In order
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to derive the transformation behavior of the fields, it is more convenient to work in the z-
notation. Under all three transformations the expression

∫
d2xAµjµ must remain invariant.

Here jµ = (ρ, j⃗) is a conserved current consisting of some charge density ρ and a current j⃗. The
known transformation behavior of jµ implies the behavior of Aµ

Cjµ(t, x) =

(
−ρ(t, x)

−j⃗(t, x)

)
,

P jµ(t, x) =

(
ρ(t,−x)

−j⃗(t,−x)

)
,

T jµ(t, x) =

(
ρ(−t, x)

−j⃗(−t, x)

)
,

CAµ(t, x) =

(
−At(t, x)
−Ax(t, x)

)
,

PAµ(t, x) =

(
At(t,−x)
−Ax(t,−x)

)
,

TAµ(t, x) =

(
At(−t, x)
−Ax(−t, x)

)
.

(3.53)

This, combined with the previously derived identity

Aµ =
i

2
(zα∂µzα − (∂µzα)zα) , (3.54)

provides the transformation behavior of the complex vectors z and consequently also P

Czα(t, x) = zα(t, x),
P zα(t, x) = zα(t,−x),
T zα(t, x) = zα(−t, x),

CP (t, x) = P (t, x) = P (t, x)T,
PP (t, x) = P (t,−x),
TP (t, x) = P (−t, x) = P (−t, x)T.

(3.55)

The action
S[P ] =

∫
d2x

1

g2
Tr (∂µP∂µP ) , (3.56)

is clearly invariant under all three transformations. The topological charge term

Q[P ] =
i

4π

∫
d2xϵµν Tr (P∂µP∂νP ) , (3.57)

however breaks both the C- and P-symmetry

CQ = −Q, PQ = −Q, TQ = Q. (3.58)

Because the ferromagnetic SU(N) quantum Heisenberg model provides a quantization of the
CP(N − 1) model at vacuum angle θ = 0 we expect it to respect all three symmetries. The
P and T transformations correspond to a reflection along one of the axes due to the reinterpre-
tation of the lattice dimensions in the dimensional reduction step. The lattice neighbors ⟨xy⟩
in the Hamiltonian do not change under such transformations, consequently the system is in-
deed invariant under parity and time reversal. Under charge conjugation the representation of
the generators in the Hamiltonian is changed to its conjugate T̃ a = −(T a)∗. For N > 2 the
SU(N) models have complex representations. Therefore, contrary to our initial expectation, the
C-symmetry is explicitly broken. Note also that the symmetry breaking pattern changes under
charge conjugation. This behavior also carries over to the EFT. There the symmetry breaking is
controlled by the Wess-Zumino-Witten term

SWZW([P ]) =
1

i2π

∫
d2x dt dτ Tr (P∂tP∂τP − P∂τP∂t) . (3.59)
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3. D-theory regularization

Again it is important to remember that not only τ but also t denotes not the time but an extra
dimension. The C-symmetry is thus restored in the process of dimensional reduction. However,
in the EFT there are still subleading terms that break C-invariance. One example of such a term
is

1

β2
ϵµν Tr (P∂µP∂νP∂σP∂σP + P∂σP∂σP∂µP∂νP ) . (3.60)

One might find C-violating effects at high energies due to the underlying microscopic model.
Such terms in the dimensionally reduced two-dimensional CP(N − 1) model are irrelevant in
the renormalization group sense.
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4. Cluster representation of CP(N − 1)
models

In an SU(N) quantum ferromagnet with a magnetization density of n/2, the number of possi-
ble flavor states on each lattice site at large N presents a problem in computational physics. A
possible approach to creating efficient Monte Carlo algorithms is through the implementation
of clusters. The first cluster algorithm was introduced by Swendsen and Wang [10] in 1987. In
1989 Wolff [12] developed an improved algorithm that decreases the autocorrelation time by
updating multiple clusters of spins at once. Applications of cluster algorithms to the CP(N−1)
models via D-Theory can be found in [23, 24]. The goal of this chapter is not to perform Monte
Carlo calculations, hence there will be no detailed introduction to this topic. We merely use
concepts from the Monte Carlo method in order to convince ourselves of the correctness of
the cluster formulation of the SU(N) ferromagnet. This chapter covers the implementation of
clusters with the goal of introducing an alternate, large N friendly way to describe spin con-
figurations of the lattice. With this cluster description we work towards a new way of directly
solving (2 + 1)-dimensional ferromagnetic SU(N) quantum Heisenberg models, and conse-
quently (1 + 1)-dimensional CP(N − 1) models. The introduction initially follows the PhD
thesis of Riederer [25] and then implements the concept used by Kawashima and Gubernatis
[16] for the generalization to higher spins.

4.1. Cluster representation of SU(N) quantum
ferromagnets

The Monte Carlo method can be used as a way of calculating expectation values by importance
sampling of configuration space. The partition function in the path integral formalism is an
extremely high-dimensional integral. In the infinite volume or number of flavors the integral
even becomes infinite-dimensional. Configurations in the path integral of the partition function
are generated numerically, their Boltzmann weight factor acting as a quantification of their
importance. The series of configurations that contribute to the expectation value in question
is called a Markov chain. An algorithm has to generate the Markov chain in a way that is
ergodic, i.e. any field configuration can be reached in a finite number of steps from any arbitrary
initial configuration. For the distribution of configurations in the chain to converge uniquely to
the desired Boltzmann distribution it is sufficient but not necessary that the algorithm respects
detailed balance

exp (−S[q])w[q, q′] = exp (−S[q′])w[q′, q]. (4.1)

Here w[q, q′] is the probability density for the system in configuration [q] to transition to a con-
figuration [q′], and exp(−S[q]) is the Boltzmann weight factor of the configuration [q].
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4. Cluster representation of CP(N − 1) models

Let us construct said path integral representation of

Z = Tr exp (−βH) , H = −J
∑
⟨xy⟩

T a
xT

a
y , (4.2)

by discretizing the system in the Euclidean time dimension of extent β. For simplicity’s sake we
return to interpreting this as a time dimension as opposed to some extra dimension. The tran-
sition to the path integral representation is performed by insertion of a full basis after discrete
time-steps of size ϵ, where β = Mϵ. Directly working in arbitrary symmetric representations of
T a
x would greatly complicate the computation of the transfer matrix elements. We start by intro-

ducing clusters in a system of fundamental spins n = 1 and arbitrary N , ignoring the relation
between the two. Only later will we make the generalization to arbitrary n. The discretization
in time produces the partition function

Z =

(
M∏
i=1

∑
qi

)
⟨q1| exp(−ϵH) |q2⟩ ⟨q2| exp(−ϵH) |q3⟩ . . . ⟨qM | exp(−ϵH) |q1⟩ , (4.3)

where ∑
qi

|qi⟩ ⟨qi| = 1. (4.4)

Each |qi⟩ denotes a spin state of the complete lattice at a fixed point in time. The goal now is
to manipulate the Hamiltonian in such a way that each discrete time step is decomposed into
successive sub-steps of plaquette interactions that do not interfere with each other. This is done
by application of the Suzuki-Trotter expansion [15]. We prepare the Hamiltonian by splitting it
into subsets of terms that commute with each other

H =
2d∑
i=1

Hi, (4.5)

where Hi is defined by

Hi = −
∑

x|xi even

JT a
xT

a
x+î

Hi+d = −
∑

x|xi odd

JT a
xT

a
x+î (4.6)

for i ∈ {1, . . . , d} with the notation î = e⃗i. This decomposition requires L to be even. We
separate the exponential and insert full basis sets in between.

Z = lim
ϵ→0

∑
[q]

⟨q1| exp (−ϵH1) |q2⟩ ⟨q2| exp (−ϵH2) |q3⟩ . . . ⟨q2d| exp (−ϵH2d) |q2d+1⟩

· ⟨q2d+1| exp (−ϵH1) |q2d+2⟩ . . .
(4.7)

The sum extends over all lattice configurations [q] = (|q1⟩ , . . . , |qM2d⟩). This leads to an error
of order ϵ2 that only disappears in the continuum time limit ϵ → 0, M → ∞. The Suzuki-
Trotter expansion splits each time step into 2d sub-steps where interactions only take place on
what we call the active plaquettes. Figure 4.1 illustrates this for d = 1. It follows, that the
partition function is simply the product of the Boltzmann-weight factors of active plaquettes.
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4. Cluster representation of CP(N − 1) models

Figure 4.1.: The Suzuki-Trotter expansion of a (d + 1)-dimensional lattice separates each dis-
crete time step of ∆t = ϵ into 2d sub-steps, in which interactions occur on the
active plaquettes colored white in this example for d = 1.

We introduce the notation q(x,t) for the spin on site x at time βt/(M2d) and rewrite the partition
function as

Z =
∑
[q]

exp(−S[q]), (4.8)

where the Boltzmann weight factor is defined as

exp(S[q]) =
M−1∏
j=0

d∏
i=1

 ∏
x|xi even

t=2dj+i−1

exp(−S(q(x,t), q(x+î,t), q(x,t+1), q(x+î,t+1)))



×

 ∏
x|xi odd

t=2dj+d+i−1

exp(−S(q(x,t), q(x+î,t), q(x,t+1), q(x+î,t+1)))

 .

(4.9)

The weight of a single active plaquette is an element of the transfer matrix

exp(−S(qa(x,t), q
b
(x+î,t)

, qc(x,t+1), q
d
(x+î,t+1)

)) = ⟨qa(x,t), qb(x+î,t)
| exp(−ϵT a

xT
a
x+î

) |qc(x,t+1), q
d
(x+î,t+1)

⟩ .
(4.10)

In this notation the index a ∈ {1, . . . , N} defines the spin flavor. Let us calculate the transfer
matrix elements. Two neighboring spins at equal time qa(x,t) and qb

(x+î,t)
both transform in the

fundamental representation {N}. The coupling of the two can be decomposed into N(N+1)/2
symmetric and N(N − 1)/2 antisymmetric states.

⊗ = ⊕ (4.11)

The symmetrized and anti-symmetrized states take the form

|aa⟩ = |qa(x,t), qa(x+î,t)
⟩ ,

|ab⟩s =
1√
2
(|qa(x,t), qb(x+î,t)

⟩+ |qb(x,t), qa(x+î,t)
⟩)

(4.12)
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4. Cluster representation of CP(N − 1) models

and

|ab⟩a =
1√
2
(|qa(x,t), qb(x+î,t)

⟩ − |qb(x,t), qa(x+î,t)
⟩) (4.13)

respectively. Consequently we can decompose the basis states into their symmetric and anti-
symmetric parts

|qa(x,t), qa(x+î,t)
⟩ = |aa⟩s ,

|qa(x,t), qb(x+î,t)
⟩ = 1√

2
(|ab⟩s + |ab⟩a), a ̸= b,

|qb(x,t), qa(x+î,t)
⟩ = 1√

2
(|ab⟩s − |ab⟩a), a ̸= b.

(4.14)

We recognize the quadratic Casimir operator in the transfer matrix

τx,x+î = exp
(
ϵJT a

xT
a
x+î

)
= exp

(
ϵJ

2

(
(T a

x + T a
x+î

)2 − (T a
x )

2 − (T a
x+î

)2
))

, (4.15)

and use the relations (3.13) and (3.14) to find

⟨qa(x,t), qa(x+î,t)
| τ(x,x+î) |q

a
(x,t+1), q

a
(x+î,t+1)

⟩ = exp

(
ϵJ

N − 1

2N

)
,

⟨qa(x,t), qb(x+î,t)
| τ(x,x+î) |q

a
(x,t+1), q

b
(x+î,t+1)

⟩ = 1

2

(
exp

(
ϵJ

N − 1

2N

)
+ exp

(
−ϵJ

N + 1

2N

))
,

⟨qb(x,t), qa(x+î,t)
| τ(x,x+î) |q

b
(x,t+1), q

a
(x+î,t+1)

⟩ = 1

2

(
exp

(
ϵJ

N − 1

2N

)
− exp

(
−ϵJ

N + 1

2N

))
.

(4.16)

All other transfer matrix elements reduce to zero. The physics of the system are invariant under
the change of an overall factor of the Boltzmann weights. We multiply the transfer matrix
elements by the factor

exp

(
−ϵJ

(
N − 1

2N
− 1

2

))
1

cosh
(
ϵJ
2

) . (4.17)

The resulting Boltzmann weight factors of plaquettes are depicted in Table 4.1. In order to
move between valid configurations in the Markov chain, whole clusters of spins have to be
flipped at a time. In a single-cluster algorithm step one starts with an initial spin configuration
and constructs probabilistically a cluster of spins of the same flavor in accordance with detailed
balance. This works by picking an initial spin at t = 0 and probabilistically choosing a bond
on each plaquette that is visited such that detailed balance is respected. The bonds define the
cluster flow through the lattice in space and time. The possible bond types on an active plaquette
and their probabilities of being chosen in the cluster building process are shown in Table 4.2.
We find that a cluster can never move backwards in time. The boundary conditions imply, that a
cluster can loop around the edges of the lattice if it reaches t = β, xi = 1 or xi = L. The cluster
is completed once it connects back to the initial site at t = 0. In order to build the next spin
configuration in the Markov-chain the whole cluster is then assigned a random flavor. Figure
4.2 shows an example of a cluster for d = 1. The concept can be taken a step further in the form
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4. Cluster representation of CP(N − 1) models

exp
(
−S(qa(x,t), q

a
(x+î,t)

, qa(x,t+1), q
a
(x+î,t+1)

)
)
= exp

(
ϵJ
2

)
cosh

(
ϵJ
2

)−1

exp
(
−S(qa(x,t), q

b
(x+î,t)

, qa(x,t+1), q
b
(x+î,t+1)

)
)
= 1

exp
(
−S(qa(x,t), q

b
(x+î,t)

, qb(x,t+1), q
a
(x+−̂i,t+1)

)
)
= tanh

(
ϵJ
2

)

Table 4.1.: All plaquette configurations with non-zero weights are listed here. The fundamental
spins qa and qb take different flavors, qa ̸= qb.

of multi-cluster algorithms, in which the complete d + 1 dimensional lattice is covered with
clusters. At this point it has to be noted that the Boltzmann factor of the plaquette qaqa → qaqa,
that can take both bond types, is exactly the sum of the other two Boltzmann factors. It is
possible to split up the spin configurations into spin-bond configurations by attributing to the
qaqa → qaqa plaquette the weight

exp
(
−S(qa(x,t), q

a
(x+î,t)

, qa(x,t+1), q
a
(x+î,t+1)

;X)
)
= tanh(ϵJ/2) (4.18)

if it carries a cross-bond, and

exp
(
−S(qa(x,t), q

a
(x+î,t)

, qa(x,t+1), q
a
(x+î,t+1)

; | |
)
= 1 (4.19)

if it carries a parallel-bond. The path integral in the partition function then sums over all valid
combinations of spin and bond configurations

Z =
∑
[q,b]

exp(−S[q, b]) =
∑
[q,b]

∏
□

exp(−S(q□, b□)). (4.20)

Here the product ranges over all active plaquettes denoted by the □-symbol. The spins and
bond types on the plaquette are q□ and b□, respectively. By considering that all spins on a
cluster need to be of the same flavor, we find that each bond configuration [b] appears in N#C

spin configurations, where #C[b] denotes the number of clusters in the bond configuration.
However, the Boltzmann factor of these configurations does not depend on the flavor of the
spins; therefore, we are able to integrate out the spins from the partition function

Z =
∑
[b]

exp(−S[b])N#C[b], exp(−S[b]) =
∏
□

exp(−S(b□)). (4.21)

In the large N limit this provides a great advantage since the dimensionality of the path integral
now only depends on the lattice volume and its segmentation in the Euclidean dimension.
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4. Cluster representation of CP(N − 1) models

p(| |) = 1
1+tanh(ϵJ/2)

p(X) = tanh(ϵJ/2)
1+tanh(ϵJ/2)

p(| |) = 1

p(X) = 0

p(| |) = 0

p(X) = 1

Table 4.2.: Bonds connect two spins of the same flavor in order to build clusters of spins. Chang-
ing the flavor of two connected spins must yield another plaquette configuration with
non-zero weight. The bond types are denoted as cross-bond and parallel-bond.

4.1.1. Generalization to arbitrary n

In Section 3.3 we established that our interest lies with systems in which n ∼ N and βJ ∼ 1/N .
We thus generalize the previous introduction of clusters to systems with arbitrary values of n. To
do so we take inspiration from Kawashima and Gubernatis [16]. Instead of explicitly repeating
the calculations for such representations, it is simpler to make use of the fact that spin states of
a symmetric Young diagram of n boxes are simply the symmetrization of n fundamental spins.
Accordingly, we are able to work with n fundamental spins on each site, that are symmetrized
by a projector Px. This is done by introducing an extra lattice dimension, in which n layers of
fundamental spin lattices are stacked without any notion of neighborhood. This means, that all
n spins on a site interact equally with all n spins of a neighboring site. In the Hamiltonian this
manifests as

H = −J
∑
⟨x,y⟩

(
n∑

i=1

T a
x,i

)(
n∑

j=1

T a
y,j

)
, (4.22)

where i and j denote the layer. In this notation we impose a periodic boundary condition on the
layer index T a

x,i+n = T a
x,i. Now the symmetrization operator P appears in the partition function

Z = Tr (exp (−βH)P) , P =
∏
x

Px. (4.23)

The projectors Px are given by

Px =
1

n!

∑
σ∈Sn

σ. (4.24)
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4. Cluster representation of CP(N − 1) models

Figure 4.2.: In a single-cluster algorithm a cluster is built probabilistically on a given spin con-
figuration. This shows an example of a cluster on a lattice with d = 1, L = 6, and
β = 2ϵ

As an explicit example let us consider N = 3 and n = 2. We find

Px =



1 0 0 0 0 0 0 0 0
0 1

2
1
2

0 0 0 0 0 0
0 1

2
1
2

0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1

2
1
2

0 0 0
0 0 0 0 1

2
1
2

0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1

2
1
2

0 0 0 0 0 0 0 1
2

1
2


in the basis



uu
ud
du
dd
ds
sd
ss
us
su


. (4.25)
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We observe, that the symmetrization operator commutes with the Hamiltonian,

[H,P ] =
−J

n

∑
⟨x,y⟩

n∑
i,j,k,l=1

[
T a
x,iT

a
y,j,
∏
z

T a
z,kT

a
z,l

]

=
−J

n

∑
⟨x,y⟩

n∑
i,j=1

n∑
k1,l1=1

n∑
k2,l2=1

[
T a
x,iT

a
y,j, T

b
x,k1

T b
x,l1

T c
y,k2

T c
y,l2

] n∑
k3,l3=1

∏
z ̸=x,y

T d
z,k3

T d
z,l3

=
−J

n

∑
⟨x,y⟩

n∑
i,j=1

n∑
k1,l1=1

n∑
k2,l2=1

([
T a
x,i, T

b
x,k1

T b
x,l1

]
T a
y,jT

c
y,k2

T c
y,l2

+ T a
x,iT

b
x,k1

T b
x,l1

[
T a
y,j, T

c
y,k2

T c
y,l2

]) n∑
k3,l3=1

∏
z ̸=x,y

T d
z,k3

T d
z,l3

=
−J

n

∑
⟨x,y⟩

n∑
i,j=1

n∑
k1,l1=1

n∑
k2,l2=1

(
ifabe

(
δi,k1T

e
x,k1

T b
x,l1

+ δi,l1T
b
x,k1

T e
x,l1

)
T a
y,jT

c
y,k2

T c
y,l2

+ T a
x,iT

b
x,k1

T b
x,l1

iface
(
δj,k1T

e
y,k2

T c
y,l2

+ δj,l2T
c
y,k2

T e
y,l2

)) n∑
k3,l3=1

∏
z ̸=x,y

T d
z,k3

T d
z,l3

= 0.

(4.26)

In the last step we have used, that fabe is antisymmetric under the exchange of b and e, while
the term in brackets, that it is multiplied by, is symmetric. The term containing face disappears
analogously. Consequently, it is sufficient to only symmetrize the system at t = β. Let us take
a closer look at the partition function. We again start by discretizing the Euclidean dimension
and separating the Hamiltonian into 2d terms that are defined by (4.6) with T a

x =
∑n

i=1 T
a
x,i.

Each Hi is then decomposed further into n expressions consisting of terms that commute with
each other.

Hi,j =
∑

x|xi even

−J

n−1∑
k=0

T a
x,kT

a
x+î,k+j

, Hi+d,j =
∑

x|xi odd

−J

n−1∑
k=0

T a
x,kT

a
x+î,k+j

, (4.27)

where j ∈ {1, . . . , n}. We then continue with the Suzuki-Trotter expansion just as we had done
before. The Boltzmann factor of a spin configuration is again the product of the weights of the
active plaquettes, but now an additional factor ⟨qt=β| P |qt=0⟩ comes from the symmetrization.
Each plaquette still connects four fundamental spins, therefore the same plaquette configura-
tions with the same weights appear as in the n = 1 case. Let us take a look at the Boltzmann
weights and cluster flow in the symmetrization step between t = β and t = 0. In Table 4.3
we treat the example with N = 2 and n = 2. The weights of the spin configurations are split
equally into weights of spin-bond configurations, such that

Px(q(x,1,β), . . . , q(x,n,β), q(x,1,0), . . . , q(x,n,0); b) =
1

n!
, (4.28)

where b is a bond type that is compatible with the spins involved, and the second index of q
denotes the layer. For incompatible combinations, the weight vanishes. This way of splitting
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4. Cluster representation of CP(N − 1) models

satisfies∑
b

Px(q(x,1,β), . . . , q(x,n,β), q(x,1,0), . . . , q(x,n,0); b) = Px(q(x,1,β), . . . , q(x,n,β), q(x,1,0), . . . , q(x,n,0)).

(4.29)

⟨qaqa| Px |qaqa⟩ = 1

⟨qbqa| Px |qbqa⟩ = 1
2

⟨qbqa| Px |qaqb⟩ = 1
2

Table 4.3.: The symmetrizing projector gives a non-zero contribution to all configurations where
the spins on the layers at (x, 0) are a permutation of the spins at (x, β). This table
shows the possible cluster flows in spin configurations of a system with N = 2 and
n = 2. The black dots represent a different spin flavor than the white ones.

It is now possible to again express the partition function as a sum over spin-bond configurations.

Z =
∑
[q,b]

exp(−S[q, b])

(
1

n!

)Ld

=
∑
[q,b]

∏
□

exp(−S(q□, b□))

(
1

n!

)Ld

(4.30)

The symmetrization adds a factor 1/n! for every lattice site that can be ignored as an overall
factor of the partition function. More importantly the symmetrization affects the number of
configurations in the path integral. Consequently, the spins can be integrated out of the partition
function analogously to the n = 1 system, and we end up with

Z =
∑
[b]

exp(−S[b])N#C[b], exp(−S[b]) =
∏
□

exp(−S(b□)). (4.31)

4.1.2. Continuous time limit

The Suzuki-Trotter expansion generates an error of order O(ϵ) that only disappears in the con-
tinuum time limit ϵ → 0. In the previous calculations we have chosen the overall factor of
plaquette Boltzmann weights such that parallel-bonds carry a weight of 1. A bond configura-
tion is thus completely defined by the number and position of cross-bonds and the permutation
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among layers of each site at t = β

Z =

n2dLd∏
i=1

 M∑
ni=0

M−ni+1∑
ti1=1

M−ni+2∑
ti2=ti1+1

· · ·
M∑

tini
=tini−1+1



(∏

x

∑
σx∈Sn

)
︸ ︷︷ ︸∑

[b]

× tanh

(
ϵJ

2

)∑n2dLd

i=1 ni

N#C[b].

(4.32)

In this notation we index the channels between sites and layers in which cross-bonds can appear
with i ∈ {1, . . . , n2dLd}. For each channel the sum over the number of cross-bonds ni on
channel i is taken. This number is limited by the number of discrete time steps M = β/ϵ. The
innermost brackets contain the sum over the positions of the cross-bonds in the time dimension,
where tim is the number of the plaquette on which the m-th cross-bond of channel i is situated.
Finally, the path integral contains for every lattice site, marked by a d-dimensional vector x, the
sum over all possible permutations among the n layers at said site. The weight of a configuration
gains a factor tanh(ϵJ/2) for every cross-bond and a factor N for every cluster. The number of
clusters is a highly complex non-local function for which we have no analytical formulation. In
the continuous time limit we encounter

ϵ

M−ni+m∑
tim=tim−1

ϵ→0−−→
∫ β

tim−1

dtim (4.33)

and
1

ϵ
tanh

(
ϵJ

2

)
ϵ→0−−→ J

2
. (4.34)

The question needs to be asked, whether #C[b] is well defined at the limit ϵ → 0. Problems
arise if there is a finite chance of an infinite number of transitions appearing in a channel while
β is finite. We remind ourselves, that the ’t Hooft coupling demands βJ ∼ 1/N . The natural
choice is to let β be finite and independent of N and J ∼ 1/N . The continuous time limit is
therefore well defined in the large N limit and yields the partition function

Z =

n2dLd∏
i=1

(
∞∑

ni=0

(∫ β

0

dti1

∫ β

ti1

dti2· · ·
∫ β

tni−1

dtini

))(∏
x

∑
σx∈Sn

)
︸ ︷︷ ︸∫

Db

(
J

2

)∑n2dLd

i=1 ni

N#C[b]

=

n2dLd∏
i=1

(
∞∑

ni=0

(
1

ni!

∫ β

0

dti1

∫ β

0

dti2· · ·
∫ β

0

dtini

))(∏
x

∑
σx∈Sn

)(
J

2

)∑n2dLd

i=1 ni

N#C[b].

(4.35)

4.1.3. Large N limit

The prime advantage of the cluster formalism emerges at large values of N . It allows us to
avoid dealing with an infinite number of spin flavors. In this formalism three things happen
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4. Cluster representation of CP(N − 1) models

in the large N limit. The number of layers n becomes infinite while the ratio n/N remains
constant, the factor N#C becomes infinite and the weight of a crossing J/2 goes to zero. While
J → 0 implies that the chance to find a cross-bond in a specific channel is vanishingly small,
one finds that the chance of a cluster, starting on a specific lattice site and layer, transitioning to
an arbitrary neighboring site and layer is actually finite. Generally a cluster configuration has
an infinite number of crossings due to the number of channels growing with N2. Consider the
probability pm to encounter m cross-bonds between two specific layers of neighboring sites.
Under the assumption that the sum over all configurations with m such cross-bonds will wash
out the effect that m has on #C, we find

pm =
1
m!

(
βJ
2

)m∑∞
ni=0

1
ni!

(
βJ
2

)ni
. (4.36)

On average we expect to find
∞∑

m=0

mpm =
βJ

2
(4.37)

cross-bonds on a channel. This implies a probability per unit time to encounter a cross-bond
on a specific channel of J/2. If we define J := j/n and consider that each site and layer is
connected via 2n channels, then the probability per unit time of a cluster, starting on a specific
lattice site and layer, transitioning to any neighboring site and layer is given by j.
Since the lattice at the large N limit grows infinitely large in the extra dimension of the n
layers, it becomes impossible to generate or work with full cluster configurations. We need a
different approach. Let us consider the system consisting of only a single lattice site. Without
any neighbors, no interactions can take place in the time between t = 0 and β. A cluster
configuration is therefore fully defined by the permutation at β. Consider the single-site model
at arbitrary finite N and n. The cluster configurations are the elements of the symmetric group
Sn. The elements σ are assigned the Boltzmann factor N#C , where the number of clusters
is equal to the number of partitions of σ and therefore only depends on the conjugacy class.
Table 4.4 illustrates this for the example of n = 3. We are interested in the average size of

Partition Size of the conjugacy class Boltzmann factor Example

1 + 1 + 1 1 N3

2 + 1 3 N2

3 2 N1

Table 4.4.: The cluster configurations of the single-site model in the symmetric representation
of n boxes are given by the permutations of the symmetric group Sn at t = β. This
table shows the Boltzmann factor of configurations in the example n = 3.

a cluster that is found by picking a random lattice site ⟨|C|⟩SC . The subscript SC stands for
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4. Cluster representation of CP(N − 1) models

”single cluster” and is added to avoid confusion with the average cluster size in a configuration.
Explicit calculations of examples with small n suggest the recursive definition of the cluster
size probability distribution

p(|C| = m+ 1) = p(|C| = m)
n−m

N + n−m− 1
, p(|C| = 1) =

N

N + n− 1
. (4.38)

At large N this reduces to

p(|C| = m) =
N

n

(
n

N + n

)m

, (4.39)

which ultimately results in the expectation value

⟨|C|⟩SC =
∞∑

m=1

mp(|C| = m) = 1 +
n

N
. (4.40)

The expectation value for the size of a single cluster turns out to be finite despite the infinite
number of layers. In chapter 5 we confirm this quantity to be finite in the two-site lattice model
as well. This result suggests the possibility of extracting information about the SU(N) quantum
ferromagnet at large N by analyzing the flow of a single cluster through the lattice. To this
end we propose treating the propagation from t = 0 to β as a diffusion process. Each time
the cluster reaches β at the original site the probability of closing the cluster is evaluated. The
idea of treating the cluster flow as a diffusion process is restricted to the large N limit since it
is based on the assumption that a cluster never interacts with itself due to the infinite number
of layers. By this we mean that if the cluster were to loop back onto itself at t ̸= 0 it would
force a transition of the cluster flow. If the cluster reaches β at its initial lattice site, there is a
probability of the cluster to close with the right permutation of layers. The proposed approach
would need to take into account that not closing the cluster leads to a decrease in #C. This also
happens each time the cluster crosses β at another lattice site. The issue is further complicated
by the fact that the inspected cluster limits the space for the remaining clusters in the system
to propagate. So far our attempts at describing the probability to close the cluster have proven
inadequate and further investigation is required.
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5. SU(N) ferromagnet with two sites at
N = ∞

D-Theory has shown that we can use the 2-dimensional ferromagnetic SU(N) quantum Heisen-
berg model to solve the (1 + 1)-dimensional CP(N − 1) at any value of N . In the section on
dimensional reduction we have pointed out that L > ξ and a sufficiently large value of β are
necessary to recover reasonable measurements through D-Theory. Still, considering the SU(N)
spin model at small volumes has its uses. At low temperatures it turns out that the two-site
problem can be directly solved at N = ∞ with a reasonable amount of effort. This can be used
as a check for procedures that are more naturally extended to larger systems.
Let us consider the Hamiltonian of the SU(N) ferromagnet with two sites

H = −JT a
xT

a
y . (5.1)

We can be rewrite it to accommodate the use of Casimir operators

H = −J

2

(
(T a

x + T a
y )

2 − (T a
x )

2 − (T a
y )

2
)
. (5.2)

We again consider a totally symmetric representation on each site. In order to diagonalize the
complete system, these representations are coupled together and decomposed with the help of
Young tableaux

︸ ︷︷ ︸
n

⊗ ︸ ︷︷ ︸
n

= ︸ ︷︷ ︸
n

⊕ ⊕ · · · ⊕ ︸ ︷︷ ︸
2n

. (5.3)

This sum extends over all diagrams with 2n boxes in at most two rows. A diagram of an
irreducible representation in (5.3) with mi boxes in the i-th row has a degeneracy

DN
m1,m2

=
(N +m1 − 1)!

(N − 1)!

(N +m2 − 2)!

(N − 1)!

m1 −m2 + 1

(m1 + 1)!m2!
. (5.4)

From [20] we take the quadratic Casimir for arbitrary irreducible representations

C2(m1,m2, . . . ,mk) =
nN

2
+

k∑
i=1

mi(mi + 1− 2i)

2
− n2

2N
, (5.5)

where k denotes the number of rows in the diagram. Let us replace m1 and m2 by n1 = m1−m2

and n2 = m2. We find

DN
n1,n2

=
(N + n1 + n2 − 1)!

(N − 1)! (n1 + n2)!

(N + n2 − 2)!

(N − 2)!n2!

n1 + 1

n1 + n2 + 1
(5.6)
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5. SU(N) ferromagnet with two sites at N = ∞

and

C2(n1, n2) =
1

2N

(
(N − 1)n2

1 + 2(N − 2)n2
2 + 2(N − 2)n1n2

+N(N − 1)n1 + 2N(N − 2)n2

)
.

(5.7)

If we take into consideration that each diagram consists of 2n boxes, therefore n1 + 2n2 = 2n,
these expressions reduce to

DN
2n−2n2,n2

=
(N + 2n− n2 − 1)!

(N − 1)! (2n− n2)!

(N + n2 − 2)!

(N − 2)!n2!

2n− 2n2 + 1

2n− n2 + 1
,

C2(2n− 2n2, n2) =
1

2N

(
4(N − 1)n2 − 4Nnn2 + 2Nn2

2 + 2(N − 1)n− 2Nn2

)
.

(5.8)

The eigenvalues of the Hamiltonian take the form

En,n2 = −J

2
(C2(2n− 2n2, n2)− 2C2(n, 0)) = −J

2

(
N − 1

N
n2 − 2nn2 + n2

2 − n2

)
. (5.9)

In Section 3.3 we have argued that βJ must scale with 1/N and n ∼ N . We therefore let
J = j/n and leave β independent of N . The variable n2 can take integer values from 0 to n. In
the limit N → ∞ we keep n/N and n2/N fixed and obtain

En,n2 = − j

2n
(n− n2)

2 . (5.10)

We define an effective action through the relation

exp (−Seff(n2)) = DN
n,n2

exp (−βEn,n2) (5.11)

in order to write the partition function as

Z =
∞∑

n2=0

exp (−Seff(n2)). (5.12)

Stirling’s approximation at N → ∞ reads

log(N !) = N log(N)−N. (5.13)

We use it to obtain the large N limit of the degeneracies

log
(
DN

n,n2

)
= N log

(
1 +

2n− n2

N

)
+ (2n− n2) log

(
1 +

N

2n− n2

)
+N log

(
1 +

n2

N

)
+ n2 log

(
1 +

N

n2

)
+ log

(
2n− 2n2 + 1

2n− n2

)
.

(5.14)

To account for the possibility of n = n2 we cannot neglect the +1 in the last term. In the analysis
of Seff it is important to know not just the scaling behavior of n2 with N , but the behavior of the
difference ϵ = n− n2. Written in terms of ϵ the effective action takes the form

Seff =− βj

2

ϵ2

n
+

βj

2

n− ϵ

n
−N log

(
1 +

n+ ϵ

N

)
− (n+ ϵ) log

(
1 +

N

n+ ϵ

)
−N log

(
1 +

n− ϵ

N

)
− (n− ϵ) log

(
1 +

N

n− ϵ

)
− log

(
2ϵ+ 1

n+ ϵ

)
.

(5.15)
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5. SU(N) ferromagnet with two sites at N = ∞

5.1. Method of steepest descent

It is revealed, that Seff is of order O(N), therefore the partition function is dominated by the
minimum of Seff with respect to ϵ. Despite being of subleading order, the last logarithm diverges
as ϵ goes to 0 due to the behavior of the degeneracy of the irreducible representations. We thus
need to be careful when neglecting this term. Let us apply the method of steepest descent to
evaluate the partition function. We aim to find the minima of S̃eff := Seff/N . In the case of
ϵ = O(N) we examine the derivative of S̃eff by ϵ/n to find the saddle-point equation

dS̃eff

d(ϵ/n)
= −βj

ϵ

N
− n

N
log

(
1 +

N

n+ ϵ

)
+

n

N
log

(
1 +

N

n− ϵ

)
− 2n2

N(2ϵ+ 1)(n+ ϵ)
!
= 0.

(5.16)

This expression is indeed of order O(1), just as one would expect. At ϵ ̸= 0 the last term can
be neglected, due to it being of subleading order O(1/N). However, in the limit ϵ → 0 this
ordering gets skewed and this term cannot be neglected. We conclude, that ϵ = 0 is not a valid
solution of the saddle-point equation and henceforth we work with

dS̃eff

d(ϵ/n)
= −βj

ϵ

N
− n

N
log

(
1 +

N

n+ ϵ

)
+

n

N
log

(
1 +

N

n− ϵ

)
!
= 0. (5.17)

The question arises, whether S̃eff has a minimum for some ϵ > 0 with ϵ = O(N). By definition
the maximal value of ϵ is 1. We know, that the ground state which dominates at zero temperature
is fully symmetric for the ferromagnet, meaning ϵ → n as β → ∞.

. . .︸ ︷︷ ︸
2n

, (5.18)

In (5.17) this means that the diverging logarithmic term must compensate for −βj. Consider
the two extremes of ϵ at finite values of β. At ϵ/n = 0 the first derivative of S̃eff (5.17) vanishes.
At ϵ/n = 0 it diverges to +∞. Also consider the second derivative of S̃eff while still neglecting
the subleading order terms,

d2S̃eff

d(ϵ/n)2
= −βj

n

N
+

1

1 + ϵ/n

1

N/n+ 1 + ϵ/n
+

1

1− ϵ/n

1

N/n+ 1− ϵ/n
. (5.19)

At ϵ = 0 we find, that

d2S̃eff

d(ϵ/n)2

∣∣∣∣∣
ϵ=0

=
n

N
(βcj − βj), βc :=

2N

N + n
(5.20)

is negative at low temperatures, where β > βc. By numerical evaluation one can check easily,
that the second derivative is monotonically increasing between ϵ/n = 0 and 1. We now know
enough about the topology of the first derivative of S̃eff as a function of ϵ/n to argue that there
exists exactly one minimum of S̃eff in the range 0 < ϵ/n < 1 for β > βc, or T < Tc = 1/βc

respectively. This solution breaks down at the critical temperature Tc, which implies the exis-
tence of a phase transition. Whenever a phase transition is encountered the question arises as
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5. SU(N) ferromagnet with two sites at N = ∞

to what order this transition is. This particular phase transition is unusual in that it originates
from an infinite number of flavors instead of an infinite volume. This in not something unprece-
dented. In 1980 Gross and Witten published the discovery of a third order phase transition in
the large N limit of the two-dimensional U(N) Wilson lattice gauge theory [7]. In the Ehrenfest
classification the order of a phase transition is given by the derivative of the free energy

F = − log(Z)

β
(5.21)

that exhibits a discontinuity. To determine this order would require us to understand the behavior
of ϵ at the critical temperature. Due to time constraints this is not pursued further here. In
Chapter 4 we have not found anything that would point towards a phase transition. This suggests
that we do not yet fully understand the cluster description of the SU(N) quantum ferromagnet.

5.2. Magnetic susceptibility

In the previous chapter we discussed the importance of a finite expectation value of the cluster
length ⟨|C|⟩SC , which is best measured in units of β, to the feasibility of using clusters to
describe the large N limit of the SU(N) quantum ferromagnet. Considering that all spins in a
cluster must be of the same flavor reveals that the cluster length is very closely related to the
magnetic susceptibility

⟨T aT a⟩, a ∈ {1, 2, . . . , N2 − 1}, (5.22)

where T a is the total spin T a
x + T a

y . The two quantities only differ by a factor. The magnetic
susceptibility can be expressed as the quadratic Casimir (5.7). Since the magnetic susceptibility
is independent of the value of a we find

⟨
N2−1∑
a=1

T aT a⟩ = ⟨C2(n1, n2)⟩ ⇒ ⟨T aT a⟩ = ⟨C2(n1, n2)⟩
N2 − 1

. (5.23)

Expressed in terms of ϵ the quadratic Casimir reads

C2(ϵ) =
N − 2

N
n2 + ϵ2 + (N − 2)n+ ϵ. (5.24)

In the low temperature phase, where ϵ ∼ N , the leading order of the expression is given by

C2(ϵ) = n2 + ϵ2 +Nn, β > βc. (5.25)

The resulting magnetic susceptibilitiy at N → ∞ with fixed n/N is

⟨T aT a⟩β>βc =
n

N

(
1 +

n

N

)
+

ϵ2

N2
, (5.26)

where ϵ is the solution of the saddle-point equation (5.17). The factor between the cluster length
and the magnetic susceptibility in the two-site case

⟨T aT a⟩ = n

N
⟨|C|⟩SC (5.27)
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5. SU(N) ferromagnet with two sites at N = ∞

is found by comparison at the limit β → 0, where there can be no interaction between lattice
sites and the cluster formalism becomes much simpler. We understand from the cluster formal-
ism, that the two-site model at β → 0 is equivalent to two independent single-site models. The
calculation of the magnetic susceptibility in the single-site case is trivial, since we know the
form of the quadratic Casimir (3.13). One then simply has to take into consideration that the
magnetic susceptibility is an extensive quantity, while the cluster size is intensive.
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6. Conclusion

Several developments in the understanding of two-dimensional CP(N−1) non-linear σ models
in the large N limit have been achieved.
In this thesis it has been confirmed that CP(N − 1) models are indeed topologically non-trivial,
and the self-duality equations that define the instanton states, which are a result of the topologi-
cal non-triviality, have been derived. Additionally, the leading order of the mass-gap equation in
a 1/N expansion has been determined. The D-theory approach to regularize CP(N − 1) mod-
els has been investigated, and we have confirmed that the dimensionally reduced low-energy
degrees of freedom of a (2+1)-dimensional ferromagnetic SU(N) quantum Heisenberg model
indeed yield the (1 + 1)-dimensional CP(N − 1) model at zero vacuum angle. We have formu-
lated the necessary conditions for dimensional reduction to take place and for the lattice model
to yield meaningful results. Further, we have established how the limit N → ∞ is to be ap-
proached in a way that is well defined.
The cluster formalism has proven to be an effective tool to describe lattice configurations at
large values of N . While the idea originated from the search for efficient algorithms to perform
Monte Carlo calculations, we have used clusters in order to progress towards an analytical fi-
nite effort description of SU(N) quantum ferromagnets at N → ∞. So far this has worked
for a single-site system. For larger systems the problem becomes more complicated. Some at-
tempts have been made by letting a cluster propagate through the lattice in a diffusion process.
However, so far our attempts at describing the probability to close the cluster have proven in-
adequate and further investigation is required. At this point it is also unclear how this approach
could recreate the phase transition at finite temperature in a two-site system.
Finally, we have solved the two-site case analytically via a group theoretical approach. We
have managed to calculate the expectation value of the magnetic susceptibility, which is di-
rectly related to the expectation value of the size of a cluster in units of β. Interestingly, a phase
transitions appears at finite temperature Tc = 1/βc = j(N + n)/(2N). This phase transition
shows a similarity to the third order phase transition discovered by Gross and Witten [7] in that
it arises in the large N limit. Further investigation is required in order to identify the order of
this phase transition in this two-site system.
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A. Additional calculations for the field
theory formulation of CP(N − 1)

A.1. Equivalence of topological charge terms in the z-
and P -formalism

We explicitly show that the expressions (2.15) and (2.16) for the topological charge in the two
representations of the classical CP(N−1) model are equivalent. First, let us repeat the definition
of the two formulations, z with the gauge field Aµ and P :

zT = (z1, ..., zN), zi ∈ C, |z|2 = z†z = 1,

Aµ =
1

2
i (zi∂µzi − (∂µzi)zi) ,

(A.1)

P = |z⟩ ⟨z| = zz†, Pij = zizj, (A.2)

P 2 = P, TrP = 1, P † = P. (A.3)

The topological charge term in z-notation is given by

Q[z] =
1

2π

∫
d2xϵµν∂µAν

=
1

2π

∫
d2xϵµν

i

2
((∂µzi)∂νzi + zi∂µ∂νzi − (∂µ∂νzi)zi − (∂νzi)∂µzi)

=
1

2π

∫
d2xϵµν

i

2
((∂µzi)∂νzi − (∂νzi)∂µzi).

(A.4)

In the last step the two terms that are symmetric in µ and ν are eliminated by ϵµν . We finally
show the equivalence of the two formulations of Q by using the definition (A.2) of P and the
two identities

ϵµν∂µ((∂νzi)zi) = ϵµν∂µ(zjzj(∂νzi)zi)

= ϵµν(∂µzj)zj(∂νzi)zi + ϵµνzj(∂µzj)(∂νzi)zi + ϵµν∂µ((∂νzi)zi)

= ϵµνzj(∂µzj)(∂νzi)zi + ϵµν∂µ((∂νzi)zi),

(A.5)

and
ϵµν(∂µz

†)∂νz =
ϵµν
2
((∂µz

†)∂νz − (∂νz
†)∂µz), (A.6)
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which are built on the anti-symmetry of ϵµν and z being a unit vector. It is found that Q[P ]
indeed reduces to Q[z].

Q[P ] =
i

2π

∫
d2xϵµν Tr(P∂µP∂νP )

=
i

2π

∫
d2xϵµν Tr(zz

†((∂µz)z
† + z∂µz

†)((∂νz)z
† + z∂νz

†))

=
i

2π

∫
d2xϵµν Tr(z

†(∂µz)z
†(∂νz)z

†z + z†(∂µz)z
†z(∂νz

†)z

+ z†z(∂µz
†)(∂νz)z

†z + z†z(∂µz
†)z(∂νz

†)z)

=
i

2π

∫
d2xϵµν Tr((∂µz

†)∂νz + z†(∂µz)(∂νz
†)z)

=
i

4π

∫
d2xϵµν Tr((∂µz

†)∂νz − (∂µz)∂νz
†)

= Q[z]

(A.7)

A.2. CP(N − 1) Euler-Lagrange equation

In this part of the appendix the classical Euler-Lagrange equations for CP(N − 1) models in
the z-formalism are derived. We remind ourselves of the definition of the field variable

z ∈ CN with |z| = 1. (A.8)

The Lagrange multiplier field λ(x) is introduced to realize the constraint on z(x) in the partition
function ∫

DzDz e−S[z] =

∫
DzDzDλµ e−S[z,λ], (A.9)

where
S[z, λ] =

∫
d2x

2

g2
(
DµzDµz + λ(zz − 1)

)
. (A.10)

By integrating out λµ one finds the delta function δ(zizi). We find the Euler-Lagrange equations

0 = ∂µ
δL
δ∂µz

− δL
δz

= DµDµz − λz, (A.11)

0 = ∂µ
δL
δ∂µλ

− δL
δλ

= zz − 1. (A.12)

The goal now is to use (A.12) to express λ in (A.11) in terms of z and Aµ. The identities

∂µ(zz) = 0 ⇒ z∂µz = −z∂µz (A.13)

which follow directly from (A.12), and

Aµ =
i

2
(z∂µz − z∂µz) (A.14)
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are used to show the equality

DµzDµz = (∂µ − iAµ)z(∂µ + iAµ)z

= ∂µzDµz − z∂µDµz − 2iAµzDµz + zDµDµz

= −∂µzDµz − z∂µDµz + zDµDµz

= −∂µ(zDµz) + zDµDµz

= zDµDµz.

(A.15)

Therefore the second-order field equations read

DµDµz + (DµzDµz)z = 0. (A.16)

A.3. Terms in the large N expansion of CP(N − 1)

models

In this section we derive the leading order terms in the power series expansion of the effective
action encountered in Section 2.3. Accordingly, this still follows the paper by D’Adda et al. [5].
First we remind ourselves of the full expression for the effective action

Seff = N Tr(log∆) +
i
√
N

2f

∫
d2xα(x), (A.17)

where
∆ = −∂µ∂µ +

1

N
λµλµ +

i√
N
∂µ · λµ +

i√
N
λµ∂µ +

iα√
N

+m2. (A.18)

We expand log∆ in powers of 1/
√
N . Note that in the first term of order 1/

√
N in (A.18) the

derivative acts on both λµ and a test function. We order log∆ by powers of 1/
√
N to find

log∆ = log(−□+m2) +
1√
N

1

−□+m2
(i∂µ · λµ + iλµ∂µ + iα) +O

(
1

N

)
. (A.19)

Plugging this back into (A.17) we identify the two leading order contributions to Seff .

S
(0)
eff = Tr

(
log(−□+m2)

)
,

S
(1)
eff =

i

2f

∫
d2x α(x)− Tr

(
i∂µ · λµ + iλµ∂µ + iα

−□+m2

)
.

(A.20)

The zeroth order term S
(0)
eff only gives a constant contribution to the partition function since it

does not contain any field variables. The next-to-leading order term S
(1)
eff however, does contain

the Lagrange multiplier field α and the auxiliary fields λµ. In the limit N → ∞ the partition
function is dominated by field configurations that minimize S

(1)
eff . We can give the second term

in (A.20) a more explicit form by writing out the trace over the physical Hilbert space. Both
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terms containing λµ vanish in the trace due to being antisymmetric in momentum space

Tr
i∂µ · λµ

−□+m2
=

∫
d2x ⟨x| i∂µ · λµ

−□+m2
|x⟩

=

∫
d2x

∫
d2q ⟨x|q⟩ ⟨q| i∂µ · λµ

−□+m2
|x⟩

=

∫
d2q

iqµ
−q2 +m2

∫
d2x λµ(x)

= 0,

Tr
iλµ∂µ

−□+m2
= 0.

(A.21)

The only term that survives is

Tr
iα

−□+m2
=

∫
d2x ⟨x| iα

−□+m2
|x⟩

=

∫
d2x

∫
d2q ⟨x| iα

−□+m2
|q⟩ ⟨q|x⟩

=

∫
d2x

∫
d2q iα(x) ⟨x|q⟩ 1

−q2 +m2
⟨q|x⟩

=

∫
d2q

(2π)2
1

−q2 +m2

∫
d2x α(x)︸ ︷︷ ︸
α̃(0)

,

(A.22)

where α̃(0) is the zero-momentum Fourier transform of α(x). Putting everything together we
finally end up with the expression in (2.37):

S
(1)
eff = iα̃(0)

(
1

2f
−
∫

d2q

(2π)2
1

q2 +m2

)
. (A.23)

44
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D-theory formulation of CP(N − 1)
models

B.1. SU(N) symmetry of the Heisenberg model

In this part of the appendix we show explicitly the SU(N) invariance of the ferromagnetic
quantum Heisenberg model claimed in Section 2.1. We remind ourselves of the Hamiltonian

H = −J
∑
⟨xy⟩

T a
xT

a
y , (B.1)

with the Hermitian and traceless N ×N matrices T a
x . They are defined by the commutation and

anti-commutation relations [
T a
x , T

b
y

]
= ifabcT c

xδxy, (B.2)

{T a
x , T

b
y} =

1

N
1δabδxy + idabcT c

xδxy. (B.3)

and normalized by
Tr(T aT b) = δab/2. (B.4)

In a preparatory step we calculate the commutation relation of the Hamiltonian and the total
spin

T a =
∑
x

T a
x . (B.5)

We find

[H,T a] =

−J
∑
⟨xy⟩

T b
xT

b
y ,
∑
z

T a
z


= −J

∑
⟨xy⟩

∑
z

[
T b
xT

b
y , T

a
z

]
= −J

∑
⟨xy⟩

∑
z

([
T b
x , T

a
z

]
T b
y + T b

x

[
T b
y , T

a
z

])
= −iJf bac

∑
⟨xy⟩

(
T c
xT

b
y + T b

xT
c
y

)
= 0,

(B.6)
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where in the last step we used that fabc is antisymmetric under the exchange of indices b and
c while the expression in the brackets is symmetric. Under global SU(N) transformations the
Hamiltonian transforms with the unitary matrix

U = exp (iωaT
a) . (B.7)

The transformation matrix is generated by the total spin. By writing the exponential as a series
and repeatedly applying (B.6) we show explicitly the invariance of H under SU(N) transfor-
mations

H ′ = UHU † = UH exp (−iωaT
a) = UH (1− iωaT

a + ...)

= U (1− iωaT
a + ...)H = UU †H = H.

(B.8)

B.2. Dispersion relation of magnons in the SU(N)

ferromagnet

In Section 3.1.2 a part of the calculation of magnon energies was skipped. This appendix com-
pletes the calculations. The aim is to find the effect of the shift operator part of the Hamiltonian
Hs

x acting on the state |0′x⟩ = T−,1
x |0⟩. We start by splitting Hs

x into 2d parts, one for each
direction of the neighboring site. The directions are denoted by µ ∈ {1, . . . , d}, such that x± µ̂
are the neighboring sites to x. We write

Hs
x = −J

∑
y|⟨xy⟩

N(N−1)/2∑
b=1

(T+,b
x T−,b

y + T−,b
x T+,b

y ) =
∑
µ̂

Hs
x,+µ̂ +Hs

x,−µ̂, (B.9)

where

Hs
x,±µ̂ = −J

N(N−1)/2∑
b=1

(T+,b
x T−,b

x±µ̂ + T−,b
x T+,b

x±µ̂). (B.10)

Since we have chosen |0⟩ to be the ground state of maximum spin projection |uu . . . u⟩ only
shift operators with b = 1 survive. The operator Hs

x,±µ̂ acting on |0′x⟩ shifts the excitation from
x to the neighboring site x± µ̂,

Hs
x,±µ̂ |0′x⟩ = −J(T+,1

x T−,1
x±µ̂ + T−,1

x T+,1
x±µ̂)T

−,1
x |0⟩ = −JT+,1

x T−,1
x±µ̂T

−,1
x |0⟩

= −JT−,1
x±µ̂T

+,1
x T−,1

x |0⟩ = −JT−,1
x±µ̂

(
T̃ 1
x + T−,1

x T+,1
x

)
|0⟩

= −J
n

2
|0′x±µ̂⟩ .

(B.11)

In the first line of this calculation T+,1 acting on the up-flavor spin at x ± µ̂ vanishes. In the
second to last line we used the commutator of T+ and T−,[

T+,1, T−,1
]
=

1

2

[
T 1 + iT 2, T 1 − iT 2

]
= i
[
T 2, T 1

]
= T 3 = T̃ 1. (B.12)
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This result is used to let Hs
x,±µ̂ act on the full magnon state |p⟩,

Hs
x,±µ̂ |p⟩ =

∑
x

exp (ixipi)H
s
x,±µ̂ |0′x⟩ = −nJ

2

∑
x

exp (ixipi) |0′x±µ̂⟩

= −nJ

2

∑
x

exp (i(x∓ µ̂)ipi) |0′x⟩ = −nJ

2

∑
x

exp (ixipi) exp (∓ipµ) |0′x⟩

= −nJ

2
exp (∓ipµ) |p⟩ .

(B.13)

Thus we find the eigenvalue of Hs
x,±µ̂ to be

Hs
x |p⟩ = −nJ

2

∑
µ̂

(exp (ipµ) + exp (−ipµ)) |p⟩ = −nJ

d∑
µ=1

cos(pµ) |p⟩ (B.14)

B.3. Matching parameters in the EFT

The parameters of an effective theory carry information about the underlying microscopic the-
ory. We therefore need to express the spin stiffness ρs and the magnetization density m in terms
of the microscopic coupling J and n that defines the representation of SU(N). This is done
by matching observable quantities of the two systems. To find m we study the effect of an
external magnetic field on the fully symmetric ground state consisting only of up-flavor spins
|0⟩ = |uu . . . u⟩. The external field is introduced via a chemical potential term

H ′ = H −Ba
∑
x

T a
x , (B.15)

where we chose Ba such that only the first diagonal generator remains BaT a = BT̃ 1. This
chemical potential breaks the ground state degeneracy by encouraging up- and discouraging
down-spins. In a configuration with n up-spins on each site the change of the ground state
energy is given by

E ′
0 = ⟨0| −B

∑
x

T̂ 1
x |0⟩ = E0 −BV

n

2
. (B.16)

Let us now consider the EFT analogue. This is treated in a paper by Bär, Imboden and Wiese
[21]; however, their calculations differ by a factor i compared to this thesis. The treatment of
the thermodynamic potential by Freedman and McLerran [4] seems to agree with our choice
of factors. The non-abelian chemical potential couples to the generator

∫
dd−1xj0. Therefore it

behaves in the same way as an analytic continuation of the zero-component of a gauge field. In
a field theory this implies the introduction of a covariant derivative

DtP = ∂tP + i[Wt, P ],

Wt = iBaT a.
(B.17)
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The external field Ba is chosen in the same way as above. We write down the resulting action

Seff [P,B] =

∫
d2x

[∫
S1

dtρs Tr(∂iP∂iP )− 2m

∫
H2

dtdτ Tr(PDtP∂τP − P∂τPDtP )

]
= Seff [P ]− 2mi

∫
d2x

∫
H2

dtdτ Tr(P [Wt, P ]∂τP − P∂τP [Wt, P ])

= Seff [P ]− 2mB

∫
d2x

∫
S1

dtTr(P (x, t, 1)T̂ 1 − P (x, t, 0)T̂ 1)

(B.18)

We now use our freedom to choose the interpolation of P in τ such that only the term with the
physical P (x, t, τ = 1) survives. For positive values of Bm the effective action is minimized
by the ground state P0(x, t) = diag(1, 0, 0, . . . ). This spawns a change in the effective action
of

δSeff = −βV mB. (B.19)

We now match the two energies

δSeff = βδE0 ⇒ −βV Bm = −β
V

a2
B
n

2
, (B.20)

to find
m =

n

2a2
. (B.21)

Here, we reintroduced the lattice constant a that was previously set to zero. The spin stiffness
ρs we derive by matching the magnon dispersion relation. In the SU(N) model

ESU(N) =
Jn

2
a2p2 (B.22)

was already derived above. In the EFT the dispersion relation is given by

EEFT =
ρs
m
p2 (B.23)

according to [21]. By plugging in the result for m above we finally get

ρs =
Jn2

4
. (B.24)
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