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Abstract

In this thesis we study a two-dimensional constrained height model on a honeycomb lattice, mo-
tivated by a lecture given by Prof. M. Hairer in 2016 at the University of Bern. This model has
a one-to-one correspondence to an F Model on a triangular lattice. By using a multi-cluster algo-
rithm, we simulate this model and obtain a dual form of a Berezinsky-Kosterlitz-Thouless phase
transition which is being investigated.
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1 Introduction

Historically, research in physics was carried out by experiments or by theoretical investigations.
With the invention of computers, it became possible to carry out simulations of theoretical mod-
els, i.e. physicists were not only able to construct theoretical models for analytical investigations,
but have also been able to solve them numerically. Since computer power has increased drastically
and efficient simulation algorithms have been constructed, computational physics has become an
important branch of physics, thus computer simulations have become an accepted method of sci-
entific research.

Nature

Theory Experiment

Simulation

Figure 1.1: Schematic view of the relationship between theory, experiment, and simulations.

In this thesis we use simulations in order to investigate a constrained height model that was men-
tioned by Prof. M. Hairer in 2016 at his Einstein lectures in Bern. Throughout this thesis we refer
to this model as the F̃∆ model, motivated by the one-to-one correspondence to the F model on a
triangular lattice (which we label the F∆ model). Both models are related to each other by dual-
ity. The F̃∆ model, a two-dimensional lattice model on a honeycomb lattice, is defined to have an
integer-valued height variable (or spin variable) on each site of the honeycomb lattice and nearest-
neighbors are constrained to a height difference of ±1. Those height variables can be thought of
as a height of a surface above the two-dimensional lattice. We refer to this surface as a height
field. Due to the constraint we impose, the height field is smooth in the sense that the difference
between neighboring height variables is not bigger than 1. Furthermore, the constraint implies that
next-nearest-neighbors can have a height differences of 0 or ±2, where the ±2 bonds are assigned a
smaller Boltzmann weight.
A similar model on a square lattice has been investigated [1] and a roughening transition was found,
separating a rigid (smooth) phase from a rough one. The F̃∆ model also undergoes a phase tran-
sition, a dual form of the Berezinsky-Kosterlitz-Thouless phase transition, which we are going to
investigate. In Chapter 2 and 3 we provide basic knowledge about classical statistical mechanics
and Monte Carlo simulations. We set the framework in Chapter 4 by introducing the honeycomb
lattice and in Chapter 5 we define the F̃∆ model in terms of a partition function. Furthermore,
we are going to establish the duality between the F∆ model and the F̃∆ model. In Chapter 6 we
describe the algorithm which is used in order to simulate the F̃∆ model and we discuss some inter-
esting variables. The results being discussed in Chapter 7 and 8.
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2 Classical Statistical Mechanics

In this section basic features of classical statistical mechanics, with a focus on spin systems are
being reviewed. The interested reader is referred to [2, 3] for a more detailed discussion.

2.1 Partition Function

Statistical mechanics is based upon the idea of a partition function which describes the statisti-
cal properties of a system in thermodynamical equilibrium. For a classical statistical system the
canonical partition function is given by

Z(β) =
∑
[s]

e−βH[s], (2.1)

where H[s] is the Hamiltonian as a functional of a given spin configuration [s] and β = 1
kBT

. The
variable T denotes the temperature, kB is the Boltzmann constant, and the summation extends over
all possible spin configurations. One defines observables as

〈O〉 =
∑
[s]

p[s]O[s], (2.2)

where O[s] denotes the measured quantity of the configuration [s] and p[s] denotes the probability
of the system to be in a particular configuration [s] given by

p[s] =
1

Z(β)
e−βH[s]. (2.3)

2.2 Classical Spin Models

One distinguishes continuous and discrete spin models, depending on whether the spins take their
values in a continuous or discrete target space. Spin models can also be characterized by their lattice
geometry and their dimensionality d. Throughout this thesis we only consider the two-dimensional
case d = 2. Usually, when defining Hamiltonians of spin systems one adds a contribution in form
of an external magnetic field h. In this thesis, however, we define all Hamiltonians in the absence
of symmetry breaking external fields. In 1952 Potts described a class of spin models [4] which are
named after him, the standard q-state Potts model and the q-state clock model (which is also re-
ferred to as a Zq-model or q-state planar Potts model).
Both models impose a nearest-neighbor interaction and respect a q-periodicity (q ∈ N) such that
each spin variable can be parametrized by an integer-valued variable n ∈ {0,1, · · · ,q − 1}. The Boltz-
mann weight u(nx,ny) for nearest-neighboring spins is a function of the difference only and it is
periodic with period q, such that

u(nx,ny) = u(ny −nx) = u(ny −nx mod q). (2.4)

For our discussion the q-state clock model is of particular interest.

2.2.1 Clock Model

For the q-state clock model one attaches a 2-component unit-vector to each lattice site x, such that

~ex = (cos(ϕx),sin(ϕx)). (2.5)
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CHAPTER 2. CLASSICAL STATISTICAL MECHANICS

This unit-vector at lattice site x is parametrized by a discretized angle

ϕx =
2πnx
q

,nx ∈ {0,1, · · · ,q − 1}, (2.6)

such that the vector is pointing towards the corners of a planar q-gon. The q-state clock model is
characterized by the energy function

Hclock[ϕ] = −J
∑
〈x,y〉

~ex.~ey = −J
∑
〈x,y〉

cos(ϕy −ϕx), (2.7)

where 〈x,y〉 indicates a summation over nearest-neighbors. Hence the partition function reads

Zclock(β) =
∑
[ϕ]

e−βHclock[ϕ] =


∏
x

∑
ϕx∈ 2π

q ·Zq

e−βHclock[ϕ] =

∏
x

q−1∑
nx=0

e−βHclock[ϕ]. (2.8)

Since the interaction only depends on spin differences it is invariant under globalZq-transformations

ϕx 7→ ϕx +
2πn
q
,n ∈ Z,∀x. (2.9)

For the case where q = 2 the energy of a single bond is ±J , depending on whether the adjacent
spins have the same value or not. Thus the case where q = 2 and J > 0 is equivalent to an Ising
ferromagnet, if we consider integer-valued spins sx ∈ {±1} and modify the Hamiltonian

HIsing[s] = −J
∑
〈x,y〉

sxsy . (2.10)

We are going to use the Ising ferromagnet as a prime example throughout this thesis, in order to
illustrate certain theoretical concepts.

2.2.2 U(1) Model and the XY Model

The U (1) model can be obtained from the q-state clock model in the limit of infinite q. In this limit
the angles ϕx can take any value between 0 and 2π, such that a spin is parametrized by an angle on
a unit circle S1. As the name suggests, this model has a global U (1) symmetry, which means that
the Hamiltonian stays invariant under a global angular valued transformation by a fixed angle ϕ̂

ϕx 7→ ϕx + ϕ̂, ϕ̂ ∈ [0,2π),∀x. (2.11)

The two-dimensional U (1) model, which is known as the XY model, shows an unusual phase tran-
sition of infinite order, which is known as a Berezinsky-Kosterlitz-Thouless phase transition (see
Subsection 2.6.5). In order to define the XY model, consider a two-dimensional lattice where each
site carries a unit-vector as in Equation (2.5), parametrized by a continuous angle ϕ ∈ [0,2π). An-
gular differences are defined to be

∆ϕxy = ϕy −ϕx mod 2π, ∆ϕxy ∈ [0,2π), (2.12)

and the Hamiltonian is the same as for the q-state clock model

HXY[ϕ] = −J
∑
〈x,y〉

cos(ϕy −ϕx). (2.13)

Since configurations [ϕ] are now described by continuous angular variables the summation in the
partition function of the clock model is now replaced by an integration. Therefore we obtain for
the XY model

ZXY(β) =
(∫
Dϕ

)
e−βHXY[ϕ] =

∏
x

∫ 2π

0
dϕx

e−βHXY[ϕ]. (2.14)
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2.3. DUALIZATION RELATIONS AMONG THESE MODELS

2.2.3 Height Model

Consider a spin model where each lattice site x is inhabited by an integer-valued spin variable
hx ∈ Z. In this case the spins are interpreted as height variables. The difference of heights hy − hx
for adjacent lattice points x and y is related to the Hamiltonian H[h]. Consider for example the
Hamiltonian

H[h] =
J
4

∑
〈x,y〉

(hy − hx)2, (2.15)

where J > 0 and we have integer-valued height variables hx ∈ Z. We see that in the limit where
the temperature T goes to 0, flat height fields have a higher Boltzmann weight, whereas for high
temperatures fluctuating height fields are more dominant in the partition function. Throughout
this thesis, flat height fields, where fluctuations between neighboring height variables are mini-
mized, are considered smooth height fields. They are characteristic for the rigid (smooth) phase,
whereas fluctuating height fields are characteristic for the rough phase. Allowing the heights to
be integer-valued is problematic because the partition function is not well-defined anymore. Any
Hamiltonian depending on height differences is invariant under global shifts hx 7→ hx + n, for any
n ∈ Z, which means that we have an infinite number of configurations. One can get rid of the global
Z symmetry by fixing one height variable and imposing constraints which only allow for a finite
number of configurations.

2.3 Dualization Relations among these Models

The previously presented lattice models are related to each other by duality transformations. A
discussion of duality transformations and their geometrical interpretation for the honeycomb lat-
tice is given in Chapter 4, and a detailed transformation for the F̃∆ model is given in Chapter 5.
A duality transformation maps a system of low temperature to a system of high temperature (and
vice versa) and leads to new insights into critical regimes of the model. For a simple case like the
Ising model, one can also say that an ordered phase (at low temperature) is mapped to a disordered
phase (at high temperature) and vice versa. In the case where two lattice models are identical up to
a rescaling of the Boltzmann weights we call a model self-dual. The dual transformation was first
introduced for the Ising model on a square lattice by Kramers and Wannier in 1941 [5], in 1945 the
dual lattice was introduced by Wannier giving a topological picture of the dual transformation [6].
Throughout this thesis the variables x,y denote coordinates of the original lattice and variables
with a tilde like x̃, ỹ denote coordinates of the dual lattice.

2.3.1 Dualization of the Clock Model on a Square Lattice

Consider the zero field q-state clock model on a square lattice, with Hamiltonian Hclock[ϕ], given
in Equation (2.7). The Boltzmann weights factorize such that the partition function can be written
as

Z(β) =
∑
[ϕ]

e−βH[ϕ] =
∑
[ϕ]

∏
〈x,y〉

u(ny −nx). (2.16)

where u(ny − nx) is the q-periodic Boltzmann factor. For the sake of simplicity we introduce a
dimensionless coupling parameter

K = βJ, (2.17)

such that the partition function Z is a function of K (Z = Z(K)) and

u(ny −nx) = eK cos( 2π
q (ny−nx)). (2.18)
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CHAPTER 2. CLASSICAL STATISTICAL MECHANICS

We assume that the square lattice hasN sites and we impose open boundary conditions. In order to
dualize this model we need to impose an orientation on the bonds of the square lattice, indicating
how we measure spin differences. We determine spin differences by the sense of arrows pointing
up and right (see Figure 2.1). Duality of the partition function is derived by using the Fourier

x
x+ x̂x − x̂

x+ ŷ

x − ŷ

Figure 2.1: Definition of spin differ-
ences determined by the
sense of arrows. The unit-
vectors along the x and y
axes are labeled x̂ and ŷ.

x
x+ x̂x − x̂

x+ ŷ

x − ŷ

x̃x̃ − x̂

x̃ − x̂− ŷ x̃ − ŷ

Figure 2.2: New spin variables ñx̃ intro-
duced on the dual lattice. Coor-
dinates of the dual lattice are de-
noted by a tilde, such as x̃.

transformation of the Boltzmann factor at each bond, such that

u(ny −nx) =
1
q

q−1∑
kxy=0

exp
(

2πi
q

(ny −nx)kxy

)
λ(kxy). (2.19)

Now the dependence on nx is very simple and we can evaluate the partition function for this case.
Plugging in Equation (2.19) we obtain

Z(K) =
∑
[ϕ]

∏
〈x,y〉

u(ny −nx) =
∑
[ϕ]

∏
〈x,y〉

1
q

q−1∑
kxy=0

e
2πi
q (ny−nx)kxyλ(kxy)

 (2.20)

= (
1
q

)2N

∏
〈x,y〉

q−1∑
kxy=0

λ(kxy)


∏
x

q−1∑
nx=0

∏
〈x,y〉

e
2πi
q (ny−nx)kxy

 . (2.21)

The case of the square lattice implies that for a given x, the variable nx appears in the Boltzmann
factor for interactions with four neighboring sites. According to the way we defined spin differ-
ences, with the sense of arrows as up and right, we assign the sign such that x is at the head of an
arrow and y is the tail in nx −ny . Then the summation over one site x is of the form

q−1∑
nx=0

exp
(

2πi
q

(
(nx+x̂ −nx)kx,x+x̂ + (nx −nx−x̂)kx−x̂,x + (nx+ŷ −nx)kx,x+ŷ + (nx −nx−ŷ)kx−ŷ,x

))
. (2.22)

Evaluating the sum over nx yields the constraint

kx,x+x̂ − kx−x̂,x + kx,x+ŷ − kx−ŷ,x mod q = 0, (2.23)

for all lattice sites. The variables kxy act as bond variables between the spins. If we consider kxy as a
current flowing along the bond 〈x,y〉, Equation (2.23) suggests that the current is conserved at each

6



2.3. DUALIZATION RELATIONS AMONG THESE MODELS

site and thus the field is free of divergence. The partition function then takes the form

Z(K) = qN−2N
∗∑

[kxy ]

∏
〈x,y〉

λ(kxy), (2.24)

where
∑∗

[kxy ] denotes the sum over all bond configurations satisfying the constraint. The factor q−2N

is a result of the 2N bonds and the definition of the discrete Fourier transformation. Assuming that
all constraints are satisfied, the factor qN comes out after summing over all bond variables kxy . The
next step is to find a change of variables such that the constraints are satisfied. These variables
are considered dual variables living on the dual lattice (see Figure 2.2). We first rotate the original
bonds kxy consistently by an angle of 90 degrees and impose new variables ñ at the tail of the arrows
and at the head of the arrows. Define the new variables to be

kx,x+x̂ = ñx̃ − ñx̃−ŷ, kx,x+ŷ = ñx̃−x̂ − ñx̃, (2.25)

kx−x̂,x = ñx̃−x̂ − ñx̃−x̂−ŷ, kx−ŷ,x = ñx̃−x̂−ŷ − ñx̃−ŷ, (2.26)

all of which are modulo q, and we introduced dual coordinates x̃ on the dual lattice. Using this
change of variables the constraint is satisfied and we end up with the dual partition function given
by

Z(K) =
(

1
q

)N ∑
[ñ]

∏
〈x̃,ỹ〉

λ(ñỹ − ñx̃) = (
1
q

)N Z̃(K̃), (2.27)

where K̃ denotes the dual partition function with some dual coupling parameter K̃ . The Boltzmann
weight λ for the dual partition function Z̃ reads

λ(ñỹ − ñx̃) =
q−1∑
kxy=0

exp
(
−2πi
q

(ñỹ − ñx̃)kxy

)
u(kxy)

=
q−1∑
kxy=0

exp
(
−i(

2πñỹ
q
− 2πñx̃

q
)kxy +K cos(

2πkxy
q

)
)
. (2.28)

The dual Boltzmann weight λ is q-periodic, has its maximum at λ(0) and its minimum at λ(q/2) for
q even or λ((q+1)/2),λ((q−1)/2) for q odd. These are the same characteristics the original Boltzmann
weight u has, therefore λ describes the same physics and the model is self-dual. Ideally we want to
relate the dual Boltzmann weight λ = λ(ñỹ − ñx̃), with its dual coupling parameter K̃ such that

λ(ñỹ − ñx̃) ∝ eK̃ cos( 2π
q (ñỹ−ñx̃)). (2.29)

Using this identification one tries to deduce a duality relation between K and K̃ such that we can
associate a weak coupling phase in K with a strong coupling phase in K̃ and vice versa. For gen-
eral q such a relation is difficult to deduce analytically, but for the case q = 2 (Ising model) it can
be accomplished. For q = 2 we have u(0) = eK , u(1) = e−K in the original model. The Boltzmann
weights of the dual model then read λ(0) = eK + e−K and λ(1) = eK − e−K . Since the ratio of Boltz-
mann factors for the two states of neighboring spins is u(1)/u(0) = e−2K , it is reasonable to define
λ(1)/λ(0) = e−2K̃ , such that the duality between the two couplings reads

e−2K̃ = tanh(K)↔ (e2K − 1)(e2K̃ − 1) = 2. (2.30)

The dual Boltzmann weight λ is now given by

λ(ñỹ − ñx̃) = eK̃ cos(π(ñỹ−ñx̃))+a, (2.31)

7



CHAPTER 2. CLASSICAL STATISTICAL MECHANICS

where the constant a comes from the ambiguity of the multiplicative factor in λ(1)/λ(0). Using
λ(0) = eK + e−K = eK̃+a, we can fix this constant such that in the very end the partition function
reads

Z(K) =
(1

2

)N
Z̃(K̃) =

(1
2

)N (
2cosh(K)

eK̃

)2N

Z(K̃). (2.32)

From this dual relation we can see that if K → 0, we have K̃ →∞, which means that a disordered
phase in the original model (at high temperature) is mapped to an ordered phase in the dual model
(and vice versa). The duality relation in Equation (2.30) allows us to analytically determine the
critical coupling Kc, where the second order phase transition for the Ising model takes place. The
transition takes place when K = K̃ = Kc, so we can solve Equation (2.30) for Kc and obtain

Kc =
ln(1 +

√
2)

2
. (2.33)

The geometrical interpretation of a dual transformation uses the idea of a dual lattice, where the
dual model lives. The dual lattice of an arbitrary lattice is constructed by putting a lattice point
(designated by a cross) in the interior of every elementary polygon of the original lattice and con-
necting them by a new dual interaction bond (dashed lines). In Figure 2.3 and 2.4 we see that the

Figure 2.3: Dual lattice of square lat-
tice.

Figure 2.4: Dual lattice of the honeycomb
lattice.

square lattice is self-dual (in the sense that its dual is also a square lattice) and the dual lattice of
the honeycomb lattice is a triangular lattice. Since the duality relation is reciprocal, the dual of the
triangular lattice is again a honeycomb lattice. If we want to obtain a duality relation for a spin
model on a honeycomb lattice, we need to consider an additional transformation, which is known
as the star-triangle-transformation (see Chapter 4).

2.3.2 Dualization of the XY Model

We showed that the q-state planar clock model on the square lattice is self-dual. Here we want to
show that an XY model is mapped to a two-dimensional height model by a duality transformation.
Consider an XY model on a square lattice with partition function

ZXY(K) =
(∫
Dϕ

)∏
〈x,y〉

u(ϕy −ϕx) =
(∫
Dϕ

)∏
〈x,y〉

eK cos(ϕy−ϕx), (2.34)

where we introduced once again the dimensionless coupling parameter K = βJ and implicitly gave
a definition for the Boltzmann weight u(ϕy −ϕx). In order to perform the dual transformation we
use the Fourier expansion such that

u(ϕy −ϕx) =
∑
kxy∈Z

eikxy (ϕy−ϕx)λ(kxy). (2.35)

8



2.3. DUALIZATION RELATIONS AMONG THESE MODELS

Applying the same procedure as in Subsection 2.3.1 yields that

ZXY(K) ∝ Z̃H.M.(K̃), (2.36)

where Z̃H.M(K̃) is given by

Z̃H.M.(K̃) =
∑
[h]

∏
〈x̃,ỹ〉

λ(|hx̃ − hỹ |). (2.37)

In the previous expression [h] denotes an integer-valued height configuration on the dual lattice,
and λ(|hx̃ − hỹ |) is the modified Bessel function given by

λ(|hx̃ − hỹ |) =
1

2π

∫ 2π

0
eK cos(ϕ)e−i|hx̃−hỹ |ϕdϕ

=
1

2π

∫ 2π

0
eK cos(ϕ) cos(|hx̃ − hỹ |ϕ)dϕ. (2.38)

From the dualization procedure we can see that we turn the angular-valued XY model into a height
model, where the degrees of freedom are integer-valued height variables. This transformation does
not yield an algebraic relation between the coupling parameter K and the dual coupling parameter
K̃ , like we had for the q = 2 clock model. In order to obtain such a relation we modify the original
XY model by applying a Villain-style replacement [7–9],

u(ϕ) = eK cos(ϕ) 7→ w(ϕ) =
∑
p∈Z

e−
K
2 (ϕ−2πp)2

, (2.39)

where w(ϕ) is a 2π-periodic function that is peaked at ϕ = 0, like the original XY Boltzmann weight
u(ϕ). Thus the physics is qualitatively the same. By using the Poisson summation formula (see
appendix A.3), we obtain

w(ϕ) =
∑
p∈Z

e−
K
2 (ϕ−2πp)2

=
1

√
2πK

∑
n∈Z

einϕ−
1

2K n
2
. (2.40)

The partition function can then be written as

ZXY(K) =
(∫
Dϕ

)∏
〈x,y〉

w(ϕy −ϕx)

∝
(∫
Dϕ

)∏
〈x,y〉

∑
nxy∈Z

einxy (ϕy−ϕx)− 1
2K n

2
xy . (2.41)

Evaluating the integrals over the angles ϕx yields the vanishing of the lattice divergence, we have
already encountered in Subsection 2.3.1, such that

Z̃H.M.(K̃) ∝
∗∑

[nxy ]

∏
〈x,y〉

e−
K̃
2 n

2
xy . (2.42)

Once again
∑∗

[nxy ] denotes a summation over all bond configurations which satisfy the constraint

and we defined the dual coupling parameter K̃ = 1/K . The vanishing lattice divergence enables
us to write nxy in terms of integer-valued height variables [h] living on the dual lattice, such that
nxy = hỹ − hx̃. The vanishing lattice divergence guarantees that the integer heights are defined
consistently up to an unimportant overall shift. The constrained partition function can then be
written as an unconstrained sum over all integer-valued heights

Z̃H.M.(K̃) ∝
∑
[h]

∏
〈x̃,ỹ〉

e−
K̃
2 (hx̃−hỹ )2

. (2.43)

9



CHAPTER 2. CLASSICAL STATISTICAL MECHANICS

The duality relation among the coupling variables

K̃K = 1, (2.44)

shows that the strong coupling phase of the XY model (large value of K) belongs to a weak coupling
phase of the height model (small value of K̃).

2.4 F Model on a Triangular Lattice (F∆ Model)

The F̃∆ model we are going to investigate is equivalent to the so-called F model on a triangular
lattice [10], which is a constrained 20-vertex model. Here we give a quick introduction for the
F∆ model, the equivalence is shown in Section 5.2. Suppose that arrows are placed on bonds of a
triangular lattice, such that there are three arrows entering and three arrows leaving each vertex.
There exist 20 different configurations of arrows at each vertex. If we identify configurations with
all arrows reversed we obtain the 10 distinct configurations shown in Figure 2.5.

1 2 3 4 5

6 7 8 9 10

Figure 2.5: Ten distinct reversal-symmetric vertex configurations

This is the original 20-vertex model, where we could assign different weights to each of these ver-
tices. The F∆ model identifies configurations which are related to each other by rotation and reflec-
tion and gives them the same weight. The different vertices are classified as follows

1. 2 vertices, in which ingoing and outgoing arrows are adjacent (vertex 1).

2. 12 vertices, where two incoming arrows are adjacent and the third arrow enters in the oppo-
site way (vertex 2,3,4,5,6,7).

3. 6 vertices, in which the three incoming arrows are adjacent (vertex 8,9,10).

Now we assign energies ε0,ε1,ε2 to each of these types of vertices. The first type has energy ε0,
which is the ground state energy, the second type has energy ε1, the third one energy ε2, such that
ε0 < ε1 < ε2. The corresponding Boltzmann weights are given by wi = exp(−βεi). The F∆ model
was solved analytically by Baxter [10], under the subsidiary condition that the Boltzmann weights
satisfy

(w2 −w1)2 = w2(w0 −w1). (2.45)

2.5 Observables

In order to study a statistical model, we are interested in various observables, which provide us
with information about macroscopic properties of the system. Interesting observables for the Ising
ferromagnetic are, for instance, the thermal expectation value of the energy 〈H〉 and the magneti-
zation 〈M〉. The internal energy and the magnetization for a specific configuration [s] are defined

10
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as

HIsing[s] = −J
∑
〈x,y〉

sxsy (2.46)

and

M[s] =
∑
x

sx. (2.47)

The internal energy 〈H〉 is then given by

〈H〉 =
∑
[s]

H[s]p[s] =
1

Z(β)

∑
[s]

H[s]e−βH[s]. (2.48)

Using the specific heat

CV =
∂〈H(T )〉
∂T

∣∣∣∣∣
V

(2.49)

and the relation

−
∂〈H(β)〉
∂β

∣∣∣∣∣
V

= 〈H2〉 − 〈H〉2, (2.50)

one can derive a fluctuation relation for the energy of the macroscopic system

CV kBT
2 = 〈H2〉 − 〈H〉2 = 〈(∆H)2〉. (2.51)

Similar fluctuation relations also hold for other quantities, e.g., for the isothermal susceptibility

χ =
∂〈M〉
∂H

∣∣∣∣∣
T
, (2.52)

such that one obtains
kBT χ = 〈M2〉 − 〈M〉2. (2.53)

For height models there are other interesting quantities namely the winding numbers Wx and Wy ,
which characterize the boundary conditions. The free energy of a system describes quantitatively
the capacity of a system to perform work and can be determined from the partition function

F(β) = −kBT log(Z(β)). (2.54)

Thermodynamic quantities can be calculated by appropriate differentiation of the free energy e.g.

〈H〉 = −T 2∂(F(β))
T )
∂T

, 〈M〉 = −
∂F(β)
∂H

. (2.55)

2.6 Phase Transitions

The term phase transition is most commonly used in order to describe transitions between solid,
gaseous, and liquid states of matter. A thermodynamical system in a phase has uniform physical
properties, which change continuously as a function of some external parameters, such as temper-
ature, pressure or even both. In this chapter we assume this parameter to be the temperature T .
At a certain critical temperature Tc the statistical system undergoes a phase transition, where cer-
tain properties change, often discontinuously. A first order phase transition is characterized by the
fact that the first derivative of the free energy with respect to T is discontinuous at the transition
temperature. For a second order phase transition the first derivative is continuous, but the second
derivative at the critical temperature Tc is characterized by a singularity. Since phase transitions
and phase diagrams are difficult to compute analytically, we need simulations in order to describe
them quantitatively. The discussion on phase transitions in this subsection is limited to classical
statistical mechanics.
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2.6.1 Disordered Phase and Ordered Phase

The Ising ferromagnet has a second order phase transition, which can be characterized using the
magnetization 〈M〉 as an order parameter. In the disordered phase (T > Tc), adjacent spins of a
configuration [s] tend to align themselves independently of each other, such that the overall mag-
netization of a spin configuration is close to zero (M[s] ≈ 0). Below the phase transition (T < Tc)
multiple different ordered states may appear since they are energetically favorable and adjacent
spins tend to align in the same direction. The critical temperature can be estimated by considering
the behavior of the order parameterM as a function of T . Using the theoretical pictureM(T ) (see
Figure 2.6) we can distinguish the ordered phase (T < Tc) from the disordered phase (T > Tc).

Figure 2.6: MagnetizationM per spin as a function of T (Ising model).

Note that for a system with short-range interactions and dimension d ≤ 2, the Mermin-Wagner
theorem states that continuous symmetries cannot be spontaneously broken at finite tempera-
ture [11, 12]. Since U (1) models have a continuous U (1) symmetry, the theorem implies that we
can not have a completely ordered phase because long-range fluctuations can be created with a
small amount of energy. Therefore the simple picture which works for the Ising model needs to be
modified for a two-dimensional U (1) model (see Subsection 2.6.5).

2.6.2 Spatial Correlations

Even if a system is not ordered, in general there exist regions in which the characteristics of the
material are correlated. Since we are interested in spin models, we want to measure regions where
spins are spatially correlated. The spatial correlation for an Ising ferromagnet can be measured
through a 2-point function

Γ (r) = 〈s0sr〉 − 〈s0〉〈sr〉, (2.56)

where r is the distance between the spin variables. In the limit where r goes to infinity the 2-point
correlation function has the form

Γ (r) ∝ 1
rη
e−

r
ξ , (2.57)

where η is a critical exponent and ξ = ξ(T ) is the so-called correlation length, which is a measure for
the size of a region in which the Ising spins are correlated. In the disordered phase the correlation
length is typically just a few lattice spacings but at the critical temperature Tc, the correlation length
diverges with a critical exponent ν such that

lim
T→Tc

ξ ∝ |T − Tc |−ν . (2.58)

In the ordered phase the correlation length is infinite and the correlation function approaches a
constant value.
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2.6.3 Critical Exponents

Thermodynamical properties of a statistical system can be described by a set of simple power laws
in the vicinity of the critical point T = Tc.
The Ising ferromagnet has the order parameter 〈M〉, the specific heat CV , the susceptibility χ, but
also the spatial correlation function Γ , which have a power law behavior near the critical point. In
the vicinity of the critical point these are given by

〈M〉 ∝ |T − Tc |β ,T ≤ Tc, χ ∝ |T − Tc |−γ ,
CV ∝ |T − Tc |−α , ξ ∝ |T − Tc |−ν , (2.59)

Γ (r) ∝ 1
rη
, r→∞.

To summarize, we have introduced five critical exponents α,β,γ,ν, and η. In the specific case of
the two-dimensional Ising ferromagnetic these take the values

α = 0, β =
1
8
, γ =

7
4
, ν = 1, η =

1
4
. (2.60)

Critical exponents are known analytically only for a certain number of statistical systems, but they
are very helpful in order to classify statistical systems into universality classes, where all models of
the same class share the same critical behavior.

2.6.4 Finite-Size Scaling

When performing numerical simulations on a lattice, the critical behavior of a system can be ex-
tracted from the size-dependence of the free energy and other observables near the critical point.
According to the finite-size scaling theory (see Fisher [13], Privman [14], or Binder [15]) a scaling
ansatz can be written as

F(L,T ) = L−
2−α
ν F (εL

1
ν ), (2.61)

where F is some scaling function, L describes the lattice size and ε = |T −Tc |. It is important to notice
that the critical exponents are defined in infinite lattice volumes. The choice of the scaling variable
z = εL

1
ν is motivated by the fact that the correlation length ξ ∝ ε−ν , for T → Tc, is limited by the

lattice size L, which implies that L
ξ ∝ ε

νL, is finite and we might as well take z = εL
1
ν . Appropriate

differentiation on the free energy yield the following scaling forms

M = L−
β
νM0(εL

1
ν ),

χ = L
γ
ν χ0(εL

1
ν ), (2.62)

CV = L
α
ν C0

V (εL
1
ν ).

These relations have been derived with the help of the following scaling relations

(2− η)ν = γ,
ν
2

(η + d − 2) = β, (2.63)

2− νd = α,

and by using certain substitutions in Equation (2.61). The scaling forms (2.62) and the scaling
relations in Equation (2.63) are valid only for sufficiently large L and at temperatures close to Tc.
Exactly at the transition point we have z→ 0, and the scaling functions,M0(0),χ0(0), and C0

V (0),
reduce to proportionality constants, such that we obtain

M∝ L−
β
ν ,

χ ∝ L
γ
ν , (2.64)

CV ∝ L
α
ν , at T = Tc.
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Note that the scaling functions in (2.62) are universal, apart from the scale factors for their argu-
ments. Since we described the critical behavior of the statistical system, one also needs to explain
how to obtain the critical point in the first place. By examining higher-order moments of the mag-
netization, Binder described a procedure how to derive the critical point of a statistical system [16].
For an Ising model, the Binder cumulant is defined as

U4 = 1− 〈M
4〉

3〈M2〉2
, (2.65)

such that in the case where the lattice size goes to infinity U4 → 0 for T > Tc and U4 → 2/3 for
T < Tc. For different lattice sizes, curves of U4 cross as a function of the temperature at the fixed
point T = Tc and at a certain value U ∗. Hence by making plots for different lattice sizes one gets a
first estimate for Tc, from the location of the crossing point. The crossing points for different lattice
sizes are going to vary, but nonetheless there should be a general trend towards a fixed critical point
Tc. Throughout this thesis instead of the original Binder cumulant given in Equation (2.65) we are
going to use

U4 =
〈M4〉
〈M2〉2

, (2.66)

which satisfies the same purpose.

2.6.5 Berezinsky-Kosterlitz-Thouless Phase Transition (BKT-transition)

In 2016 the physics Nobel prize was given to John Kosterlitz and David Thouless based on their
works on phase transitions of infinite order. A BKT-transition is therefore characterized by the fact
that the free energy is an infinitely differentiable function, which makes the transition itself very
smooth. This kind of phase transition was extensively investigated in the classical XY model (see
Subsection 2.2.2).
For a system with short-range interactions and dimension d ≤ 2, the Mermin-Wagner theorem states
that continuous symmetries cannot be spontaneously broken at finite temperatures [11, 12]. Since
the XY model has a U (1) symmetry, the theorem implies that we can not have a completely ordered
phase because long-range fluctuations can be created with little energy. Hence the Ising ferromag-
net, which has a discrete Z2 symmetry is allowed to have an ordered phase for T < Tc, whereas the
classical XY model for T < Tc has a quasi-ordered superfluid phase instead [7]. We conclude that
the XY model has two phases, a superfluid phase for T < Tc and a disordered phase for T > Tc. At
the critical temperature Tc the BKT-transition takes place. The disordered phase is characterized
by a short-range correlation with a finite correlation length ξ <∞ such that

Γ (r) ∝ e
−r
ξ (2.67)

and

lim
T ↓Tc

ξ(T ) ∝ exp
(

δ

(T − Tc)1/2

)
. (2.68)

As we can see, the correlation length ξ near the critical temperature is not described by Equation
(2.58), as it is the case for a finite order phase transition, but by an essential singularity, where δ
is some universal constant. At the critical point itself we enter the superfluid phase, where the
correlation length diverges, and the correlation function now reads

Γ (r) ∝ 1
rηc

(2.69)

with ηc = 1
4 . For decreasing T we are in the superfluid phase where the correlation function still

has a power law behavior, but with a continuously varying critical exponent η.
Dualizing the classical XY model (resp. a general two-dimensional U (1) model), where sites are
parametrized by a continuous angle ϕ, leads to a height model where the sites of the lattice are
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parametrized by integer-valued variables (subsection 2.3.2). The disordered phase of the XY model
(T > Tc) is mapped to a rigid phase on the height model which means that the height field is approx-
imately flat. The quasi-ordered superfluid phase of the XY model (T < Tc) however is mapped to a
rough phase on the height model, where we can also find a continuously varying critical exponent
η. These statements are summarized in Figure 2.7.

Classical XY model

T = 0 TTc

disordered phase,

ξ <∞, Γ (r) ∼ e
− rξ ,

short-range correlation

Entering superfluid phase,
BKT-transition,

ξ =∞, Γ (r) ∼ 1
rηc

, ηc = 1
4

Superfluid phase,
continuously varying η,

ξ =∞, Γ (r) ∼ 1
rη

,

long-range correlation

T = 0 (T̃ ∼∞) T (T̃ ∼ 0)Tc (T̃ ∼ Tc )

rigid (smooth) phase, flat height
field,
ξ =∞, Γ (r) ∼ 1,

infinite correlation

Entering rigid phase,
dual BKT-transition,

ξ =∞, Γ (r) ∼ 1
rηc

, ηc = 1
4

rough phase,
continuously varying η,

ξ =∞, Γ (r) ∼ 1
rη

,

long-range correlation

Dualized classical XY model (height model)

Dualizing the XY model

Figure 2.7: Classical XY model BKT-transition.

The critical exponents of the BKT-transition were discussed by Kosterlitz in 1974 [17]. Critical
exponents refer to infinite volume, but in the classical XY model as V = L × L→∞, χ diverges in
the massless phase. The finite-size scaling ansatz for the susceptibility is χ ∝ L

γ
ν = L(2−η), where

the scaling relations were used in the last step. Kosterlitz added a correction term to the finite-size
scaling behavior of the susceptibility χ such that

χ ∝ L2−ηc (log(L))−2re , (2.70)

where ηc = 1
4 and re = −1

16 , in the immediate vicinity of the critical temperature. The additional
logarithmic correction term and its critical exponent re are very hard to confirm numerically [18].
The best approximation for the additional critical exponent re has been obtained by Hasenbusch
[19]. He used lattice sizes up to L = 2048 and neglected smaller lattices in order to minimize finite-
size effects. For Lmin = 512, and using re as a free fit parameter, he obtained −2re = 0.0812(6), which
is still more than 70 standard deviations smaller than the value predicted by the BKT-theory. The
additional logarithmic correction term was the subject of many discussions, since it was hardly
possible to confirm it numerically. It was argued by Balog in [20, 21] that the correction term is of
the form

ln(χ) ∝ (2− η) ln(L) +O(Q),

where Q is given by Q =
π2
2

(ln(L)+u)2 , such that we finally obtain

ln(χ) ∼ (2− η) ln(L) + a
π2

2

(ln(L) +u)2 + b, (2.71)
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where η,a,b,u are fit parameters. The parameter u is a non-universal constant which is measured
by taking into account correction terms to the correlation length near the critical point Tc

ln(ξ(T )) ∼ δ
√
T − Tc

−u + c
√
T − Tc. (2.72)

Another indication for a BKT-transition is the behavior of the helicity modulus (or spin stiffness) .
The helicity modulus describes the reaction of the system under a twist at the spatial boundary [22].
In order to define the helicity modulus consider a two-dimensional lattice of size L × L, where
twisted boundary conditions in one direction are introduced. Consider a bond which crosses the
edge of the lattice in the direction where we introduced twisted boundary conditions. Then for
the pair of nearest-neighbor sites with i = L and j = i + 1 = 1, the weight w(ϕy −ϕx) is replaced by
w(ϕy − ϕx + α), where α is the twist angle at the boundary. The free energy is minimal at α = 0
(no twist). The helicity modulus in its dimensionless form is then defined by the second order
derivative of the free energy with respect to α at α = 0

Υ =
1
T
∂2

∂α2F(α)
∣∣∣∣∣
α=0

. (2.73)

In the large-volume limit we expect Υ to perform a universal jump at Tc. The height of this jump
was predicted to be 2

π [23].

Figure 2.8: Helicity modulus Υ as a function of temperature [23].

The region T ∈ (0,Tc) describes the quasi-ordered superfluid phase with an infinite correlation
length, the region (Tc,∞) characterizes the disordered phase, with a finite correlation length behav-
ing as in Equation (2.67).
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3 Monte Carlo Simulations

Evaluating the partition function exactly for a large system of interacting spins is a hopeless task.
For instance, by just considering 100 interacting Ising spins the partition function contains 2100

terms. The idea of Monte Carlo sampling is to compute physical quantities we are interested in
(observables), by generating spin configurations numerically, such that those spin configurations
which have the largest contribution to the partition function are predominantly generated. For a
more detailed discussion consider [2, 24].

3.1 Markov Chains

The concept of Markov chains is of central importance in Monte Carlo simulations. A Markov
chain is a sequence of configurations which begins with an initial configuration [s(1)] and then
evolves from [s(i)] to [s(i+1)] recursively by applying some algorithm

[s(1)]→ ·· · → [s(N )]. (3.1)

At the end, when computing observables the choice of the initial configuration should not matter.
After a certain number of Monte Carlo steps (i.e. iterations from [s(i)] to [s(i+1)]), the system has
reached equilibrium; from this point on we start measuring an observable O. The measurement
of an observable is carried out by averaging over all measurements after approaching equilibrium.
Assuming that equilibrium is reached after M iterations 〈O〉 is estimated as

O =
1

N −M

N∑
i=M+1

O[s(i)]. (3.2)

3.2 Measurements and Error Estimations

As in experimental physics, when measuring quantities we have to take into account statistical er-
rors. Let the quantity O be distributed to a Gaussian with mean value 〈O〉 and width σ =

√
Var(O).

Additionally, let us assume that we have N statistically independent observations within equilib-
rium {O[s(i)]}Ni=1 of a certain observable O. An unbiased estimator for the mean value is our known
expression for a measurement

O =
1
N

N∑
i=1

O[s(i)], (3.3)

such that 〈O〉 = 〈O〉. By using the definition of the variance and the assumption that the measure-
ments are independent of each other, the standard deviation of the measurement is given by

∆O =
σ
√
N
. (3.4)

An unbiased estimator of the variance σ2 is given by the sample variance S2

S2 =
1

N − 1

N∑
i=1

(O[s(i)]−O)2. (3.5)
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Consequently ∆O can be written as

∆O =
S
√
N

=
1√

N (N − 1)

√√√
N∑
i=1

(O[s(i)]−O)2 =
1

√
N − 1

√
O2 −O2

. (3.6)

The ideal Monte Carlo algorithm would create a Markov chain of statistically independent config-
urations, but since a new configuration is generated from the previous one, subsequent configu-
rations are correlated. This means that the true statistical error is larger than the naive estimate
of the standard deviation. In order to take into account correlations of subsequently generated
observations we modify the standard deviation by

∆O2 =
s2

N
(1 +

2τO
δt

) = ∆O2
naive(1 +

2τO
δt

), (3.7)

where we introduced the integrated autocorrelation time τO which is measured in units of δt. The
additional term in ∆O2 can be considered as a correction term for the true statistical error.

3.3 Autocorrelation

A normalized autocorrelation function is used in order to estimate the number τ of iterations that
separate statistically independent configurations. Consider the Markov chain as a statistical system
evolving in time. The normalized autocorrelation function for some observable O (within equilib-
rium) is defined as

φ(t) =
〈O[s(t0)]O[s(t0+t)]〉 − 〈O〉2

〈O2〉 − 〈O〉2
,

with the properties that φ(0) = 1, limt→∞φ(t) = 0 and φ(t) decays monotonically with increasing
time t. The long-time behavior of the normalized relaxation function is exponential such that

φ(t) ∝ e−
t
τ , t→∞. (3.8)

As one approaches a second order phase transition the autocorrelation time τ increases. This dy-
namical critical behavior, also called critical slowing down, can be expressed in terms of a power
law,

τ ∝ ξz ∝ |T − Tc |−νz, (3.9)

where z is the so-called dynamical critical exponent characterizing the efficiency of a Monte Carlo
algorithm.
For the error analysis (see Equation (3.7)), the relevant quantity is the integrated autocorrelation
time τO

τO
δt

=
∞∑
k=1

φ(t). (3.10)

Note that τO = τ if the autocorrelation function is purely exponential φ(t) = e−t/τ . Since φ(t) be-
comes noisy for t� τO , the sum in Equation (3.10) can behave badly when t is large. Thus the sum
should be truncated self-consistently, as the summation proceeds.

3.4 Detailed Balance and Ergodicity

In order to ensure that a Monte Carlo algorithm converges to the correct equilibrium distribution, it
is sufficient that the algorithm obeys ergodicity and detailed balance. Ergodicity means that all pos-
sible configurations which contribute to the partition function should theoretically be accessible.
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This condition is necessary since we must be able to take into account all possible contributions.
Detailed balance means that

p[s]w[s,s′] = p[s′]w[s′ ,s], (3.11)

where p[s] is the probability for the system to be in configuration [s], defined in Equation (2.3), and
w[s,s′] is the transition probability to turn the configuration [s] into [s′]. The transition probability
is normalized to ∑

[s′]

w[s,s′] = 1, (3.12)

since the algorithm necessarily turns a configuration [s] into some other configuration [s′]. In order
to ensure that the algorithm converges towards the equilibrium distribution p[s], we require that
the distribution p[s] is an eigenvector of the transition matrix w[s,s′] with eigenvalue 1∑

[s]

p[s]w[s,s′] = p[s′]. (3.13)

Using the detailed balance condition (3.11), and the normalization of the transition probability we
see that this requirement is fulfilled∑

[s]

p[s]w[s,s′] =
∑
[s]

p[s′]w[s′ ,s] = p[s′]. (3.14)

By using ergodicity one can show that such an eigenvector exists, is unique, and that the equilib-
rium distribution is therefore indeed approached asymptotically.

3.5 Algorithms

3.5.1 Single Spin Flip Method (Metropolis Algorithm)

The Metropolis algorithm is a simple algorithm, where a new configuration [s′] is randomly chosen
based on the old configuration [s], depending on the energy differences. If the new configuration is
energetically favorable, it is accepted which means that

∆H =H[s′]−H[s] < 0 =⇒ w[s,s′] = 1. (3.15)

If the new energy is larger, we accept the new configuration with a certain probability

∆H =H[s′]−H[s] > 0 =⇒ w[s,s′] = e−β∆H. (3.16)

The algorithm is ergodic since every spin configuration is accessible with a certain non-vanishing
probability. In order to show detailed balance consider the case where H[s] −H[s′] > 0, such that
H[s′]−H[s] < 0 and w[s,s′] = 1. Then detailed balance is fulfilled since

p[s′]w[s′ ,s] =
e−βH[s′]

Z(β)
e−β(H[s]−H[s′]) = p[s] · 1 = p[s]w[s,s′]. (3.17)

In the simple case of the Ising ferromagnet one visits every spin one by one and proposes to flip it.
The change of energy can be directly calculated by considering neighboring spins. After visiting
every spin we have completed one Metropolis sweep. The Metropolis algorithm has a dynamical
critical exponent (see Equation (3.9)) of z ≈ 2, which leads to a bad critical slowing down behavior.
Efficient cluster algorithms, on the other hand, can reach z ≈ 0.

19



CHAPTER 3. MONTE CARLO SIMULATIONS

3.5.2 Cluster Flip Method (Swendsen-Wang Cluster Algorithm)

Cluster flipping methods describe an entire class of algorithms which attempt to create statistically
independent configurations, by flipping clusters of spins in an intelligent way, instead of simply
attempting single spin flips. For instance, when considering the Ising model, one can apply the
so-called Swendsen-Wang cluster algorithm, where a link between spins is frozen or not depending
on the orientation of the adjacent spins. In general we may begin with an initial spin configuration.
Then we proceed through the lattice, freezing links between each pair of spins with a certain prob-
ability p. One identifies all clusters which are produced by a connected network of links, these are
then flipped with a probability of 0.5. Next the bonds are erased and a new spin configuration has
been produced, which completes one sweep of the algorithm.
Let us work out the cluster building prescription for the Ising model. In the Ising model, no links
are frozen between anti-parallel spins, therefore all spins in a cluster point in the same direction. In
the case of parallel spins the contribution to the partition function is given by eβJ . This particular
contribution is now split up into a piece where the link between the two spins is frozen and a piece
where the link is not frozen (see Figure 3.1).

= +

eβJ = (eβJ − e−βJ ) + e−βJ

Figure 3.1: Bond Splitting.

Hence the probability for a link to be frozen between two parallel spins is given by

p = 1− e−2βJ . (3.18)

Using this prescription we construct clusters in which all spins are pointing in the same direction.
In order to show ergodicity, consider an arbitrary configuration [s′]. This configuration [s′] is di-
rectly reachable (in one step) from any other configuration [s] if no links are frozen (which can
happen with a small but non-vanishing probability) and flip every spin in [s] which is anti-parallel
compared to [s′].
If we want to show detailed balance, the algorithm needs to fulfill Equation (3.11). Since the cor-
responding terms for the probability and the transition probability factorize, it is sufficient to con-
sider only 2 spins which are next to each other. We need to consider 3 different situations where
one pair of spins (parallel or anti-parallel) transforms to another pair of spins (also either parallel
or anti-parallel), and for each of these situations we need to show that Equation (3.11) is satisfied.
In the following we denote two anti-parallel spins as ↑↓ and two parallel spins as ↑↑.

1. ↑↓↔↑↓
p[↑↓]w[↑↓,↑↓] = p[↑↓]w[↑↓,↑↓]

2. ↑↑↔↑↑
p[↑↑]w[↑↑,↑↑] = p[↑↑]w[↑↑,↑↑]

3. ↑↓↔↑↑

p[↑↓]w[↑↓,↑↑] = p[↑↑]w[↑↑,↑↓]
e−βJ

Z(β)
1
2

=
eβJ

Z(β)
1
2

(1− p)

As we see, all three situations satisfy the detailed balance condition. Therefore we conclude that
the Swendsen-Wang cluster algorithm applied to the Ising model obeys ergodicity and detailed
balance.

20



4 The Honeycomb Lattice

At this point we have gathered some basic knowledge about classical statistical mechanics and
Monte Carlo algorithms. The F̃∆ model is defined on a honeycomb lattice where we associate an
integer-valued spin to each lattice site. Therefore the F̃∆ model belongs to the class of height mod-
els. Before going deeper into the formulation of the F̃∆ model, we investigate some basic properties
of the honeycomb lattice.

4.1 Description and Properties

The honeycomb lattice is an arrangement of hexagons, with spins residing on the lattice sites, which
are connected by an interaction bond. The lattice can be defined as

Λ := {~x ∈ R2 : ~x = n1~e1 +n2~e2 ±~z,~e1 =
(
0
1

)
,~e2 =

1
2

(√
3

1

)
,~z =

1
6

(√
3

3

)
,n1,n2 ∈ Z}. (4.1)

A hexagon is a six-sided regular polygon, and can be translated by some vectors ~e1,~e2 in order to

x2

x1

~e1

~e2
~z

Figure 4.1: Honeycomb lattice. Figure 4.2: Bonds, Spins, Hexagons.

generate a honeycomb lattice. As we see from its definition, the lattice Λ can be expressed in terms
of two disjoint subsets, in other words, the honeycomb lattice is bipartite and therefore decomposes
into two sublattices

Λ = A•∪̇B◦
= {~x ∈Λ : ~x = n1~e1 +n2~e2 −~z}∪̇{~x ∈Λ : ~x = n1~e1 +n2~e2 +~z}.

The A• sublattice is denoted by black dots and the B◦ sublattice is denoted by white dots (respec-
tively open circles) in Figure 4.1. Assuming a two-dimensional honeycomb lattice of infinite size
(i.e. neglecting boundary effects), it is easy to see that we can associate 2 spins and 3 bonds with
each hexagon (see Figure 4.2). By definition, the honeycomb lattice is not a Bravais lattice, i.e., it
can not be expressed as an integer linear combination of some basis vectors ~a1,~a2. Nonetheless,
we could construct a two-dimensional Bravais lattice out of the honeycomb lattice, when we bind
lattice points together in a specific way (see Figure 4.3). The unit cell, which has the shape of a
parallelogram would consist of two lattice points and the translation vectors ~e1,~e2 used before can
again be used in order to generate the lattice by translating the unit cell along these vectors.
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x2

x1

~e1

~e2

Figure 4.3: Unit cell and primitive vectors.

4.2 Duality Transformation and Star-Triangle Transformation

In 1944 Onsager introduced the star-triangle transformation for the honeycomb lattice [25], which
can also be considered an integrating-out step of one of the two sublattices. In order to perform this
transformation, the nearest-neighbor interaction of the spins needs to factorize, which happens to
be the case for the F̃∆ model.

4.2.1 The Star-Triangle Transformation

The square lattice is self-dual, such that the dual transformation yields a
high-temperature-low-temperature relation. Using this transformation for the Ising model on a
square lattice one also obtains an analytic result for the critical temperature - dual transforming
the honeycomb lattice, would not yield such a relation. Nonetheless, combining the dual trans-
formation with the star-triangle transformation (also abbreviated with ?-∆ transformation), one
also obtains a high-temperature-low-temperature relation. Throughout this thesis a dual trans-
formation of a honeycomb lattice is defined to combine the classical dual transformation with a
star-triangle transformation.
We have seen that the honeycomb lattice is bipartite, i.e., it decomposes into two sublattices, where
the sublattice A• is represented by black dots and the sublattice B◦ is represented by white dots
(respectively open circles, see Figure 4.1). Since we are dealing with nearest-neighbor interactions,
each white site (each point of B◦) interacts with 3 black sites (3 points of A•) and vice versa. The
interaction between a white site and a black site is given by some symmetric function u of the spin
differences such that

sy sx
=̂u(|sy − sx |),

sx1

sx2

sx3 =̂u(|sy − sx1
|)u(|sy − sx2

|)u(|sy − sx3
|).

Assuming that both sublattices are symmetric, one is tempted to express the partition function
Z(β) as a function of one sublattice only. Using a general weight w = w[s] instead of the physically
motivated exponential of the Hamiltonian, one can write

Z(β) =
∑
[s]

w[s] =
∑
x∈A•

∑
y∈B◦

∏
〈x,y〉

u(|sx − sy |) =
∑
x∈A•

∏
〈xi ,xj 〉

b(|sxj − sxi |). (4.2)

What happens algebraically is that we integrated out the points of the B◦ sublattice and expressed
the interaction between the B◦ sublattice and the A• sublattice as an interaction between spins
of the A• sublattice only. In order to perform this transformation we require a special form of
u = u(|sy − sx |), such that the sum over the interior points factorizes (see Figure 4.4). Executing this
transformation, we see that we geometrically turn a honeycomb lattice into a triangular lattice.
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sy

sx1

sx2

sx3

sx1

sx2

sx3

∑
sy
u(|sx1

− sy |)u(|sx2
− sy |)u(|sx3

− sy |) = b(|sx1
− sx2
|)b(|sx2

− sx3
|)b(|sx3

− sx1
|)

Figure 4.4: Star-triangle transformation. We integrate out the spin variable sy .

4.2.2 Dual Transformation of the Honeycomb Lattice

Since we have worked out the concepts of the dual transformation and the star-triangle transfor-
mation (?-∆ transformation), we are now able to construct a closed loop of transformations starting
with the honeycomb lattice (see Figure 4.5). It is important to mention that the partition functions

?-∆ transformation

dual transformation

?-∆ transformation

dual transformation

Figure 4.5: Dual transformation for the honeycomb lattice.

do not look the same at any stage of the transformation. This will be discussed in more detail
in Section 5.3. As a side remark we also want to mention that this dualization procedure could
be extended even further. By additionally introducing the Kagome lattice, the diced lattice, the
decorated lattice, and by introducing the decoration iteration transformation, one can even fur-
ther extend the loop transformation. The interested reader is referred to [26], for a more detailed
discussion of these topics.
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4.3 Boundary Conditions

Since lattice simulations are performed on finite systems, one important question to answer is how
to treat edges or boundaries of the lattice. Boundaries can be effectively eliminated by wrapping
the two-dimensional lattice around a torus. In order to impose periodic boundary conditions we
identify spins and spin interactions on the boundaries in an unambiguous way. We start by super-
imposing a hexagon over the honeycomb lattice and cutting off the rest. Now we identify oppo-

WA

WB

WC

WA

WB

WC

Figure 4.6: Boundary condition torus.

+WC

+WB
+WA

Figure 4.7: Relation between the boundary
conditions.

site edges (denoted by the same color in Figure 4.6 with labels WA, WB, WC). Assume we have a
height model where each lattice site is characterized by an integer-valued height variable. Then the
quantities WA,WB,WC characterizing the boundary conditions are integer-valued winding num-
bers, which describe a shift of the height variables at the boundaries. Copying the hexagons and
gluing them next to each other, one also notices that one of the winding numbers is determined by
the other two (compare Figure 4.7)

WA +WB +WC = 0. (4.3)

We come to realize that we are actively dealing with only two different boundary conditions. In
order to wrap the hexagon around the torus, we cut the existing hexagon into pieces and glue them
together in a specific way (see Figure 4.8). Using this construction, we end up with two independent
boundary conditions on a parallelogram which are characterized by winding numbers (Wx and
Wy). The parallelogram is homeomorphic to the torus so we can wrap the parallelogram around
it and realize that the edges match each other. Since the torus has interesting properties which
are important throughout this thesis we want to mention some of them. Note that configurations
of a height model for a system with periodic boundary conditions can be separated into sectors
classified by their winding numbers (Wx,Wy). Consider a parallelogram-shaped lattice of size L×L
and describe height variables by some (x,y) coordinates adapted to the constructed parallelogram,
such that h = hx,y (see Figure 4.9). If we translate the spin by a lattice size L in either x̂ or ŷ
direction, we need to take into account that the height field obeys the boundary conditions hx+L,y =
hx,y +Wy and hx,y+L = hx,y +Wx. The partition function ends up being a sum over all possible height
configurations of all different sectors (Wx,Wy).
We showed that by dualizing an XY model, where we have a twist angle α and a helicity modulus Υ ,
we obtain a height model (see Subsections 2.6.5 and 2.3.2). The helicity modulus can be expressed
in terms of the height model as

Υ = 〈W 2
x 〉, (4.4)

where Wx is the integer-valued shift at the boundary in one direction [19].
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Figure 4.8: Create a parallelogram by
cutting the hexagon into
pieces.

ŷ

x̂

Wy

Wx

Figure 4.9: Parallelogram of size 4 × 4, ob-
tained from the initial hexagon.

4.3.1 The Torus

The two-dimensional torus is a 2-manifold which can be defined as

T
2 = S1 × S1. (4.5)

Its fundamental group is given by

π0(T2) = π0(S1 × S1) = π0(S1)×π0(S1) = Z×Z. (4.6)

The fundamental group describes the classes of homotopy equivalent closed paths on the torus.
A closed path on the torus which can be shrunk to a point is called null-homotopic. A loop (re-
spectively a cluster) with non-trivial winding number changes the winding numbers (Wx,Wy) of
the statistical system, and takes us to another sector of the statistical system. Whether Wx or Wy is
changed depends on the way the cluster wraps around the torus. For example, if it wraps around
the torus in the horizontal direction (i.e. it crosses the red line in Figure 4.9) the winding number
Wx changes.
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5 The F̃∆ Model

5.1 Definition of the F̃∆ Model

We have set up the honeycomb lattice, where we can now impose the F̃∆ model and specify its
properties. The F̃∆ model belongs to the class of height models, i.e., each lattice site hosts an
integer-valued height variable. It imposes nearest-neighboring couplings with the interaction term

u(hx − hy) = δhx−hy ,1 + δhx−hy ,−1 =

1, if |hx − hy | = 1,
0, otherwise,

(5.1)

such that the partition function on an infinite honeycomb lattice is given by

Z =
∑
[h]

∏
〈x,y〉

u(hy − hx) = (
∏
x∈A•

∑
hx∈Z

)(
∏
y∈B◦

∑
hy∈Z

)
∏
〈x,y〉

u(hy − hx). (5.2)

We see that nearest-neighbors are constrained to a height difference of ±1. Next-to-nearest-neighbors
thus have a height difference of ±2 or 0 and the ones with ±2 are assigned the smaller Boltzmann
weight. The Hamiltonian is given by

βH[h] =
K
4

∑
[i,j]

(hi − hj )2 =
K
4

 ∑
[xi ,xj ]

(hxi − hxj )
2 +

∑
[yi ,yj ]

(hyi − hyj )
2

 , (5.3)

where [i, j] indicates pairs of next-nearest-neighbors on both sublattices and we absorb the temper-
ature T in the definition of the coupling parameter K . Consequently, the partition function takes
the form

Z(K) =
∑
[h]

∏
〈x,y〉

u(hy − hx)

exp(−βH[h])

= (
∏
x∈A•

∑
hx∈Z

)(
∏
y∈B◦

∑
hy∈Z

)
∏

[xi ,xj ]

exp(−K
4

(hxi − hxj )
2)

∏
[yi ,yj ]

exp(−K
4

(hyi − hyj )
2)

∏
〈x,y〉

u(hy − hx). (5.4)

The system has a global Z symmetry: we can translate each height variable by a fixed integer-value
n. By executing hx 7→ hx +n, the partition function would stays the same.

5.2 Equivalence of the F̃∆ Model and the F∆ Model

Consider the F̃∆ Model with its constraints defined previously. To each of the ±1 steps between
neighboring height variables we assign an arrow from the lower height value to the higher one.
This leads to arrow conservation on each hexagon of the honeycomb lattice, meaning that the sum
of positive and negative steps around every hexagon evaluates to zero, which is related to the fact
that the sum of the height differences for null-homotopic loops yields 0. If we rotate every arrow
of a hexagon consistently by an angle of 90 degrees we recognize that we obtain a 20 vertex model
on a triangular lattice (see Figure 5.1). Furthermore, we have the same energy distribution as
the F∆ model (see Section 2.4), but the additional constraint which allows to solve the F∆ model
analytically is not fulfilled in our case. Therefore we have a one-to-one correspondence between
the F∆ model and the F̃∆ model.
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Figure 5.1: Transformation of a ground state configuration of the F̃∆ model into the ground state
configuration of the F model on a triangular lattice.

5.3 Dual Transformation for the Honeycomb Lattice

5.3.1 Step 1)

Now we want to execute the dual transformation described in Subsection 4.2.2 on the F̃∆ model,
starting from the honeycomb lattice with torus boundary conditions. The dualization procedure is
executed for the case K = 0, since the interaction between next-nearest-neighbors does not allow
for a star-triangle-transformation. For the sake of clarity, we do not implement twisted boundary
conditions and therefore we have no twist angle α (see Subsection 2.6.5). The previously presented
partition function (5.2) needs to be modified such that it takes into account all sectors characterized
by their winding numbers

Z = Z(K = 0) =
∑
Wx∈Z

∑
Wy∈Z

(
∏
x∈A•
x,x̄

∑
hx∈Z

)(
∏
x∈B◦

∑
hy∈Z

)
∏̃
〈x,y〉

u(hy − hx). (5.5)

We sum over Wx and Wy in order to take into account all the possible integer-valued winding
numbers in both directions. The modified product term

∏̃
〈x,y〉 takes into account the contributions

of the boundary, so for instance if the interaction bond between two sites crosses the boundary
horizontally we have to include an additional summand to the interaction term: u(hx−hy) 7→ u(hx−
hy −Wy). We exclude one summation over an arbitrary height variable hx̄ and fix it, in order to
get rid of the Z-symmetry the overall system has. Otherwise the partition function would be ill-
defined.

5.3.2 Step 2)

Now we execute the integrate out procedure described in Subsection 4.2, and end up with a height
model on a triangular lattice, with partition function

Z =
∑
Wx∈Z

∑
Wy∈Z

(
∏
x∈A•
x,x̄

∑
hx∈Z

)
∏̃
〈xi ,xj 〉

b(hxj − hxi ), (5.6)

where b(hxj − hxi ) is the interaction term between the points of the A• sublattice. The interaction
term b also takes into account contributions fromWx andWy , if indicated by the product term, and
reads

b(hxj − hxi ) = 3
√

2δhxj −hxi ,0 +
1
6
√

2
(δhxj −hxi ,−2 + δhxj −hxi ,2)

=


3
√

2, if |hxj − hxi | = 0
1
6√2
, if |hxj − hxi | = 2

0, otherwise.

(5.7)

5.3.3 Step 3)

The dualization procedure described in Subsection 2.3 turns the height model on a triangular lattice
into a generalized XY model on the honeycomb lattice. In order to do this we express b as some
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Fourier coefficient of a 2π-periodic function f2π (see appendix A.1), such that

b(hxj − hxi ) =
1

2π

∫ 2π

0
e
−i(hxj −hxi )ϕxi xj f2π(ϕxixj )dϕxixj , (5.8)

where ϕxixj can be treated as a bond variable interacting with hxj and hxi , with an orientation from
site xi to site xj (thus ϕxixj = −ϕxjxi ). In order to do this in a consistent manner we need to define
an orientation among the dual variables. We define the orientation in figure 5.2.

Wy

Wx

Figure 5.2: Triangular lattice on a parallelogram with orientations for the links connecting dual
variables.

Keeping in mind the relations of the number of hexagons, height variables, and interaction bonds
mentioned in Section 4.1, and using H as the number of hexagons in the honeycomb lattice, one
obtains

Z =
∑
Wx∈Z

∑
Wy∈Z

(
∏
x∈A•
x,x̄

∑
hx∈Z

)
∏̃
〈xi ,xj 〉

b(hxj − hxi )

=
∑
Wx∈Z

∑
Wy∈Z

(
∏
x∈A•
x,x̄

∑
hx∈Z

)
∏̃
〈xi ,xj 〉

1
2π

∫ 2π

0
e
−iϕxi xj (hxj −hxi )f2π(ϕxixj )dϕxixj

= (
1

2π
)3H (

∏
〈xi ,xj 〉

∫ 2π

0
dϕxixj f2π(ϕxixj ))

∑
Wx∈Z

∑
Wy∈Z

(
∏
x∈A•
x,x̄

∑
hx∈Z

)
∏̃
〈xi ,xj 〉

e
−iϕxi xj (hxj −hxi ). (5.9)

At this point we can evaluate the sums over all but one height variable on the A•-lattice and also
the sums over the two boundary conditions. Using the formula for the Dirac comb (appendix A.2)
we obtain

Z = (
1

2π
)3H (

∏
〈xixj 〉

∫ 2π

0
dϕxixj f2π(ϕxi ,xj ))

∑
Wx∈Z

∑
Wy∈Z

(
∏
x∈A•
x,x̄

∑
hx∈Z

)
∏̃
〈xi ,xj 〉

e
−iϕxi xj (hxj −hxi )

= (
1

2π
)3H (2π)H+1(

∏
〈xi ,xj 〉

∫ 2π

0
dϕxixj f2π(ϕxixj ))δ

Wx
2π (ϕxk1xk2 + · · ·+ϕxk2nxk1 )δ

Wy

2π (ϕxq1xq2
+ · · ·+ϕxq2nxq1

)×

∏
7∈DG.
x̄<7

δ2π(ϕxixj1 +ϕxixj2 +ϕxixj3 +ϕxixj4 +ϕxixj5 +ϕxixj6 ). (5.10)

This last expression needs some explanation. In step 2 we ended up with a height model on a
triangular lattice. By dualizing this model we introduced dual variables ϕxixj ∈ [0,2π) with the
orientation from site xi to site xj , acting between the integer height variables hxi and hxj .
If we regard ϕxixj as a current flowing along the bond between site xi and xj , the constraint in
Equation (5.10) suggests that the current is conserved at each site and hence the field is free of
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hxi hxj
ϕxixj

Figure 5.3: Orientation bonds.

hxi

hxj6

hxj3

hxj1

hxj4

sxj2hxj5

hxj6

hxj3

hxj1

hxj4

hxj2hxj5

ϕỹ1

ϕx̃1

ϕx̃2
ϕỹ2

ϕx̃3

ϕỹ3

Figure 5.4: Rotate dual bonds by 90 degrees.

divergence. The two boundary conditions also turn out to become constraints which imply that the
overall current on the torus is conserved, i.e., the total current flowing in the horizontal or vertical
direction is 0.
In order to satisfy the constraints, we rotate an arrow of the original dual bond by 90 degrees and
define the dual variables ϕx̃ which reside at both ends of the arrow (see Figure 5.4). As a result, all
constraints are satisfied. Starting with

Z = (
1

2π
)3H (2π)H+1(

∏
〈xi ,xj 〉

∫ 2π

0
dϕxixj f2π(ϕxixj ))δ

Wx
2π (ϕxk1xk2 + · · ·+ϕxk2nxk1 )δ

Wy

2π (ϕxq1xq2
+ · · ·+ϕxq2nxq1

)×

∏
7∈DG.
x̄<7

δ2π(ϕxixj1 +ϕxixj2 +ϕxixj3 +ϕxixj4 +ϕxixj5 +ϕxixj6 ),

and performing a change of variables (i.e. integrating over dual variables ϕx̃ instead of dual bonds
ϕxixj ), we end up with

Z = (
1

2π
)3H (2π)H+1(

∏
x̃∈DA•

∫ 2π

0
dϕx̃)(

∏
ỹ∈DB◦

∫ 2π

0
dϕỹ)

1
2π

∏
〈x̃,ỹ〉

f2π(ϕỹ −ϕx̃)

= (
1

2π
)2H (

∏
x̃∈DA•

∫ 2π

0
dϕx̃)(

∏
ỹ∈DB◦

∫ 2π

0
dϕỹ)

∏
〈x̃,ỹ〉

f2π(ϕỹ −ϕx̃). (5.11)

At this point, we obtain the dualized F̃∆ model at coupling K = 0, which is a generalized XY model
on a honeycomb lattice. The coordinates of the dual lattice are denoted by x̃ and ỹ. On each lattice
site, instead of an integer-valued height variable hx ∈ Z, we now have an angle ϕx̃ ∈ [0,2π), and the
nearest-neighbor interaction term is given by

f2π(ϕỹ −ϕx̃) = 3
√

2(1 +
√

2cos(2(ϕỹ −ϕx̃)). (5.12)

The interaction term f2π(ϕỹ −ϕx̃) can become negative, which means that some configurations that
contribute to the partition function have negative weight. Hence, the dualized F̃∆ model suffers
from a severe sign problem, which prevents numerical simulations. In Equation (5.11), we empha-
size once again that the honeycomb lattice is bipartite. Therefore we can split up the integration
into an integration over all angles on the A•-dual lattice and an integration over all angles of the
B◦-dual lattice. Note that this model has a U (1) symmetry. We can rotate every angle by a fixed
constant ϕ̂, and the Hamiltonian stays invariant

ϕx→ ϕx + ϕ̂, ϕ̂ ∈ [0,2π),∀x
=⇒ H[ϕ]→H′[ϕ] =H[ϕ]. (5.13)

Due to the presence of this continuous symmetry, the Mermin-Wagner theorem applies and we
can not have a completely ordered phase with continuous symmetry breaking. The previously
introduced winding numbers (Wx,Wy) are still present but are hidden in the 2π-periodicity of the
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model. The situation is that neighboring parallelograms in x̂ or ŷ direction may differ from the
original one by a multiple of 2π such that

ϕx̃+L,ỹ = ϕx̃,ỹ + 2πW̃y ,

ϕx̃,ỹ+L = ϕx̃,ỹ + 2πW̃x. (5.14)

Since we did not introduce twisted boundary conditions, the partition function has no dependence
on a twist angle α (see Subsection 2.6.5).

5.3.4 Step 4)

Similar to the second step, we now take advantage of the fact that the dualized F̃∆ model lives on
a honeycomb lattice which is bipartite. Hence, we can integrate out the angles on the B◦ sublattice
and express the partition function as function of angles on the A• sublattice only. Since∫ 2π

0
(
∏
i=1,2,3

f2π(ϕỹ −ϕx̃i ))dϕỹ = (16π)cos(ϕx̃3
−ϕx̃2

)cos(ϕx̃2
−ϕx̃1

)cos(ϕx̃1
−ϕx̃3

)

= (2π)b̃(ϕx̃3
−ϕx̃2

)b̃(ϕx̃2
−ϕx̃1

)b̃(ϕx̃1
−ϕx̃3

),

we can successfully execute the integration and obtain

Z = (
1

2π
)H (

∏
x̃∈DA•

∫ 2π

0
dϕx̃)

∏
〈x̃i ,x̃j 〉

b̃(ϕx̃j −ϕx̃i ), (5.15)

with

b̃(ϕx̃j −ϕx̃i ) = 2cos(ϕx̃j −ϕx̃i ). (5.16)

We are left with a generalized form of an XY model on a triangular lattice, which is still suffering
from a sign problem.

5.3.5 Step 5)

Finally, there is only one step left in order to return back to our starting point. Starting from
Equation (5.15), we can use the fact that the interaction term b̃ is 2π-periodic and can be written as
a Fourier expansion (see appendix A.1), such that

b̃(ϕx̃j −ϕx̃i ) =
∑

hx̃i x̃j ∈Z
u(hx̃i x̃j )e

ihx̃i x̃j (ϕx̃j −ϕx̃i ), (5.17)

where the integer-valued variable hx̃i x̃j can be considered a dual bond (of the dual variable) between
ϕx̃j and ϕx̃i with the orientation from site x̃i to site x̃j . For the purpose of avoiding confusion, we
refer to hx̃i x̃j as just the bond variable. We chose to label the Fourier coefficient u, since it will turn
out to be the interaction term introduced in Equation (5.1). Then the partition function reads

Z = (
1

2π
)H (

∏
x̃∈DA•

∫ 2π

0
dϕx̃)

∏
〈x̃,ỹ〉

b̃(ϕx̃j −ϕx̃i )

= (
1

2π
)H (

∏
〈x̃i ,x̃j 〉

∑
hx̃i x̃j ∈Z

u(hx̃i x̃j ))(
∏
x̃∈DA•

∫ 2π

0
dϕx̃)

∏
〈x̃i ,x̃j 〉

e
ihx̃i x̃j (ϕx̃j −ϕx̃i ). (5.18)

At this point we need to consider the 2π-periodicity of the boundaries (W̃x, W̃y as described in step
3) and sum over them

Z = (
1

2π
)H

∑
W̃x∈Z

∑
W̃y∈Z

(
∏
〈x̃i ,x̃j 〉

∑
hx̃i x̃j ∈Z

u(hx̃i x̃j ))(
∏
x̃∈DA•

∫ 2π

0
dϕx̃)

∏̃
〈x̃i ,x̃j 〉

e
ihx̃i x̃j (ϕx̃j −ϕx̃i ). (5.19)
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The product term now takes into account boundaries, since two angle variables connected by a
bond on the edge can have a possible shift of 2πW̃x,y . The evaluation yields

Z = (
1

2π
)H

∑
W̃x∈Z

∑
W̃y∈Z

(
∏
〈x̃i ,x̃j 〉

∑
hx̃i x̃j ∈Z

u(hx̃i x̃j ))(
∏
x̃∈DA•

∫ 2π

0
dϕx̃)

∏̃
〈x̃i ,x̃j 〉

e
ihx̃i x̃j (ϕx̃j −ϕx̃i ) (5.20)

=
∑
W̃x∈Z

∑
W̃y∈Z

(
1

2π
)H (2π)H (

∏
〈x̃i ,x̃j 〉

∑
hx̃i x̃j ∈Z

u(hx̃i x̃j ))

 ∏
7∈DG.

δ∑hx̃i x̃j ,0

e2πiW̃x(
∑
↑)e2πiW̃y (

∑
→) (5.21)

= (
1

2π
)H (2π)H (

∏
〈x̃i ,x̃j 〉

∑
hx̃i x̃j ∈Z

u(hx̃i x̃j ))

 ∏
7∈DG.

δ∑hx̃i x̃j ,0

δ1(Σ ↑)δ1(Σ→) (5.22)

=
∑
Wx∈Z

∑
Wy∈Z

(
∏
〈x̃i ,x̃j 〉

∑
hx̃i x̃j ∈Z

u(hx̃i x̃j ))

 ∏
7∈DG.

δ∑hx̃i x̃j ,0

δ(Σ ↑ −Wx)δ(Σ→−Wy). (5.23)

In the previous equation we used expressions like Σ ↑, which indicate the sum over all bond vari-
ables hx̃i x̃j at one boundary in one direction. One can also interpret this as an integer-valued flow
between neighboring parallelograms, leading to the initially introduced winding numbers (Wx,Wy).
Evaluating the integrals over the angles ϕ, we obtain once again constraints on the hexagons. These
can be interpreted in the same way as in step 3) with the only difference that the flow is now integer-
valued. One of the constraints given in Equation (5.23) is identically satisfied, so we can get rid of
one.
At this point we reintroduce the original integer-valued height variables hx, which are then identi-
cally satisfying the imposed constraints. This is done in the same fashion as before: We rotate the
bonds in a consistent way by an angle of 90 degree and put integer height variables at the ends of
the rotated bonds, such that

hx̃i x̃j = hy − hx. (5.24)

These new height variables are now living on the original honeycomb lattice we started with. In
the end we also need to modify the partition function properly in order to take into account the
winding numbersWx andWy . Since we neglected one constraint we are now free to fix one arbitrary
height variable hx, which we choose to be hx̄. We close this loop of transformations ending up with
the partition function that we started with

Z =
∑
Wx∈Z

∑
Wy∈Z

(
∏
x∈A•
x,x̄

∑
hx∈Z

)(
∏
x∈B◦

∑
hy∈Z

)
∏̃
〈x,y〉

u(hy − hx). (5.25)
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6 Algorithm for the F̃∆ Model

In Chapter 5 we defined the F̃∆ model, derived some of its properties and revealed that simulating
the dualized F̃∆ model on the honeycomb lattice was no option due to the sign problem. Thus what
we finally end up simulating is the F̃∆ model with the partition function given by

Z(K) =
∑
Wx∈Z

∑
Wy∈Z

(
∏
x∈A•
x,x̄

∑
hx∈Z

)(
∏
x∈B◦

∑
hy∈Z

)

∏̃
〈x,y〉

u(hy − hx)

exp(−βH[h]) , (6.1)

where

βH[h] =
K
4

∑
[i,j]

(hi − hj )2 =
K
4

 ∑
[xi ,xj ]

(hxi − hxj )
2 +

∑
[yi ,yj ]

(hyi − hyj )
2

 . (6.2)

The Hamiltonian allows for next-nearest-neighbor interaction on each sublattice, such that we can
split up the Hamiltonian into a piece for the A• sublattice and a piece for the B◦ sublattice. On each
site x ∈ A• and y ∈ B◦ there is an integer-valued height variable hx,hy ∈ Z and nearest-neighbors
differ by ±1. We require an algorithm which takes into account the overall shift symmetry of the
system, since measurable quantities only depend on height differences. These can be represented
by arrows, pointing in the direction of the increasing height variable. We can fix hx̄ = 0 in advance
to get rid of the Z symmetry, but we can recover every hx ∈ Z and hy ∈ Z by following the arrows
(see Figure 6.1). In order to simulate the F̃∆ model we want to develop a shift-invariant formulation
which we will denote as modulo 4 formulation.

hx̄ = 0 0 0 0 0

1 1 1 1

0 0 0 0

-1 -1 -1 -1

0 0 0 0

-1 -1 -1 -1

0 0 0 0

-1 -1 -1 -1

Wy

Wx

Figure 6.1: Possible configuration of height variables: All the other height values can be derived
from hx̄ = 0.

6.1 The Modulo 4 Formulation of the F̃∆ Model

The modulo 4 formulation incorporates the Z symmetry of the F̃∆ model and allows a straight-
forward implementation on a computer. Consider the honeycomb lattice where vertices can take
values in Z4 = {0,1,2,3}. Due to the bipartite structure of the honeycomb lattice and the constraints
of the F̃∆ model we can split up Z4 into an even and an odd part such that for x ∈ A• and y ∈ B◦ we
have

hx ∈ {0,2}, hy ∈ {1,3}.
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CHAPTER 6. ALGORITHM FOR THE F̃∆ MODEL

The assignment of the ±1 steps between nearest-neighbors is illustrated in Figure 6.2. This for-
mulation also allows the construction of hexagons which are forbidden in the original F̃∆ model
formulation as illustrated in Figure 6.3. The general rule is that the sum of positive and negative
steps around a hexagon must be 0.

3 2

0 1

Figure 6.2: Step ±1 assignments
on links.

0
1

2

3
0

1

Figure 6.3: Forbidden hexagon configura-
tion.

6.1.1 Constraint Cluster Rules at Coupling K = 0

Up to this point we associated a height variable hx,hy ∈ Z4 with each vertex of the lattice. In order
to construct an algorithm, we need to develop a cluster building prescription. Let us first consider
the case where the coupling K is zero, which implies that we are only building up constraint clus-
ters. The F̃∆ model belongs to the class of height models, so we are reminded of a landscape with
mountains and valleys. Clusters are then built by taking one sublattice first (e.g. the B◦ sublattice)
and building closed loops of the same height, so-called contour lines. In our current modulo 4
formulation we flatten out the mountains and valleys and remain with a landscape where heights
only take values hx,hy ∈ {0,1,2,3}. Nonetheless, we can identify clusters in a unique manner; they
now divide areas of different heights on the other sublattice.

1
22

2

3 3

3

33

3

0

00

Figure 6.4: Cluster of the B◦ sublattice separating two different regions of the other sublattice.

In Figure 6.4 we consider a fraction of the honeycomb lattice. Assume that we wanted to update the
A• sublattice and construct clusters on it. The triangle (in purple) of height 2 sites, separates the
region of the height 1 site (in the middle) and the height 3 sites outside the contour line. Single-site
clusters are the ones where the three nearest-neighboring height variables hx1

,hx2
,hx3

have the same
value (in Figure 6.4 we have such a case, where the cluster in the middle is a single-site cluster).
After all the clusters of the A• sublattice are built, each of them is flipped with probability 50%
(including single-site clusters).
The flipping prescription is straightforward, since for each sublattice there are only two different
options. A height variable on the A• sublattice only has values {0,2} which are mapped into each
other when performing a cluster flip (0 7→ 2,2 7→ 0). For the B◦ sublattice, 1 and 3 are mapped into
each other. This cluster building and flipping prescription leads to "arrow conservation" for each
hexagon, so starting from an allowed configuration, which does not contain any forbidden hexagon
configuration (see Figure 6.3), we will never reach a forbidden configuration. This makes the al-
gorithm consistent. Throughout all simulations, we start with an allowed configuration, namely
the reference configuration, where hx = 0 ∀x ∈ A• and hy = 1 ∀y ∈ B◦. One Monte Carlo step is
characterized by first updating the A• sublattice and then the B◦ sublattice.
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6.1.2 Boundary Updates

Starting from the reference configuration, we see that the twists which define the boundary condi-
tions for that configuration are set to zero, i.e. Wx = 0 and Wy = 0. When we specified the partition
function in Equation (6.1), we summed up all possible sectors characterized by Wx ∈ Z and Wy ∈ Z.
Taking into account the structure of the constraints and the geometry of the lattice, we come to
realize that, in fact, Wx,Wy ∈ 2Z. Consequently, the partition function can be split up into different
pieces

Z =
∑
Wx∈2Z
Wy∈2Z

Z[Wx,Wy]

=
∑
Wx∈4Z
Wy∈4Z

Z[Wx,Wy] +
∑

Wx∈4Z+2
Wy∈4Z

Z[Wx,Wy] +
∑
Wx∈4Z
Wy∈4Z+2

Z[Wx,Wy] +
∑

Wx∈4Z+2
Wy∈4Z+2

Z[Wx,Wy]. (6.3)

The split up in the second line is convenient when one considers the effects of cluster updates
on the boundary condition. Every allowed configuration [h] belongs to a winding number sector
characterized by a boundary twist. Every cluster we build, which has non-trivial winding number
(i.e. which wraps around the torus as described in Subsection 4.3.1), changes the corresponding
winding number by ±4. The following configuration is the same as in Figure 6.1, but with the
modulo 4 formulation applied to it (i.e. every −1 goes to 3).

0 0 0 0

1 1 1 1

0 0 0 0

3 3 3 3

0 0 0 0

3 3 3 3

0 0 0 0

3 3 3 3

Wy = 0

Wx = 0

ŷ

x̂

Figure 6.5: Parallelogram and cluster.

0 0 0 0

1 1 1 1

2 2 2 2

3 3 3 3

0 0 0 0

3 3 3 3

0 0 0 0

3 3 3 3

Wy = 0

Wx = 4

Figure 6.6: Parallelogram after flipping.

If we backtrack the original height variables (hx,hy ∈ Z) starting from the fixed one at the bottom
left corner, we see that at the boundaries no shifts in height variables are needed such that hx+L,y =
hx,y and hx,y+L = hx,y , thus Wx = Wy = 0. In the modulo 4 formulation, this can also be checked by
taking the steps in the horizontal or vertical direction along a closed loop.
Consider the purple cluster on the A• sublattice in Figure 6.5, which separates a height 1 area and
a height 3 area on the B◦ sublattice. This particular cluster wraps horizontally around the torus,
which means that after flipping it, the boundary twist Wx changes. If we flip that cluster, the sum
over the vertical arrows along one loop in ŷ-direction does not yield 0 but 4, therefore Wx = 4.
Starting from the reference configuration, we see that only a fraction of all configurations can be
reached, namely the ones where (Wx,Wy) mod 4 = (0,0) 1. Since we are not able to dynamically
reach all possible winding sectors, the algorithm is not ergodic. However, the algorithm is ergodic
in the sense that we can reach every allowed height configuration within the sectors where (Wx,Wy)
mod 4 = (0,0) (see Section 6.2).

1compare to Equation (6.3)
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6.1.3 Next-nearest-neighbor Interaction

Up to this point we just considered the cluster-building prescription for the case K = 0 (no cou-
pling). If we turn on K , we allow for next-nearest neighbor interactions, which implies that we
allow to freeze links with a certain non-vanishing probability p. The relation between the coupling
K and the bond setting probability p, can be established in the same fashion as for the Swendsen-
Wang cluster algorithm for the Ising model (see Subsection 3.5.2). Consider two adjacent height
variables on the same sublattice which have the same height value h. Then the contribution to the
partition function can be split up into a part where a link is frozen and a part where no link is set.

h h = h h + h h

1 = (1− e−K ) + e−K

Figure 6.7: Bond splitting in the F̃∆ model.

Hence the probability for a bond to be frozen between two sites with the same height value is given
by

p = 1− e−K ∈ [0,1], (6.4)

which provides us with the relation between the coupling K and the bond freezing probability p.
Throughout this thesis we refer to the bond freezing probability p as the coupling parameter, due
to its one-to-one correspondence with the original coupling parameter K . When updating the A•
sublattice, we build all clusters which are determined by the constraints and are therefore built
by also considering the opposite sublattice. The coupling parameter p acts within one sublattice,
freezes certain links and allows for larger clusters. As an example, consider the triangle in Figure
6.9. Assume that the red line divides a height 1 region from a height 3 region, implying that it is
part of a constraint cluster. With probability p we set a link l1 respectively a link l2 to the triangle
and therefore add the remaining 0 vertex to the cluster.

A B

C

Figure 6.8: Triangular lattice within
the honeycomb lattice.

1

33
0

00

l1 l2

Figure 6.9: Possible hexagon.

By investigating the F̃∆ model for different couplings p, we will see that we encounter a dual form
of the BKT-transition at a certain critical coupling pc.

6.2 Detailed Balance and Ergodicity

As discussed in Section 3.4, a Monte Carlo algorithm which obeys ergodicity and detailed balance
is guaranteed to converge to the correct equilibrium distribution. Consider an arbitrary initial
configuration [h] and another configuration [h′], such that both configurations belong to winding
sectors where (Wx,Wy) mod 4 = (0,0). In order to prove ergodicity we want to show that we can
reach the configuration [h′] in a finite number of Monte Carlo steps such that

[h]→ ...→ [h′]. (6.5)

This can actually be accomplished in just two steps, by constructing the reference configuration
in the first step. First we update the A• sublattice of the starting configuration [h]. We build
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all the clusters of the A• sublattice and flip every cluster which has the Z4 variable 2, such that
every site on the A• sublattice now has the height variable 0. Next we consider the B◦ sublattice,
build up the clusters and then flip all clusters which have a height variable of 3. We end up with
the reference configuration, where on the A• sublattice all heights have value 0 and on the B◦
sublattice all heights have value 1. From this point on we can reach any configuration [h′] (up to
an overall shift) by visiting each site in [h] and flipping the height variable if needed. In order to
show detailed balance we use the fact that the partition function factorizes, such that it is sufficient
to consider two adjacent heights only. In our particular case we work with two adjacent heights
on one triangular sublattice, where one of the heights is given by hi and the other one is given by
hj ∈ {hi ,hi ± 2}. We denote the situation where both heights are the same by ↑↑ and the situation
where both heights differ by ↑↓. Then three situations may occur as in the specific case of the Ising
ferromagnetic (see Section 3.4).

1. ↑↓↔↑↓
p[↑↓]w[↑↓,↑↓] = p[↑↓]w[↑↓,↑↓]

2. ↑↑↔↑↑
p[↑↑]w[↑↑,↑↑] = p[↑↑]w[↑↑,↑↑]

3. ↑↓↔↑↑

p[↑↓]w[↑↓,↑↑] = p[↑↑]w[↑↑,↑↓]
e−K

Z(β)
1
2

=
1

Z(β)
1
2

(1− p)

As we can see, all three situations satisfy the detailed balance condition. Thus the modulo 4 algo-
rithm applied to the F̃∆ model obeys ergodicity and detailed balance.

6.3 The Modulo 4 Formulation and the Ising Model

Having set up the modulo 4 formulation, we recognize the Z4 symmetry, which can be further
reduced to a Z2 symmetry if we fix an odd and an even sublattice. By considering the even and the
odd sublattices independent of each other, we can associate those sublattices to the Ising model on a
triangular lattice; this is the way how we measure observables. We make the following assignments


0
1
2
3

 7→

−1
−1
1
1

, 3 2

0 1
7→

1 1

-1 -1
,

Figure 6.10: New assigments for variables.

which provides us with a well-defined way of measuring observable quantities. Note, that after
making these assignments, it does not make sense to calculate combined observables on the entire
hexagonal lattice, since we assigned the ±1 measurement values to both sublattices in an ambiguous
way.
For instance, when defining observables 〈O〉, we measure them for each sublattice such that

〈O〉 = 〈OA +OB〉. (6.6)

As an example,M2 takes the form 〈M2〉 = 〈M2
A +M2

B〉.

37



CHAPTER 6. ALGORITHM FOR THE F̃∆ MODEL

6.4 Improved Estimators

We already mentioned that, due to the applied formalism, we need to take into account both sub-
lattices separately, i.e., if not mentioned otherwise, we have

〈O〉 = 〈OA +OB〉. (6.7)

Two interesting observables we want to measure are the magnetizationM and the winding number
Wx. We expect 〈M〉 = 0 and 〈Wx〉 = 0 (One should keep in mind that for the measurement we have
hx,hy ∈ {−1,1}), butM2 and W 2

x contain non-trivial interesting information about the system. The
magnetization is

〈M〉 = 〈MA +MB〉 (6.8)

= 〈
∑
x∈A•

hx +
∑
x∈B◦

hy〉,

and the winding number is

〈Wx〉 = 〈
∑
↑〉. (6.9)

In the previous equation
∑
↑ denotes the sum over all up-going arrows minus the sum over all

down-going arrows in the vertical direction belonging to one closed loop on the lattice (compare
with the blue arrows in Figure 6.5 and in Figure 6.6).
Generally it is possible to employ different methods to calculate some physical quantity. Some of
these methods may be more efficient in terms of computational time and have less fluctuations
than others. It is often convenient to express measurable quantities in terms of clusters and use
these expressions in order to compute observables. We now construct improved estimators for the
magnetizationM and the winding number Wx. For the sublattice A• we write

〈MA〉 = 〈
∑
x∈A•

sx〉 = 〈
∑
C
MC〉 = 〈

∑
C

sign(MC)|MC |〉 = 0, (6.10)

whereMC denotes the total height value of a cluster and |MC | is the size of the cluster. ForM2
A we

then obtain

〈M2
A〉 =

∑
C1

∑
C2

〈sign(MC1
)|MC1

|sign(MC2
)|MC2

|〉

= 〈
∑
C
|MC |2〉. (6.11)

The computation ofM4
A is also straightforward

〈M4
A〉 =

∑
C1

∑
C2

∑
C3

∑
C4

〈MC1
MC2
MC3
MC4
〉,

= 3
∑
C1

∑
C2

〈M2
C1
M2
C2
〉 − 2

∑
C
〈M4
C〉. (6.12)

We also find improved estimators for the winding number 〈Wx〉 and 〈W 2
x 〉. It is sufficient to cal-

culate one winding number since 〈Wy〉 and 〈W 2
y 〉 behave in the same way. The remaining winding

number (let’s call it Wz) is determined by the other ones

Wx +Wy +Wz = 0.

We already know that each cluster with non-trivial winding number has an effect of ±4 on the
winding number when flipped. Since a cluster is flipped with probability 50%, we conclude that
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the overall effect of a cluster with non-trivial winding number is given by WC = ±2, such that we
obtain

〈Wx〉 = 〈
∑
↑〉 = 〈

∑
C
WC〉 = 0,

〈W 2
x 〉 =

∑
C1

∑
C2

〈WC1
WC2
〉 = 〈

∑
C
W 2
C 〉.

6.5 Autocorrelation Effects

Previously we described the algorithm which will be used throughout this thesis. As described
in Chapter 3, we take into account the thermalization procedure and the autocorrelation time. In
order to take into account the initial thermalization we dismiss the first 200′000 iterations and then
execute N = 2′000′000 sweeps for the averaging. The lattice sizes we take into account are

L ∈ {16,32,64,96,128,160,192,256,320,384,448,512}. (6.13)

Since each lattice has two sublattices the total number of height variables is given by 2L2. In or-
der to take into account autocorrelation effects between subsequently generated configurations, we
perform a binning procedure. The idea behind this procedure is to divide subsequently generated
measurements into sufficiently large bins, average all measurements of a bin, and then consider the
bin averages as independently generated measurements. Concretely, let us create m-sized bins of
subsequently generated measurement values, where m is a divisor of N = 2′000′000, such that we
obtain n =N/m bins

O[h(1)], ...,O[h(m)]︸                ︷︷                ︸
B1

,O[h(m+1)], ...,O[h(2m)]︸                     ︷︷                     ︸
B2

, ...,O[h((n−1)·m+1)], · · · ,O[h(N=n·m)]︸                                 ︷︷                                 ︸
Bn

. (6.14)

Each of these n bins gets averaged and is representing a measurement of an observableO. Assuming
that subsequently generated bins are independent of each other the variance is given by

∆O(n)2 =
1

n(n− 1)

n∑
i=1

(Bi −B)2, (6.15)

where

Bi =
1
m

i·m∑
k=(i−1)·m+1

O[h(k)], (6.16)

and

B =
1
n

n∑
i=1

Bi = O. (6.17)

With increasing bin size m, the error ∆O(n)2 increases until it reaches a plateau (see Figure 6.11)
and stabilizes. The stabilized error represents a reliable estimate for the variance ∆O2. If the bin
sizem is 1 we obtain the naive error estimate described in Equation 3.6. After reaching the plateau,
fluctuations arise due to the very small number of independent measurements. We compute∆O(n)2

for different bin sizes m, different couplings and different observables O. By doing this we deter-
mine the characteristic bin size m, where the error ∆O(n = N/m)2 stabilizes and obtain a reliable
estimate for the standard deviation.
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Figure 6.11: Evolution of the error during the binning procedure. We see that the error on 〈M2〉
stabilizes at bin size m ≈ 1000.

6.6 Jackknife Method for the Binder Cumulant

In the previous subsection we described how to properly perform the error analysis for subse-
quently generated observables. However, a non-linear combination of such observables may still
lead to problems. Consider, for example, the Binder cumulant defined as

U4 =
〈M4

A +M4
B〉

〈(M2
A +M2

B)〉2
. (6.18)

For each configuration [h] the denominator is related to the numerator. In order to diminish corre-
lation effects between the denominator and the numerator we want to average as many observables
as possible for 〈M4〉 and 〈M2〉 and then compute U4. Assume that we have performed the binning
procedure described previously and the observablesM4 andM2 are binned such that we have mea-
surements (M4

B1
,M4

B2
, ...,M4

Bn
) and (M2

B1
,M2

B2
, ...,M2

Bn
). Then we define the i−th Jackknife replicate

as

Û(i) =
1
n−1

∑n
k=1,k,iM

4
Bk(

1
n−1

∑n
k=1,k,iM

2
Bk

)2 , (6.19)

and the empirical average of the Jackknife replicate reads

Û(.) =
1
n

n∑
i=1

Û(i). (6.20)

Based on this construction we obtain the Jackknife standard error

∆O2
Jack =

n− 1
n

n∑
i=1

(Û(i) − Û(.))
2, (6.21)

which is the standard deviation squared for the Binder cumulant (see [27]).
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7 Results

7.1 Distribution of the Magnetization of both Sublattices

In order to get a first impression on how the magnetizationsMA andMB of the A• sublattice and
the B◦ sublattice are distributed as a function of p, we take a closer look at the observable (MA,MB)
and investigate its distribution. The algorithm was applied to a lattice with L = 64 and after 10′000
thermalization sweeps, the magnetizations of both sublattices (MA,MB) were measured. For the
averaging 200′000 sweeps were made and the values of (MA,MB) were listed into bins.

Figure 7.1: (MA,MB) at p = 0. Figure 7.2: (MA,MB) at p = 0.20.

As we can see, at p = 0 we start with a distribution that is peaked in the middle (Figure 7.1).
Since we do not freeze any additional links, only constraint clusters are built which do not lead
to configurations where order is predominantly generated. With increasing p, more and more
bonds are set, which therefore leads to larger clusters. This manifests itself in the fact that the
magnetizations MA and MB of both sublattices become bigger. The peak spreads out, leaving a
hole in the middle, which becomes larger with increasing coupling (Figure 7.2). Although the
distribution does not form a perfect circle we still see that there is some sort of rotational symmetry
in the parameter-space described by (MA,MB).

Figure 7.3: (MA,MB) at p = 0.35. Figure 7.4: (MA,MB) at p = 0.36.

For p→ 0.35 we see that we are close to a circle, but at p ≈ 0.36 we also recognize that the rotational
symmetry of the observable (MA,MB) seems to break (see Figure 7.3 and 7.4). At the edges of the
distribution four peaks begin to form. This implies that configurations with large magnetization
MA,B appear more often. We are now entering the rigid phase. With increasing coupling p the

41



CHAPTER 7. RESULTS

peaks are moving to the edges belonging to (MA,MB) ∈ {(±4096,±4096)}, finally leading to total
order when the coupling parameter p reaches p = 1 (see Figures 7.5 and 7.6).

Figure 7.5: (MA,MB) at p = 0.4. Figure 7.6: (MA,MB) at p = 1.

We see that at p ≈ 0.36, the rotational symmetry of the observable (MA,MB) breaks and more
weight is given to configurations with a large magnetization, which means that we are entering
an rigid phase. Therefore p ≈ 0.36 is a first estimate for the critical coupling pc. The geometrical
behavior of (MA,MB) is very interesting, since starting with a bump in the middle the distribution
approximates a circle before breaking up into four pieces.

7.2 Susceptibility and Magnetization per Spin

We can confirm this estimation by taking a closer look at the susceptibility and the absolute value
of the magnetization per spin

χ =
〈M2

A +M2
B〉

2L2 (p), |M|p.s. =
〈|MA|+ |MB|〉

2L2 (p). (7.1)

As we see in Figures 7.7 and 7.8, there is a fast increase for χ and |M|p.s. at around p ≈ 0.36. Note
that, compared to Figure 2.6, one might expect a much more abrupt increase of |M|p.s.(p) at the
critical coupling pc. However, one should keep in mind that Figure 2.6 is just the theoretical picture
for an infinitely large lattice. Since we can only simulate finite lattices, finite-size effects arise. These
smooth out the curves in Figure 7.7 and 7.8, while still approaching the desired behavior for large
lattices. As it turns out, we are dealing with a dual form of the BKT-transition separating a rigid
(smooth) phase from a rough one.
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7.2. SUSCEPTIBILITY AND MAGNETIZATION PER SPIN
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Figure 7.7: Susceptibility χ(p), for different lattice sizes.
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Figure 7.8: Absolute value of the magnetization per spin |M|p.s.(p), for different lattice sizes.
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7.3 Correlation Function

The behavior of the correlation function Γ (r) for an Ising ferromagnet is described by

Γ (r) = 〈s0sr〉 − 〈s0〉〈sr〉. (7.2)

In Section 6.3 we reduced the F̃∆ model, where on each lattice site we have an integer-valued height
variable, to a Z invariant Ising-type formulation, where hx ∈ {±1}. Hence, we can utilize the same
expression for the correlation function (see Equation 7.2) and fit it to the most general form

Γ (r) = 〈h0hr〉 − 〈h0〉〈hr〉 ∝
1
rη
e−

r
ξ , (7.3)

for different couplings p. Comparing our data with this theoretical model implies that the corre-
lation length is infinite (ξ = ∞) for all p ∈ [0,1]. For p ≤ pc we obtain a rough phase with infinite
correlation length such that the correlation function behaves as Γ (r) ∝ 1

rη . When fitting η, we want
to take into account the long-range contributions from the other side of the finite system, therefore
the ansatz is

Γ (r) ∼ c
(

1
rη

+
1

(L− r)η

)
+ d, (7.4)

for p ≤ pc. For p > pc we are entering the rigid phase, which indicates that we expect Γ (r) to ap-
proach a constant, until reaching Γ (r)→ 1 for p→ 1.
In the rigid phase near the critical point we include an exponential correction term to the correla-
tion function, with a second order sub-leading correlation length ξ(2). Therefore the fitting ansatz
is given by

Γ (r) ∼ c

e
−r
ξ(2)

rη
+
e
− L−r
ξ(2)

(L− r)η

+ d, p > pc,p ≈ pc. (7.5)

The exponential term and the power-law term vanish for increasing p, indicating that η → 0 and
ξ(2) →∞. For increasing coupling the constant d becomes more and more dominant, confirming
an infinite correlation (see Figure 7.9).
By analyzing the correlation function we can already draw some conclusions. We have a rough
phase with long-range correlation for p ≤ pc. This means that throughout this range of couplings
the correlation function behaves like

Γ (r) ∝ 1
rη
, (7.6)

where η is a continuously varying critical exponent, starting at η(p = 0) ≈ 1 and reaching η(pc ≈
0.36) ≈ 0.25. For p > pc we are in a rigid phase, where we have infinite correlation and therefore

Γ (r) ∝ const. (7.7)

Throughout the whole range of couplings p ∈ [0,1], we could not measure any exponential long-
range contributions to the correlation function. Therefore we have an infinite correlation length
(ξ =∞) for all couplings p.
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Γ
(r

)

r

Figure 7.9: Correlation function Γ (r) for L = 256 and different p.

7.4 Binder Cumulant

Up to this point we estimated the critical coupling pc visually, without using a quantitative method
that provides us with a precise numerical estimate. At this point we want to use the Binder method
described in Subsection 2.6.4. We take the Binder cumulant defined as

U4 =
〈(M4

A +M4
B)〉

〈(M2
A +M2

B)〉2
(7.8)

for different lattice sizes, and calculate intersection points of consecutive lattice sizes with ratio
2. Note that we measure the Binder cumulant as described in Section 6.6. We have 8 intersec-
tion points which can be considered as pseudo-critical couplings p̃Li ,2Li (see Figure 7.10). These
pseudo-critical couplings are plotted as a function of 1

Lmin
, where Lmin = min{Li ,2Li} = Li . The

size-dependent behavior of the pseudo-critical couplings can be described very well by fitting it as

exκ + pc,Binder, (7.9)

where e,κ,pc,Binder are fit parameters. The offset pc,Binder of the fit gives a prediction for the true
critical coupling pc for L→∞, i.e., for infinite volume (see Figure 7.11).
For the 3 fit parameters we obtain

e = 0.048(2), κ = 0.44(3), pc,Binder = 0.3576(5). (7.10)
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U
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p

Figure 7.10: Binder cumulant for all different lattice sizes L.

7.5 Finite-Size Scaling Procedure

in Subsection 2.6.5 we discussed the classical two-dimensional XY model near its BKT-transition.
We described the finite-size scaling ansatz for the susceptibility at the critical coupling and ob-
tained

χ ∝ L2−ηc (log(L))−2re , (7.11)

where ηc = 1
4 and re = −1

16 . Having a first accurate estimate for the critical coupling pc, we can check
wheter the finite-size scaling ansatz in Equation (7.11) can be reproduced. We take the logarithm
on both sides and substitute x = log(L) such that we obtain

ln(χ) ∼ (2− η) ln(L) + (−2re) ln(ln(L)) + b

∼ (2− η)x+ (−2re) ln(x) + b. (7.12)

The additional logarithmic correction means that ln(χ) grows faster than (2 − η)x, whereas the
data on the contrary show a slower decrease. Fitting the data at pc = 0.3576 and leaving the fit
parameters (η,re,b) free, leads to results

η = 0.2405(4), re = 0.0616(8), (7.13)

which are not in agreement with the predicted behavior. Fixing ηc or re leads to big deviations in
the other variable and also varying pc does not improve the fit by any means. The residues indicate
that the form (7.11) is not the correct fit for χ.
Balog predicted in [20, 21] that the true finite-size scaling behavior is

ln(χ) ∼ (2− η)x+O(Q) + b

∼ (2− η)x+ a
π2

2

(x+u)2 + b, (7.14)
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7.5. FINITE-SIZE SCALING PROCEDURE

p
se

u
d

o-
cr

it
ic

al
co

u
p

li
ng
p̃ c

1
Lmin

Figure 7.11: Pseudocritical couplings p̃c, obtained by calculating intersection points of the Binder
cumulants U4. The offset of the fit is given by pc,Binder = 0.3576(5). Since the errors
are very small the error bars are hardly visible.

at p ≈ pc, where η,a,b, and u are fit parameters. Applying this fit to the data at p = 0.3576 we obtain

η = 0.247(3), a = 1.98(82), b = −0.29(4), u = 5.34(99). (7.15)

The exponent η is in agreement with the predicted critical exponent ηc = 0.25 and also the residues
indicate that the correction term predicted by Balog is indeed correct. Fitting Equation (7.14) for
the whole range p ∈ [0,1] we realize that the correction term Q comes into play when p approaches
pc. Throughout the whole range p ∈ [0,1] we obtain a continuously varying critical exponent
η = η(p), starting from η ≈ 1.00, reaching ηc = 0.25 at the critical coupling pc, and then rapidly
decreasing to η ≈ 0, for p → 1. There is, however, an inconsistency for the range p ∈ [0.36,0.40]
because the fitted values for η become negative which is an unreasonable progression. The reason
for this behavior is the divergence of the correction term Q leading to additional contributions to
the value of η. Applying a Taylor expansion for the correction term Q at x0 = ln(16)+ln(512)

2 ≈ 4.505,
one obtains a correction term to the critical exponent η. The effective critical exponent ηeff then
reads

ηeff = η −Q′(x0) = η +
aπ2

(x0 +u)3 . (7.16)

Plotting the progression of the critical exponent η which results directly from the fit and the effec-
tive critical exponent ηeff, we see the coupling-dependent behavior of both exponents (see Figure
7.12).
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Figure 7.12: Progression of the critical exponent η. The correction term Q leads to a large discrep-
ancy between η(p) and ηeff(p).

7.6 Taylor Fit

Fitting the data for χ(L) (for fixed p) to the finite-size scaling ansatz (7.14) leads to large errors in
the fit parameters (η,a,b,u), since we are fitting a function with 4 parameters to 12 data points. We
want to use the fact that u is a non-universal constant, such that we can fix u in the vicinity of the
critical point and reduce the number of parameters to 3. Since the progression of all fit parameters
(η,a,b,u) is continuous and smooth in the neighborhood of pc,Binder ≈ 0.3576, we perform a Taylor
expansion of the fit parameters around a hypothetical critical coupling pc

η(p) = ηc + η1(p − pc) +O((p − pc)2),ηc =
1
4
,

a(p) = ac + a1(p − pc) +O((p − pc)2),

b(p) = bc + b1(p − pc) +O((p − pc)2),

u(p) = uc.

Using this expansion we include several probabilities near the critical coupling pc and fit them
altogether. For this fit we were using

p ∈ {0.3560,0.3561, · · · ,0.3589,0.3590}, (7.17)

which implies that we are using 372 data points in order to fit 7 parameters (pc,η1, ac, a1,bc,b1,uc).
Using the Taylor fit expansion we obtain

pc = 0.3579(1), uc = 3.39(11),

ηc = 0.25, η1 = −5.00(5),

ac = 0.82(5), a1 = 57(4),

bc = −0.238(3), b1 = −14.43(42).

The result for the critical coupling pc differs slightly from the one obtained by using the Binder
method, but both are still consistent with each other within their statistical errors

pc,Binder = 0.3576(5) pc,Balog Fit = 0.3579(1). (7.18)
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7.7 Helicity Modulus

In Subsection 2.6.5 we described the helicity modulus, which is defined in its dimensionless form
as

Υ =
1
T
∂2

∂α2F(α)
∣∣∣∣∣
α=0

, (7.19)

where α is the twist angle imposed at the boundary. The helicity modulus provides a measure for
the spin stiffness of an XY model. By dualizing an XY model, we obtain a height model where the
spin stiffness is described by the winding number squared W 2

x , i.e.,

Υ = 〈W 2
x 〉. (7.20)

Measuring W 2
x for the F̃∆ model, we recognize that we obtain similar numerical values for all the

different lattice sizes we take into consideration. For the sake of clarity we only plot 〈W 2
x 〉(p) for

the lattice size L = 512.

〈W
2 x
〉

p

Figure 7.13: Winding number 〈W 2
x 〉, the arrow indicates pc,Binder.

Compared to the predicted behavior in Figure 2.8, we see that we do not have a similar behavior
for the winding number squared 〈W 2

x 〉. The reason for this is that we excluded certain configura-
tions described in Subsection 6.1.2, since we are only able to sample a certain number of winding
sectors (namely the ones where Wx mod 4 = 0 and Wy mod 4 = 0). Nonetheless, we also see that
the winding number 〈W 2

x 〉 is decreasing rapidly and approaches 0 around p ≈ pc. However, no
universal jump has been determined.

49





8 Summary and Interpretation of the

Results

Now we want to briefly discuss our results and put them into context with the classical XY model
and its BKT-transition (compare with Figure 2.7). We simulated the F̃∆ model, where we first
applied the modulo 4 formulation and then mapped this formulation to an Ising-type model in
order to measure observables. The magnetization of both sublattices (MA,MB), the susceptibility
χ, and the absolute value of the magnetization per spin |M|p.s. reveal a phase transition to a rigid
phase, that takes place at a certain critical coupling. Measuring the correlation function Γ (r) for p ∈
[0,1] reveals that for p ∈ [0,pc] it behaves as Γ (r) ∝ 1

rη , with a continuously varying critical exponent
η = η(p). For p ∈ (pc,1] we enter a rigid phase where infinite correlations arise and Γ (r) ∝ 1. This
shows that the phase transition we are dealing with is a dual form of a BKT-transition, separating
a rough phase for p ∈ [0,pc] from an rigid one for p ∈ (pc,1]. The Binder cumulant provided a first
precise estimate of the critical coupling pc,Binder. Fitting our data for the susceptibility χ = χ(L,p =
fixed) to the finite-size scaling prediction by Balog did not only confirm our previous result for
pc,Binder, but also confirmed that the exponent η at the critical point is indeed given by ηc = η(pc) =
1
4 . The connection to the classical XY model can be made by dualizing the F̃∆ model. The analogue
of Figure 2.7 in our case is similar but flipped (see Figure 8.1).

F̃∆ model (height model)

p = 0 ppc

rigid (smooth) phase, flat height
field,
ξ =∞, Γ (r) ∼ 1,

infinite correlation

Critical point pc
dual BKT-transition,

ξ =∞, Γ (r) ∼ 1
rηc

, ηc = 1
4

rough phase,
continuously varying η,

ξ =∞, Γ (r) ∼ 1
rη

,

long-range correlation

p = 0 ppc

Disordered phase,

ξ <∞, Γ (r) ∼ e
− rξ ,

short-range correlation

Critical point pc
BKT-transition,

ξ =∞, Γ (r) ∼ 1
rηc

, ηc = 1
4

Superfluid phase,
continuously varying η,

ξ =∞, Γ (r) ∼ 1
rη

,

long-range correlation

Dualized F̃∆ model (generalized XY model)

Dualizing the F̃∆ model

Figure 8.1: F̃∆ model with dual BKT-transition.
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9 Conclusion and Outlook

In this thesis we investigated the F̃∆ model on a honeycomb lattice, which was mentioned by Prof.
Martin Hairer in 2016 at his Einstein lectures at the university of Bern. This model belongs to the
class of height models and constrains nearest-neighboring height variables to differ by ±1. We used
the methods of the dual transformation and the star-triangle transformation to obtain the dualized
F̃∆ model on a honeycomb lattice, which belongs to the class of two-dimensional U (1) models
and has a severe sign problem which prevents numerical simulations. Therefore we simulated the
original F̃∆ model, by using a modulo 4 formulation.
Studying the correlation function and the susceptibility revealed a dual BKT-transition at a critical
coupling pc. Using the Binder method, we obtained a reliable result for the critical coupling pc,
which was confirmed by combining the finite-size scaling ansatz proposed by Balog with a Taylor
fit around the critical point. We obtained the following results

pc,Binder = 0.3576(5) pc,Balog Fit = 0.3579(1).

Still there are open questions one would like to address. Is it possible to perform a dual trans-
formation (section 5.3) without setting the coupling parameter K to zero? If so, is it possible to
analytically derive the critical coupling? Can one construct an algorithm which allows us to dy-
namically enter winding sectors we could not reach before (subsection 6.1.2)? If so, is it possible to
compare the behavior of 〈W 2

x 〉 with the behavior of the helicity modulus Υ , and check its universal
jump at the BKT transition?
The F̃∆ model is an interesting height model which allows generalizations and leaves open ques-
tions. In this thesis we have laid the groundwork for potential future studies.
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A Formulas

A.1 Fourier Representation

If b(k) is a function of some integer k ∈ Z, it can be represented as the integral of a 2π-periodic
function f2π, such that

b(k) =
1

2π

∫ 2π

0
e−ikϕf2π(ϕ)dϕ, (A.1)

and

f2π(ϕ) =
∑
q∈Z

b(q)eiqϕ . (A.2)

A.2 Dirac Comb

In order to evaluate certain sums that arise in the dualization procedure we used the Dirac comb,
which is a periodic tempered distribution constructed from Dirac-Delta-functions

δT (t) def.=
∑
k∈Z

δ(t − kT ) =
1
T
δT (

t
T

), (A.3)

for some given period T . Due to T -periodicity, the Dirac comb can be expressed as a Fourier
expansion

δT (t) =
∑
n∈Z

b(n)e2πin t
T =

1
T

∑
n∈Z

e2πin t
T , (A.4)

where b(n) is given by

b(n) =
1
T

∫ T
2

− T2
δT (t)e−2πin t

T dt =
1
T
. (A.5)

A.3 Poisson Summation Formula

The Poisson summation formula reads∑
µ∈Z

g(µ) =
∑
n∈Z

∫
R

e2πinφg(φ)dφ. (A.6)

This identity is true for any function g(x), which is analytical for real values of x and for which the
integral ∫

R

e2πinφg(φ)dφ (A.7)

is absolutely convergent.
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