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Abstract

In the first part of this thesis we investigate real-time evolution of open quantum systems. We
derive the Lindblad equation, as the Markovian master equation for their evolution. The Lindblad
equation can be expressed by a series of jump operators. We then derive conditions on these jump
operators under which closed hierarchies of observables arise. The real-time evolution can then
be expressed as a set of coupled differential equations, which grows only polynomially with the
size of the system. In particular we were able to apply this to a process that drives hardcore
bosons (or spins 1/2) into a Bose-Einstein condensate. The polynomial size of the problem allowed
us to investigate this process free from any approximations, thus enabling us to obtain reliable
information for large systems and arbitrarily long evolution periods. Furthermore we studied the
stability of the condensation process under competing thermal and non-thermal effects.

Under suitable conditions, the Lindblad equation is also solvable using Monte Carlo techniques.
We present an algorithm for a specific case of hardcore boson condensation that is also solvable
with the closed hierarchy approach. This allowed us to verify the statistical approach as a poten-
tially useful complementary method to study real-time dynamics.

The second part is dedicated to the construction of doubled lattice Chern-Simons theories with
discrete non-Abelian gauge groups. The two gauge fields live on a lattice and its dual. The Chern-
Simons nature is implemented locally on a cross of links from both lattices by a non-commuting
operator algebra of the two gauge fields. Gauge invariance requires that the deformed algebra
fulfills a consistency condition. We provide a classification of all consistent theories in terms of the
structure of the gauge group. We investigate the topological structure of these theories in terms of
the braiding statistics of external charges and we show that they exhibit mutual Abelian statistics
akin to Kitaev’s toric code. All these theories have a finite dimensional Hilbert space and are thus,
at least in principle, implementable on a quantum simulator.
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11.6.2 The Twisted Sector (n, ñ) = (2, 2) . . . . . . . . . . . . . . . . . . . . . . . 68

11.7 Abelian Anyons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
11.7.1 Parallel Charge Transporters . . . . . . . . . . . . . . . . . . . . . . . . . . 69
11.7.2 Anyonic Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

12 Conclusions 71

6



Part I

Real-Time Dynamics of
Open Quantum Systems
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1 Introduction

The real-time-evolution of a quantum system is notoriously difficult to study, both analytically
and numerically. The main reason lies, of course, in the intractability of the dimension of the
Hilbert space, which contains all possible states of the quantum system, and typically grows ex-
ponentially with the size of the system. In practice it is therefore impossible to keep track of all
possible states throughout the entire time-evolution of the system. We are therefore in need of
a guiding principle in order to decide which states are important, and which can be neglected.
Two standard approaches dominate theoretical quantum physics today: Perturbation theory and
stochastic methods. Perturbation theory relies on the fact that, starting from a simple initial
state of low energy and particle density, large parts of the Hilbert space are inaccessible due to
conservation laws. Furthermore, the interaction strength between different particles allows one to
preselect the most probable final states among the accessible ones. The problem then reduces to
calculating a handful of transitions amplitudes, which can be done order by order in the number
of interactions, thus also restricting the intermediate states. Statistical quantum mechanics, on
the other hand, can be applied in the regime of high energy and particle density. The complexity
of the Hilbert space is reduced by only looking at a representative sample of the thermal density
matrix, using importance sampling methods. Neither approach gives a solution to the question
of real-time-evolution of a quantum system. They both yield information about the most likely
final state after an infinite amount of time has passed. Perturbation theory enables us to identify
the most likely final states long after the interaction of a few initial state particles collided and
allows us to calculate their likelihood. Statistical quantum mechanics allows one to describe the
final state in terms of a representative sample of states with similar energy and particle density,
thus assuming the system reaches a thermal equilibrium. But what about high density states, far
from thermal equilibrium? Perturbative methods cannot help us since the conservation laws do
not significantly reduce the accessible Hilbert space. Stochastic methods face an insurmountable
obstacle in unitary time-evolution, since transition amplitudes carry complex phases. Thus differ-
ent intermediate states interfere with each other, prohibiting a direct probabilistic interpretation
of the time-evolution and therefore the use of importance sampling. A third method employed in
the study of real-time dynamics is the density matrix renormalization group (DMRG) [1, 2], it is,
however, only applicable to gapped one-dimensional systems and growing entanglement makes it
unreliable after a short period of time [3–6].

In this part of the thesis we circumvent the difficulties of unitary evolution of closed systems
and consider the time-evolution of open quantum systems. There the time-evolution of the den-
sity matrix is given by the Lindblad master equation [7]. In addition to the familiar Hamiltonian
contributions, the Lindblad equation contains a series of jump operators, which describe interac-
tions between the system and its environment. By engineering the coupling to the environment
[8], open systems can be used to prepare specific quantum states [9–13], simulation of quantum
systems [14–16] and even quantum computing [9, 17–19]. These concepts have proven to be viable
in experiments with ultracold gases and trapped ions [20–22] and the recent progress is promising a
better understanding of quantum real-time dynamics with the help of quantum simulators [23, 24].

By going to the Heisenberg picture of evolving operators, one can derive coupled differential
equations for all observables. The number of coupled observables is again exponentially large.
However, the system of differential equations typically provides a hierarchy among the observables.
Assuming only bi-local operators contributing to the time-evolution, one can show that the time-
evolution of n-point functions depends at most on all (n + 1)-point functions. This provides a
natural separation of all observables and a truncation above some n can be introduced, when
studying the time-evolution of a typical 2-point function. However, truncating the hierarchy limits
the reliability of the method to short time intervals. Here we investigate conditions under which
the hierarchy closes exactly [25], such that the evolution of a set of low-order n-point functions is
independent from all other observables. While this is usually not possible in Hamiltonian systems,
several examples have been found for open, dissipative systems [26–31], where the evolution can
be studied for an arbitrarily long time. The closure conditions for bosonic and fermionic models
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have been derived in [32].
In particular we are interested in the generation of a condensate in spin-1/2 systems, which can

also be reinterpreted by a mapping to hard-core bosons. This can be achieved with bilocal jump
operators only [33, 34], while multilocal operators provide a way to generate states with non-trivial
topology [35–38]. It is a quite common in dissipative systems that the nonequilibrium steady state
(NESS) is known exactly and a wide variety of states and processes are described in the literature,
from condensed bosons and η states of fermions [39, 40], to states with topological order [41–44] or
even fermionic d-wave pairing [45, 46]. This is also true for the condensation of hardcore bosons or
quantum spins [34] considered here. The real-time-evolution, however, is a much more complicated
problem, and the dynamics of approaching these final states are not well understood. Due to the
closure of the hierarchy, the real-time solution can be derived semi-analytically with manageable
effort, even for large systems. We investigate the approach to a steady state, in particular the
slowest decay rate, the dissipative gap, which sets the time scale for reaching the steady state
of the system. Its finite size scaling has been studied in several one-dimensional systems before
[26–30, 32, 47–50], but our method is directly applicable to higher-dimensional lattices as well and
we will find that the scaling behavior varies in a nontrivial way with the dimensionality of the
system [51, 52].
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2 The Lindblad Equation

2.1 Density Matrix

In quantum mechanics the state of a system is described by a vector |ψ〉 ∈ H in the Hilbert space.
Any observable then corresponds to a Hermitian operator O = O†, and its expectation value is
given by

〈O〉 = 〈ψ|O|ψ〉,

assuming that the state vector is properly normalized to 〈ψ|ψ〉 = 1. The invariance of the normal-
ization then restricts the time-evolution operator to be unitary

|ψ(t)〉 = U(t)|ψ(0)〉 ⇒ 1 = 〈ψ(t)|ψ(t)〉 = 〈ψ(0)|U(t)†U(t)|ψ(0)〉 ⇒ U(t)†U(t) = 1,

which in turn fixes the Schrödinger equation for both the state and the time-evolution operator
(~ = 1)

∂t|ψ(t)〉 = −iH(t)|ψ(t)〉, ∂tU(t) = −iH(t)U(t),

in terms of a (possibly time-dependent) Hermitian Hamiltonian H(t). Observables can be com-
puted at any instant in time using

〈O〉(t) = 〈ψ(t)|O|ψ(t)〉 = 〈ψ(0)|U(t)†OU(t)|ψ(0)〉 = 〈ψ(0)|O(t)|ψ(0)〉,

yielding the Heisenberg equation for the evolution of observables

∂tO(t) = ∂t(U(t)†OU(t)) = iU(t)†[H(t), O]U(t) = i[HH(t), O(t)], (1)

where the Hamiltonian in the Heisenberg picture is given by HH(t) = U(t)†H(t)U(t). All of
this requires that we know the initial state |ψ(0)〉 of the system exactly. In case we only have
probabilistic information, namely that the initial state was one of an orthonormal set {|ψi〉}, each
with probability 0 ≤ pi ≤ 1 (

∑
i pi = 1) we can rewrite the expectation value of an observable as

〈O〉 =
∑
i

pi〈O〉i =
∑
i

pi〈ψi|O|ψi〉 =
∑
i

piTr [O|ψi〉〈ψi|] = Tr [Oρ] ,

in terms of the density matrix

ρ =
∑
i

pi|ψi〉〈ψi|, (2)

and the trace, which is nothing but a sum over a complete set of states of the Hilbert space (or
the subspace spanned by the |ψi〉).

2.2 Superoperators

Similar to state vectors |ψ〉, the dynamics of density matrices ρ is described by linear operators
A,B acting on the vector space of density matrices

A(ρ+ ρ′) = Aρ+Aρ′, (A+ B)ρ = Aρ+ Bρ.

In order to avoid confusion with the linear operators O acting on the Hilbert space H, they are
sometimes called superoperators, as we will in this thesis. The operators O can be embedded into
the space of superoperators in two nonequivalent ways, either linearly or anti-linearly

Oρ = Oρ, Oρ = ρO†,

and any superoperator can be decomposed in terms of operators Bi, Ci

Aρ =
∑
i

BiρC
†
i .
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This is a direct consequence of the fact that the density matrices are by construction elements of
the product space of two copies of the Hilbert space H⊗H and any operator in the product space
can be written as

A =
∑
i

Bi ⊗ Ci.

Unitary evolution of density matrices is then described by the superoperator

ρ(t) = O(t)ρ = U(t)ρU(t)†, (3)

and thus fulfills the Liouville-von Neumann equation

∂tρ(t) = H(t)ρ(t) = −i[H(t), ρ(t)]. (4)

Again the Schrödinger picture, given by the evolving density matrix according to (4), is completely
equivalent to the Heisenberg picture (1) when calculating expectation values

〈O〉(t) = Tr [Oρ(t)] = Tr [O(t)ρ] .

However, the density matrix is not restricted to unitary evolution, since the normalization condition
〈ψ|ψ〉 = 1 is replaced by the more general trace

Tr [ρ] =
∑
i

piTr [|ψi〉〈ψi|] =
∑
i

pi = 1,

and positivity conditions (which also implies hermiticity ρ = ρ†)

〈ψ|ρ|ψ〉 =
∑
i,j

α∗iαj〈ψi|ρ|ψj〉 =
∑
i,j

α∗iαjpiδij =
∑
i

|αi|2pi ≥ 0.

2.3 Time Evolution of Density Matrices

How can we generalize the time-evolution of a density matrix? First of all, time-evolution is
nothing but a map that takes the density matrix of an earlier time ρ as input and produces
the density matrix ρ′ at a later time as an output. This map should be linear (a component
contributing pi to the initial state should also produce a fraction pi of the final state). Abandoning
unitarity implies that the system can transfer information to its environment, which means we are
studying open quantum systems. However we assume the evolution to be Markovian, which means
that the environment does not keep a memory of the information it receives. This assumption is
well motivated if one considers the environment to be infinitely large, such that the information
received by the environment is spread so thinly, that the system itself is unable to feel its effect.
The Markovian assumption excludes memory effects, making the evolution equation local in time.
The future state ρ′ thus only depends on the current state ρ, but is indifferent to its past. Taken
together, the Markovian and linear constraint imply that we can write the map as a superoperator
ρ′ = Aρ. In a basis |ψi〉 we can write this superoperator explicitly [53]

ρ′ij = 〈ψi|ρ′|ψj〉 = 〈ψi|Aρ|ψj〉 =
∑
k,l

Aik,jl〈ψk|ρ|ψl〉 =
∑
k,l

Aik,jlρkl (5)

which is nothing but a matrix operation in the vector-space of density matrices. We start con-
straining the components Aik,jl by using Hermiticity

ρ′ = ρ′† ⇔
∑
k,l

(Aik,jl −A∗jl,ik)ρkl = 0 ⇔ Aik,jl = A∗jl,ik.

The last equality follows since the Hermiticity constraint has to be full-filled for any density matrix
ρ. This means that the matrix Aik,jl is Hermitian, which implies that it can be described by a set
of orthonormal vectors Eαik (in the vector space of matrices)∑

i,k

EαikE
β∗
ik = δαβ ⇔ Tr

[
EαEβ†

]
= δαβ ,
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and the corresponding real eigenvalues λα, such that inserting this into (5) yields

ρ′ij =
∑
k,l

∑
α

Eαikλ
αEα∗jl ρkl =

∑
α

λα(EαρEα†)ij . (6)

Next we try to fulfill the trace constraint, which (using the cyclicity of the trace) we write as

Tr [ρ′ − ρ] = Tr

[(∑
α

λαEα†Eα − 1
)
ρ

]
=
∑
i,j

(∑
α

λα(Eα†Eα)ij − δij
)
ρji,

from which we again conclude∑
α

λα(Eα†Eα)ij = δij ⇔
∑
α

λαEα†Eα = 1.

The final constraint comes from positivity

〈ψ|ρ′|ψ〉 =
∑
α

λα〈ψ|EαρEα†|ψ〉 =
∑
α

λα(〈ψ|Eα)ρ(Eα†|ψ〉) ≥ 0.

This is certainly fulfilled, if all λα ≥ 0. This condition is not necessary in order to have positivity
and counter-examples can be found easily. However, there is a stronger requirement than positivity
which enforces λα ≥ 0 and is still physically motivated.

2.4 Complete Positivity

The constraint which enforces λα ≥ 0 is known as complete positivity and is defined as follows.
Suppose that the quantum system is part of a larger quantum system it has previously interacted
with. Thus the joint initial state is in general an entangled state of the system and its environment.
Then the evolution of the complete system given by (6), where all operators Eα → Eα ⊗ 1 act
trivially on the environment, should respect positivity as well. To simplify the derivation of λα ≥ 0
we now assume that the full Hilbert space consists of two copies of the initial system, with basis
vectors |ψi〉 ⊗ |χj〉, then a general state |Ψ〉 and an independent pure density matrix P can be
written as

|Ψ〉 =
∑
i,j

Dij |ψi〉|χj〉, (7)

P =
∑
i,j,k,l

CijC
∗
kl|ψi〉|χj〉〈ψk|〈χl|,

with the single constraint Tr[P] = Tr[C†C] = 1. Complete positivity is then given by the inequality

〈Ψ|P ′|Ψ〉 =
∑
α

λα〈Ψ|EαPEα†|Ψ〉

=
∑
α

λα
∑
i,j,k,l

D∗ij〈ψi|〈χj |Eα|ψk〉|χl〉Ckl
∑

m,n,o,p

C∗mn〈ψm|〈χn|Eα†|ψo〉|χp〉Dop

=
∑
α

λα
∑
i,j,k,l

D∗ijE
α
ikδjlCkl

∑
m,n,o,p

C∗mnE
α†
moδnpDop

=
∑
α

λαTr
[
EαCD†

]
Tr
[
DC†Eα†

]
≥ 0

=
∑
α

λα
∣∣TrEαCD†

∣∣2 ≥ 0. (8)

To conclude the proof we need to choose C,D in order to isolate a single eigenvalue λβ . The pair
D = 1, C = Eβ† fulfills the trace constraint Tr[C†C] = Tr

[
EβEβ†

]
= 1 and reduces the complete

positivity inequality to ∑
α

λα
∣∣TrEαCD†

∣∣2 =
∑
α

λα(δαβ)2 = λβ ≥ 0,
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for any choice of β. In conclusion we have shown that λβ ≥ 0 is a necessary condition for com-
plete positivity. It is also sufficient, as (8) is also valid for Hilbert spaces of arbitrary dimension
and positivity for general density matrices follows directly from the positivity of all pure density
matrices P.

2.5 The Kraus Representation

We have shown that completely positive and trace preserving linear maps ρ′ = Aρ always have
a Kraus representation [54], which means that they can be described by set of Kraus operators
Mα =

√
λαEα obeying

ρ′ =
∑
α

MαρMα†,
∑
α

Mα†Mα = 1, Tr
[
MαMβ†] = λαδαβ .

However, one can show that the third (orthogonality) condition is not necessary and any set
of Kraus operators defines a map with the desired properties (even overcomplete sets). Trace
preservation follows directly from the second condition. Complete positivity can be shown for
every Kraus operator individually. Choosing an arbitrary basis |χi〉 for the environment and state
|ψ〉 as in equation (7), complete positivity reduces to the statement

〈Ψ|
(
MαρMα† ⊗ |χ1〉〈χ1|

)
|Ψ〉 =

∑
i,j

D∗i1Dj1〈ψi|MαρMα†|ψj〉

=

(∑
i

D∗i1〈ψi|Mα

)
ρ

∑
j

Dj1M
α†|ψj〉

 ≥ 0,

since any initial density matrix P can be written as a sum of terms of this form.

2.6 Infinitesimal Time-Evolution

Now that we have formulated the generalization of the unitary map (3) we would like to derive a
differential equation for a continuous family of maps ρ(t) = A(t)ρ which generalizes the Liouville-
von Neumann equation (4). Time-dependent maps can be described by a time-dependent set
Mα(t) of Kraus operators. The initial condition ρ(0) = ρ can be written as

ρ = 1ρ1

and can thus be described by a single Kraus operator M0 = 1. The map to ρ(δt) for an infinitesimal
δt can therefore be described by the set of Kraus operators

M0(δt) = 1+Bδt, Mα(δt) = Kα
√
δt, α > 0,

where B,Kα are arbitrary operators. The Kraus operators Mα with α > 0 scale with the square
root of δt, since they only appear quadratically in the infinitesimal map

ρ(δt) = (1+Bδt)ρ(1+B†δt) + δt
∑
α

KαρKα† +O(δt2).

Taking the limit δt→ 0 we obtain the differential equation

∂tρ(t) = Bρ(t) + ρ(t)B† +
∑
α

Kαρ(t)Kα†.

The trace constraint Tr[∂tρ(t)] = 0 becomes

Tr

[(
B +B† +

∑
α

Kα†Kα

)
ρ(t)

]
= 0 ⇒ B +B† +

∑
α

Kα†Kα = 0. (9)
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Reinserting this into the differential equation to eliminate the symmetric combination B + B†

yields the Lindblad equation [7]

∂tρ(t) = [
1

2
(B −B†), ρ(t)] +

∑
α

[
Kαρ(t)Kα† − 1

2
{Kα†Kα, ρ(t)}

]
= −i[H, ρ(t)] +

∑
α

[
Lαρ(t)Lα† − 1

2
{Lα†Lα, ρ(t)}

]
(10)

= Hρ(t) + Lρ(t),

with Hermitian Hamiltonian H = i
2 (B − B†) and Lindblad operators Lα = Kα. The trace

constraint (9) has eliminated the symmetric combination B+B† and thus no longer constrains the
Hamiltonian H or the Lindblad operators Lα at all, as it now just trivially identifies

∑
α L

α†Lα

with an arbitrary Hermitian operator. Although we have not explicitly written it this way, no step
in the above derivation is an obstruction to making H(t) and Lα(t) time-dependent. As we have
derived it from an infinitesimal Kraus representation, the Lindblad equation (10) itself is thus
the most general differential equation for trace preserving, completely positive maps of density
matrices.

2.7 Physics of the Lindblad Equation

We have shown how the Liouville-von Neumann equation (4) for the evolution of quantum systems
described by a density matrix can be generalized to the Lindblad equation

∂tρ(t) = −i[H, ρ(t)] +
∑
α

[
Lαρ(t)Lα† − 1

2
{Lα†Lα, ρ(t)}

]
. (11)

So what are the physical consequences of adding Lindblad operators to the evolution equation?
The primary difference is the loss of reversibility. While completely positive and trace preserving
maps form a semi-group under composition

A1A2ρ =
∑
α,β

Mα
1 M

β
2 ρM

β†
2 Mα†

1 =
∑
αβ

MαβρMαβ† = Aρ, Mαβ = Mα
1 M

β
2 ,

it is in general not possible to define an inverse (especially one that is completely positive as well).
For instance, the map defined by a complete set of projection operatorsMαMβ = δαβMα,

∑
αM

α =
1 acts on a general density matrix as

ρ =

ρ11 ρ12 . . .
ρ21 ρ22

...
. . .

 → ρ′ =

ρ11 0 . . .
0 ρ22

...
. . .

 .

The complete loss of information about the off-diagonal correlations ραβ , α 6= β clearly makes this
map irreversible. Although the Lindblad equation (11) only generates such maps asymptotically,
the (finite) suppression of matrix elements can not be reversed through the Lindblad equation
and highly different initial states may converge to the same final state. A second important
feature is the transition from pure to mixed state density matrices (and vice versa). Although,
from a mathematical standpoint, the Lindblad equation defines a deterministic evolution of the
density matrix, mixed density matrices still have the physical interpretation of uncertainty with
respect to the true current state of the system described by the wave function |ψ〉. Thus the
Lindblad equation describes a probabilistic evolution of the quantum system, with discrete jumps
|ψ〉 → Lα|ψ〉 happening at a characteristic rate 〈ψ|Lα†Lα|ψ〉. The Lindblad equation thus describes
an open quantum system, which interacts with its environment under appropriate conditions (large
bath, fast relaxation times, weak interaction). It is thus a good candidate to model decoherence
and measurement effects, for instance in experiments. We will now discuss two examples of how
the Lindblad equation arises for systems with decoherence and systems which undergo continued
and unsupervised measurement, before we show how it can be derived as an approximation to a
unitary interaction of system and bath.
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2.7.1 Decoherence

Imagine that the phases of the two states |0〉, |1〉 get repeatedly shoved independently of each other,
thus effectively performing a random walk. Then the total acquired phase after time t follows a
normal distribution

θi(t) ∼ N(0, λit),

with different rates λ0,1. The density matrix then evolves as (Pi = |i〉〈i|)

ρ(t) =

∫
d2θ

2π
√
λ0λ1t

e−
θ20

2λ0t
− θ21

2λ1t ei(θ0P0+θ1P1)ρ(0)e−i(θ0P0+θ1P1),

which is already in Kraus form (although with a continuous set of operators). Performing the
integrals we obtain

ρ(t) = P0ρ(0)P0 + e−
λ0+λ1

2 tP0ρ(0)P1 + e−
λ0+λ1

2 tP1ρ(0)P0 + P1ρ(0)P1

= (P0 + e−
λ0+λ1

2 tP1)ρ(0)(P0 + e−
λ0+λ1

2 tP1) + (1− e−(λ0+λ1)t)P1ρ(0)P1,

which show exponential decay of the off-diagonal correlations ρ01, ρ10. Taking the derivative pro-
vides us with the Lindblad equation

∂tρ(t) = −λ0 + λ1

2

[
e−

λ0+λ1
2 tP0ρ(0)P1 + e−

λ0+λ1
2 tP1ρ(0)P0

]
= −λ0 + λ1

2
[ρ(t)− P0ρ(t)P0 − P1ρ(t)P1]

=
λ0 + λ1

2

∑
i=0,1

[
Piρ(t)Pi −

1

2
{Pi, ρ(t)}

]
,

with Lindblad operators Li =
√

(λ0 + λ1)/2Pi.

2.7.2 Continuous Unsupervised Measurement

Measuring an observable O of a quantum system collapses the wave function |ψ〉 into the subspace
Pλ(O)2 = Pλ(O) of the measured eigenvalue λ. The probability for measuring λ is given by
pλ = 〈ψ|Pλ(O)|ψ〉. The density matrix describing all possible measurement outcomes is thus given
by

ρ′ = Oρ =
∑
λ

Pλ(O)ρPλ(O),
∑
λ

Pλ(O)Pλ(O) = 1,

and is obviously of Kraus from. We use the notation where O denotes the map of density matrices
under measurement, and not the operator which is used to determine expectation values. Since
we are not interested in the result λ of the measurement process, the map itself contains the
complete information about this process. Now we are interested in the process where multiple
measurements are performed at random instances of time. The average time separation between
consecutive measurements is governed by a rate ν and we assume that they occur independent of
each other, thus the number of measurements per time interval follows a Poisson distribution. In
between two measurements the system evolves according to the Liouville-von Neumann equation

∂tρ(t) = −i[H, ρ(t)], ρ(t) = U(t, t′)ρ(t′) = e−iH(t−t′)ρ(t′)eiH(t−t′).

The full time-evolution is then given by the infinite sum

ρ(t) =

∞∑
n=0

e−νtνn
∫ t

0

dtn

∫ tn

0

dtn−1 · · ·
∫ t2

0

dt1U(t, tn)OU(tn, tn−1) · · · OU(t2, t1)OU(t1, t0)ρ(t0)

= V(t, t0)ρ(t0).
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Since O and U are both completely positive trace-preserving maps, it is straightforward to show
that the full map V is also completely positive and preserves the trace

Trρ(t) =

∞∑
n=0

e−νtνn
∫ t

0

dtn

∫ tn

0

dtn−1 · · ·
∫ t2

0

dt1Trρ(t0) =
∑
n

e−νt
(νt)n

n!
= 1.

To show that this family of maps obeys the Lindblad equation, we simplify it to an iterated equation

ρ(t) = e−νt
[
U(t, t0)ρ(t0) + ν

∫ t

0

dtne
νtnU(t, tn)OV(tn, t0)ρ(t0)

]
, (12)

before simply taking the derivative with respect to t to obtain

∂tρ(t) = −νρ(t)− i[H, ρ(t)] + ν U(t, t)OV(t, t0)ρ(t0)

= −i[H, ρ(t)] + ν [Oρ(t)− ρ(t)]

= −i[H, ρ(t)] + ν
∑
λ

[
Pλ(O)ρ(t)Pλ(O)− 1

2
{Pλ(O)2, ρ(t)}

]
.

This derivation neatly interprets the Lindblad equation as the evolution under randomly occurring
measurements (or generalized measurements if the Lindblad operators are not projection opera-
tors). The rate of measurement ν dictates the exponential decay of the contributions from an
undisturbed (unmeasured) system (12), while the full evolution can be broken down as a series of
∼ νt measurements with intermediate unitary evolution.

2.8 Lindblad Equation from Unitary Interactions with a Thermal Bath

The derivation of the Lindblad equation from the joint von Neumann equation of system and bath
rests upon three key assumptions. The first is that the initial state has no correlations between
system and bath, therefore the density matrix is separable and can be written as a product

ρ = ρS ⊗ ρB , ρB ∼ e−βHB ,

where ρS is an arbitrary initial state of the system and ρB describes a thermal state of the bath
Hamiltonian HB . Second we have the Markov condition which removes memory effects from the
bath. By introducing the projection superoperators P +Q = 1 defined by

Pρ = TrB(ρ)⊗ ρB ,

we immediately identify Pρ as the part of ρ, which carries all relevant information about the
reduced system TrBρ = TrBPρ and fulfills the Markov condition. Finally, we assume the system
and bath to be weakly coupled

H = HS +HB + λV = HS ⊗ 1+ 1⊗HB + λV,

through an interaction λV , such that we can expand in powers of λ. For the derivation it is
practical to go to the interaction picture

ρ̃(t) = ei(HS+HB)tρ(t)e−i(HS+HB)t, ∂tρ̃(t) = −iλ[Ṽ (t), ρ̃(t)] = −iλV(t)ρ̃(t), (13)

Ṽ (t) = ei(HS+HB)tV e−i(HS+HB)t, P ρ̃(t) = ei(HS+HB)t[Pρ(t)]e−i(HS+HB)t.

The last equation shows that the projection superoperator commutes with the interaction trans-
formations, since HS , HB commute and HB commutes with its thermal state density matrix ρB .
Furthermore we have introduced the interaction superoperator V(t)· = [Ṽ (t), · ] to simplify the
notation. We now split the von Neumann equation into two parts by inserting the projection
operators 1 = P +Q

∂tP ρ̃(t) = −iλPV(t)P ρ̃(t)− iλPV(t)Qρ̃(t), (14)

∂tQρ̃(t) = −iλQV(t)Qρ̃(t)− iλQV(t)P ρ̃(t). (15)
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Before we attempt to solve the coupled equations, we quickly remark that we can drop the first
term in (14)

PV(t)P ρ̃(t) = [TrB{Ṽ (t)ρB},TrB{ρ̃(t)}]⊗ ρB = 0.

We can always make this contribution vanish, by redefining

V ′ = V − TrB{V ρB} ⊗ 1, H ′S = HS + λTrB{V ρB} ⊗ 1.

All we need now is an approximate solution of (15) for Qρ̃(t) in order to insert it into (14). A
formal solution of (15) can be written with the help of the propagator of the homogeneous equation

G(t, t′) = T exp−iλ
∫ t
t′
dτ QV(τ)

Qρ̃(t) = G(t, 0)Qρ̃(0)− iλ
∫ t

0

dτ G(t, τ)QV(τ)P ρ̃(τ),

which can be shown to solve (15) by simply taking the derivative on both sides. This formal
solution is remarkable as it only depends on the initial value of Qρ̃ at time t = 0. However our
initial condition is separable and thus an eigenstate of Pρ(0) = ρ(0). Therefore the homogeneous
term vanishes and we can insert the remainder into (14)

∂tP ρ̃(t) = −λ2

∫ t

0

dτ PV(t)G(t, τ)QV(τ)P ρ̃(τ),

to obtain an integro-differential equation for P ρ̃. To proceed we would like to remove the depen-
dence on intermediate times 0 ≤ τ ≤ t. This we do by introducing the unitary propagator for the
full von Neumann equation (13) in the interaction picture U(t, t′) = T exp−iλ

∫ t
t′
dτ V(τ), to back

propagate

U(t, t′)ρ̃(t′) = ρ̃(t) ⇒ ρ̃(t′) = U(t, t′)†ρ̃(t) = T ∗eiλ
∫ t
t′ dτ V(τ)ρ̃(t),

where T ∗ denotes anti-time-ordering. Thus we finally arrive at a differential equation for P ρ̃(t) in
terms of the density matrix at t only

∂tP ρ̃(t) = −λ2

∫ t

0

dτ PV(t)G(t, τ)QV(τ)PU(t, τ)†ρ̃(t).

However, this came at the cost of reintroducing the dependence on Qρ. So far we have not
made use of the weak coupling assumption. From their definitions we see that both propagators
G(t, τ), U(t, τ) can be set to the identity at lowest order in λ. This significantly simplifies the
complexity of the superoperator (using PV(t)P = 0 again)

∂tP ρ̃(t) = −λ2

∫ t

0

dτ PV(t)V(τ)P ρ̃(t) +O(λ3),

and shows that the dependency on Qρ is of higher order in λ only. Finally we are now able to trace
out the bath to obtain the equation for the reduced density matrix ρ̃S(t) = TrBρ(t) = TrBPρ(t)

∂tρ̃S(t) = −λ2

∫ t

0

dτ TrB {V(t)V(τ)(ρ̃S(t)⊗ ρB)}+O(λ3),

= −λ2

∫ t

0

dτ TrB

{
[Ṽ (t), [Ṽ (τ), ρ̃S(t)⊗ ρB ]]

}
+O(λ3),

= −λ2

∫ t

0

dτ TrB

{
[Ṽ (t), [Ṽ (t− τ), ρ̃S(t)⊗ ρB ]]

}
+O(λ3).

Our final task is thus to bring this equation into the Lindblad form (11). To do this we decompose
the interaction into a sum of factorizable terms

V =
∑
k

Ak ⊗ Γk. (16)
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Since V is Hermitian we can always do this in such a way that Ak, Bk are both Hermitian as
well (any operator can be written as the sum of two Hermitian operators R + iJ , then any terms
proportional to i must vanish due to the hermiticity of V , thus the above form). Furthermore we
can introduce a complete set of eigenstates of HS on both sides of Ak to split it into parts with
characteristic frequencies ω = E − E′, such that (A†k(ω) = Ak(−ω))

V =
∑
k,ω

Ak(ω)⊗ Γk ⇒ Ṽ (t) =
∑
k,ω

Ak(ω)e−iωt ⊗ Γ̃k(t) =
∑
k,ω

A†k(ω)eiωt ⊗ Γ̃k(t),

which we insert into the differential equation (and replacing A†k(ω) = Ak(−ω) where needed) to
get

∂tρ̃S(t) = λ2
∑
k,ω

∑
k′,ω′

ei(ω
′−ω)tΓtkk′(ω)[Ak′(ω

′)ρ̃S(t), A†k(ω)] + h.c. (17)

where we introduced the integrated bath correlation function

Γtkk′(ω) =

∫ t

0

dτ eiωτTrB

[
Γ̃k(τ)Γk′ρB

]
. (18)

The next step is to realize that most terms in (17) oscillate much faster than the typical time τI
it takes for ρ̃S(t) to change substantially. Thus the effective contribution to the time-evolution of
ρ̃S(t) is strongly suppressed for all terms with ω′ 6= ω. The weak coupling assumption then allows
us to separate the time-scales of the free system τS ∼ ω−1, the relaxation of the (free) bath τB
and the interaction τI

τS ∼ τB � τI ∼ τS/λ2.

We can thus define an intermediate time scale τ̄ = τS/λ, which is well separated both from τS

ρ̃S(t+ τ̃) = ρ̃S(t) +O(τ̄ /τS) = ρ̃S(t) +O(λ), (19)

and also from τB . To eliminate the oscillatory terms, we consider the density matrix averaged over
a time interval of duration τ̄

ρ̄S(t) =

∫ 1

0

dσ ρ̃S(t+ στ̄) = ρ̃S(t) +O(λ),

which we can therefore use interchangeably with the unaveraged quantity (at lowest order in λ).
Its evolution is governed by

∂tρ̄S(t) = λ2
∑
k,ω

∑
k′,ω′

∫ 1

0

dσ ei(ω
′−ω)(t+στ̄)Γt+στ̄kk′ (ω)[Ak′(ω

′)ρ̃S(t+ στ̄), A†k(ω)] + h.c.

= λ2
∑
k,ω

∑
k′,ω′

ei(ω
′−ω)tΓ∞kk′(ω)[Ak′(ω

′)ρ̄S(t), A†k(ω)]

∫ 1

0

dσ ei(ω
′−ω)τS/λσ + h.c.

where we also used the fact the bath relaxes much faster than τB � τ̄ and thus we can safely
extend the integration of (18) to infinity. (To avoid issues with periodical recurrences, one also has
to assume that the bath is infinite.) As we have separated the fast oscillations, we can now take
the limit λ → 0, while keeping ω and τS fixed. The integral then vanishes for all ω′ 6= ω and we
are thus left with

∂tρ̄S(t) = λ2
∑
ω

∑
k,k′

Γ∞kk′(ω)[Ak′(ω)ρ̄S(t), A†k(ω)] + h.c.

Splitting the bath correlator into a Hermitian and an anti-Hermitian part Γ∞k′k(ω) = γk′k(ω)/2 +
iSk′k(ω) turns this into the Lindblad equation

∂tρ̄S(t) = −i[HLS , ρ̄S(t)] + λ2
∑
ω

∑
k,k′

γkk′(ω)

[
Ak′(ω)ρ̄S(t)A†k(ω)− 1

2
{A†k(ω)Ak′(ω), ρ̄S(t)}

]
,
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with a Hamiltonian piece HLS that commutes with HS and thus shifts all energy levels

HLS = λ2
∑
ω

∑
k,k′

Skk′(ω)A†k(ω)Ak′(ω).

The one thing left to prove is the positive definiteness of the matrices γkk′(ω). By writing

Cv(ω) = v†γ(ω)v =

∫ ∞
−∞

dτ eiωτTrB
[
eiHBτC†ve

−iHBτCvρB
]

=

∫ ∞
−∞

dτ eiωτ Ĉv(τ)

for any complex vector vk and Cv =
∑
k vkΓk, we can translate this into a statement about time

correlation functions Ĉv(τ) and their Fourier transform Cv(ω). By Bochner’s theorem [55] we
conclude that Cv(ω) ≥ 0 if and only if Ĉv(τ) is positive definite, which implies that for any set of
times τx and complex weights wi we have∑

i,j

w∗i Ĉv(τx − τj)wj ≥ 0.

We can decompose Ĉv(τ) by introducing complete sets of eigenstates of HB inside the trace to
obtain

Ĉv(τ) =
∑
ε,ε′

|〈ε′|Cv|ε〉|2〈ε|ρB |ε〉ei(ε−ε
′)τ .

From
∑
i,j w

∗
i e
i(ε−ε′)(τx−τj)wj = |∑i e

−i(ε−ε′)τxwi|2 it follows that ei(ε−ε
′)τ is positive definite.

Since ρB is also positive definite, the proof is complete by linearity. Thus we can diagonalize
γkk′(ω) into positive eigenvalues γαω with eigenvectors (operators) Eαω . Writing Lαω = λ

√
γαωE

α
ω and

returning from the interaction picture we obtain the final form of the Lindblad equation

∂tρS(t) = −i[HS + λ2HLS , ρS(t)] +
∑
ω,α

[
LαωρS(t)Lα†ω −

1

2
{Lα†ω Lαω, ρS(t)}

]
.
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3 Closed Hierarchies

In complete analogy to unitary dynamics, the dissipative Lindblad equation can be reinterpreted
as an equation of motion of the observables, rather than the density matrix. This corresponds
to adopting Heisenberg’s point of view on quantum dynamics. The density matrix then repre-
sents an initial condition, while operators change in time according to an equation dual to the
Lindblad equation. Unitary dynamics is completely reversible, which means that all information
about the initial state could, in principle, be recovered from the final state. In practice, how-
ever, this is usually not feasible, since local information (in form of the value of some low-order
n-point function) gets distributed to increasingly higher-order n-point functions, thus constructing
a hierarchy of correlation functions. The number of n-point functions grows exponentially in the
order n and polynomially in the volume. The number of dependent observables in the full hierar-
chy then typically scales with the size of the Hilbert space and thus exponentially in the volume.
Each interaction with the Hamiltonian creates multiple new dependencies, which therefore grow
exponentially with time. This (practical) intractability of information represents the currently
still insurmountable hurdle in quantum real-time dynamics. Statistical or equilibrium quantum
physics (where the evolution occurs in imaginary time) does not suffer from this problem. The
thermal average reduces the information content to a few characteristics at a given energy scale.
These can be measured using a set of low n-points functions, whose size only scales polynomially
with the volume. The dissipative nature of the Lindblad equation provides a similar effect. Due
to the inherent information loss, the system should approach a set of fixed states or a limiting
cycle. In either case one only needs a limited number of observables to describe its current state
after a sufficiently long adjustment period. One can then hope that these observables are part of
a closed set (under application of the dual Lindblad equation), such that the late-time behavior
can be predicted exactly from the initial expectation values of the full set. If the size of this closed
set only scales polynomially with the volume, one has significantly reduced the complexity of the
problem and has thus constructed a practical path for its simulation. The goal of this section is
to derive conditions for the existence of such closed sets and to discuss some concrete examples.

3.1 Lindblad Equation in the Heisenberg Picture

Any solution of the time-evolution superoperator A(t) of density matrices ρ can be reinterpreted
as a dual map Ã(t) acting on observables using its Kraus form

O(t) = 〈O〉(t) = Tr [OA(t)ρ] =
∑
α

Tr
[
OMα(t)ρMα†(t)

]
=
∑
α

Tr
[
Mα†(t)OMα(t)ρ

]
= Tr

[
Ã(t)Oρ

]
= 〈O(t)〉.

The equation of motion for the observable can then be written in terms of the dual map and the
dual Lindblad superoperator L̃

∂tO(t) = Ã(t) L̃O, (20)

and the form of the dual Lindblad superoperator L̃ is given by

L̃O = i[H,O] +
∑
α

[
Lα†OLα − 1

2
{Lα†Lα, O}

]
= i[H,O] +

1

2

∑
α

[
Lα†[O,Lα] + [Lα†, O]Lα

]
, (21)

By formally defining an inverse Ã(t)−1 (which is not a positive map) we bring (20) into the form
of the Heisenberg equation (1)

∂tO(t) = Ã(t) L̃ Ã(t)−1O(t) = L̃H(t)O(t),

We derive this equation simply in order to make the analogy to unitary dynamics. In practice,
it is, however, much simpler to use (20) and express the derivative of O(t) by the evolved value
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of the observable L̃O. The constraints leading to the Kraus form and the Lindblad equation can
be reformulated in the Heisenberg picture. The trace constraint results from the invariance of
the identity operator 1(t) = 1 (L̃1 = 0) as the total probability measure. Hermiticity guarantees
that observables will always be mapped to observables. Finally, complete positivity ensures that
any observable that can be written as a reduced projection operator OS = TrB [PSBρB ] will never
acquire negative eigenvalues. (It does, however, not mean that projection operators are mapped
onto themselves, only the range of their expectation values 0 ≤ 〈P (t)〉 ≤ 1 is preserved, which
makes them indistinguishable from actual projection operators in terms of measurements).

3.2 Linear Differential Operator

The equation of motion for observables (20) can be recast as an equation of motion for their
expectation values

∂tO(t) = 〈∂tO(t)〉 = 〈Ã(t) L̃O〉 = 〈L̃O〉(t),

where L̃O is just another observable by the Hermiticity constraint. In this way the dissipator
L̃ can be viewed as a linear differential operator which for every expectation value 〈O〉 returns
its time derivative 〈L̃O〉. Given a basis {O} for all observables we can write the dual Lindblad
superoperator in matrix form to obtain a set of coupled linear differential equations for their
expectation values

∂tO(t) = 〈L̃O〉(t) =
∑
{O′}
MO,O′ 〈O′〉(t) =

∑
{O′}
MO,O′ O′(t).

In practice this does not yield a feasible method to calculate the real-time evolution of observables.
As we will show in section 3.3 the number of observables in our basis {O}, and therefore the
complexity of the differential equations, grows exponentially with the volume. The dependencies
among the observables, however, show a hierarchical structure among n-point functions. For
approximate solutions one could just truncate this hierarchy, but for the Lindblad superoperators
L we were are able to derive closure conditions (see section 3.4), such that n-point functions
decouple exactly from all higher than n-point functions. The time evolution of their expectation
values can thus be calculated by solving the coupled differential equations for this smaller set and
the physical properties of the full dissipator L can be studied on this decoupled set.

3.3 The Hierarchy of Correlation Functions

We can construct a basis for all observables of a lattice system of N -sites with a local Hilbert space
of size M as repeated tensor products of the set of M2 local Hermitian matrices

τax , a ∈ 0, . . . ,M2 − 1, x ∈ 1, . . . , N.

The space of observables is thus M2N -dimensional and it is spanned by the elements

Ω(a) =
⊗
x

τaxx .

An orthogonal basis with respect to the trace can be constructed locally and it automatically yields
an orthogonal basis for the full space

Trx[τax τ
b
x] = δab ⇒ Tr[Ω(a)Ω(b)] =

∏
i

Trx[τaxx τ bxx ] =
∏
x

δaxbx = δab.

Any observable can be written as a linear combination of Ω(a)’s. This follows directly from the
repeated use of the following identity on factorizable Hilbert spaces

A⊗B +A† ⊗B† = (A+A†)⊗ (B +B†)− i(A−A†)⊗ i(B −B†).

As a convention we take τ0 = 1M/M and τa (for a > 0) to be the (orthogonal and properly
normalized) generators of SU(M) in the fundamental representation. This allows us to subdivide
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our basis elements into sets of n-point functions Ωn ∈ Cn, where the degree n is defined as the
number of non-identity operator insertions

n(Ω) = n(a) = |{ax > 0}|.

The size of each set is given by

|Cn| =
(
N

n

)
(M2 − 1)n.

The algebra of all Hermitian operators can be written as

[Ω(a),Ω(b)] = iΩ(a, b) = i
∑
c

fabcΩ(c),

with real structure constants fabc = −iTr[[Ω(a),Ω(b)]Ω(c)]. To investigate the structure of the
hierarchy, we write the Hamiltonian and the Lindblad operators as linear combinations of the
basis elements (with real coefficients for the Hermitian Hamiltonian, and complex coefficients for
the jump operators). The effect of any n-point piece Ω(a) in the Hamiltonian on an m-point
observable Ω(b) can be studied individually

i[Hn, Om] = i[Ω(a),Ω(b)] = −Ω(a, b) = −
∑

c| |n−m|<n(c)<n+m

fabcΩ(c) =
n+m−1∑

p=|n−m|+1

Op

The lower and upper bounds on the degree of the observables on the right-hand side can be
understood as follows. In order to have a non-vanishing commutator, they must share a non-zero
index ai 6= 0 6= bi on at least one site. Thus the maximally obtainable rank is n+m−1. The lowest
possible rank is given by |n −m| + 1, which happens when the non-zero indices of one operator
form a subset of the other operators non-zero indices. The resulting operator is then given by an
operator with degree |n −m| times a commutator on a disjoint set of min(n,m) sites. However,
this commutator either vanishes or has support on at least one site. This is due to the fact that
the identity operator is the only operator with degree zero and non-vanishing trace. Since the
commutator is always traceless it does not produce a term proportional to the identity matrix,
and can therefore not have degree zero. Every Hamiltonian that is at least bi-local (n ≥ 2) thus
introduces dependencies of the time-evolution of n-point functions to higher-point functions.

The derivation of a similar statement for dissipative processes is more complicated, due to the
non-linearity in the Lindblad operators. However, if we restrict the analysis to Lindblad operators
which only act on n sites In = {x1, . . . , xn}

Ln =
∑
a∈Sn

waΩ(a), Sn = {a : ax = 0, ∀x /∈ In},

we can derive the constraint

L†n[Om, Ln] + [L†n, Om]Ln =
∑
a∈Sn

i(waL
†
ni[Ω(a), Om]− w̄ai[Ω(a), Om]Ln)

=
∑
a∈Sn

n(a)+m−1∑
p=|n(a)−m|+1

i(waL
†
nO

a
p − w̄aOapLn)

=

n+m−1∑
p=1

(
L†nQp +Q†pLn

)
=

n+m−1∑
p=0

Op.

We obtain the same upper limit n+m−1, but the lower limit decreases first to 1 due to operators
of degree lower than n in Ln and finally to zero because multiplication can create the identity
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operator of degree 0. It is important to note that the final multiplication L†nQp does not raise
the upper limit further, since both operators act on the same subset of n + m − 1 sites. (If we
would have chosen Ln differently, for instance more generally as a sum of operators of degree at
most n, this step could have raised the maximal degree to 2n + m − 1.) So again the Lindblad
equation shows hierarchical behavior with growth of the degree of dependent observables for n > 2.
However, the multiplicative structure of the Lindblad term allows more flexibility, which already
manifests itself as a dependence on the operator of degree zero. As the unit operator is conserved
due to the trace constraint, it introduces a constant term into the differential equations for the
observables, something we could have never gotten from Hamiltonian dynamics. Furthermore, this
hints at the possibility of engineering jump operators which do not exhaust the upper limit of the
degree and thus slow the ascent in the hierarchy of n-point functions.

3.4 Closure Conditions

We have shown how the number of co-dependent observables grows hierarchically towards higher n-
point functions, and how this inhibits us from tracking their time-dependence, without introducing
large errors (due to truncation or slow convergence of statistical methods). In order to have any
chance of tracking the time-evolution of an observable, it has to be part of a closed set. A closed
set A is defined as a finite subspace of all observables spanned by the basis {Ω(a)}a, which is closed
under time-evolution

∂tA = D(A) = {D(O) : O ∈ A} ⊂ A.

As usual, the closure of a set Ā is defined as the smallest closed subspace, which contains A. Thus
the closure of the set of one operator {O} is the minimal set needed to calculate the full time-
evolution of that operator. The simplest example is that of a conserved quantity since D(O) = 0
implies that its closure is the one-dimensional subspace of multiples of O. Since the full set {Ω(a)}a
is closed, the closure of any set always exists. For practical purposes, however, we need a set of
manageable size, which means that the dimensionality of the closure of an operator should grow
only polynomially with the system size. Furthermore, it would be preferable if the closed set of
interest could be analytically determined, without an iterative procedure of either enlarging or
reducing the set. It is thus natural to first define the sets one would like to be closed, and use
them to restrict the form of the dissipator D. The growth of the hierarchy seemed to be fueled
mainly by an addition of n − 1 legs to m-point functions with each application of the dissipator
D. A good starting point is thus to demand closure of the set of degree at most m

Am = {Ω(a) : n(a) ≤ m} =

m⋃
n=0

Cn, D(Am) ⊂ Am, ∀m. (22)

These sets only grow polynomially in the system size (typically Am ∼ Nm) and are expected to
carry most of the information about the system (similar to thermal equilibrium). If we interpret
the m-point functions Cm as m-particle operators, the dissipator should then describe three basic
kind of scatterings (i) spatial Cm → Cm, exchanging ax ↔ ay, (ii) flavor change Cm → Cm,
switching ax → bx and (iii) particle destruction Cm → Cm−1, sending a flavor to zero ax → 0. Any
scattering can be an arbitrary combination of these three. Particle creation Cm → Cm+k however
is strictly forbidden by (22).

To simplify the analysis we now restrict ourselves to spins 1/2 (M = 2, qubits) living on a
periodic hyper-cubic lattice in d dimensions. The interaction Hamiltonian and Lindblad operators
are all given by uniform, bi-local interactions of nearest neighbors. The dissipator can then at
most create one new particle at a time. This can only happen when one of its bi-local operators
overlaps with one of the observables particles τax , while also acting on an unoccupied site τ0

y . As this
process is completely independent of the number and flavor of particles in the rest of the system, it
is sufficient to prove the absence of particle production for one point functions C1, described by the
operators τax . To derive the necessary conditions, we proceed in three steps. First we prove that
the Hamiltonian must be ultra-local. Then we proceed to look at symmetric and anti-symmetric
Lindblad operators Lxy = ±Lyx separately, in order to derive their respective closure conditions.
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3.4.1 Hamiltonian

Let us consider the Hamiltonian

H =
∑
x,a

hasax +
∑
〈x,y〉

∑
a,b

Jabsaxs
b
y,

where sa = σa/2, a = 1, 2, 3 are the spin operators and 〈x, y〉 denotes all pairs of nearest neighbors.
The interaction should be symmetric Jab = Jba. The closure conditions follow from acting with
the Hamiltonian on a single operator

i[H, sax] =
∑
b

εabcscx

(
hb +

∑
y|〈x,y〉

∑
d

Jbdsby

)
.

The closure condition ensuring D(sax) ⊂ A1 is thus given by Jab = 0, and only ultra-local interac-
tions with a magnetic field ha are allowed.

3.4.2 Even Lindblad Operators

Even Lindblad operators act on nearest neighbors 〈x, y〉 and are symmetric under the exchange of
the two sites Lxy = Lyx. We can parametrize the set of symmetric operators as

Lxy = l01+ i
∑
a

la(sax + say) +
∑
a,b

labsaxs
b
y

with coefficients l0 ∈ R and la, lab = lba ∈ C. The Lindblad equation is invariant under individual
phase rotations of the jump operators Lα → eiφ

α

Lα, thus we can always eliminate the phase of one
coefficient, in this case we have chosen l0. The closure condition D(sax) ⊂ A1 yields 27 equations

(L̃xy( · ) = (L†xy[ · , Lxy] + [L†xy, · ]Lxy)/2)

mabc = Tr[saxs
b
y L̃xy(scx)] = 0.

They can be summarized in seven equations

=[l̄aga] = −1

2

(
=[l̄agb] + =[l̄agc] + =[l̄bhc] + =[l̄chb]

)
, a 6= b 6= c ,

=[l̄alb] =
1

4

∑
c

εabc
(
=[l̄cga] + =[l̄cgb]−=[l̄ahb]−=[l̄bha]

)
,

=[ḡagb] = 2
∑
c

εabc
(
=[l̄aha] + =[l̄bhb]

)
,

=[ḡahb] = −2
∑
c

εabc=[l̄ahc]− δab
∑
c,d

εacd
(
=[l̄agc] + =[l̄chd]

)
,

=[h̄ahb] =
∑
c

εabc
(
=[l̄cga] + =[l̄cgb] + =[l̄ahb] + =[l̄bha]

)
,

l0=[ga] = −1

2

∑
b,c

εabc=[l̄bhb] ,

l0=[ha] = −1

4

∑
b,c

εabc
(
=[l̄agb]−=[l̄bhc]

)
,

where we have split the matrix lab into diagonal ga = laa and off-diagonal parts h1 = l23, h2 =
l31, h3 = l12. These equations can readily be solved when all parameters are real, yielding a 10-
parameter family l0, la, ga, ha ∈ R. Among them are the projection operators on spin singlet and
triplet

P sxy =
1

4
1−

∑
a

saxs
a
y, P txy =

3

4
1+

∑
a

saxs
a
y.

A purely dissipative process driven by these operators has been investigated previously with Monte
Carlo methods [56–58]. The closure of the hierarchy allows a direct confirmation of their results
with our semi-analytical method.
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3.4.3 Odd Lindblad Operators

The odd Lindblad operators are antisymmetric under the exchange of the two sites Lxy = −Lyx.
Their parametrization is given by

Lxy = i
∑
a

la(sax − say) +
∑
a,b,c

εabchasbxs
c
y

with coefficients la, ha ∈ C. Again there is one overall complex phase which is irrelevant. Their
closure conditions are much simpler

=[l̄ahb] = =[l̄alb] = =[h̄ahb] = 0,

thus giving another family with six real parameters la, ha. One candidate, which will be at the
center of our in depth analysis in section 4, is given by the symmetrizer (s± = s1 ± is2)

Qxy =
1

2
(s+
x + s+

y )(s−x − s−y ), (23)

which converts singlets of a pair of spins at x and y into triplets, while conserving the total
spin s3

x + s3
y = 0. It has been proposed as a process for dissipative cooling into a Bose-Einstein

condensate (BEC) [34, 39, 40, 51, 52].
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4 Dissipative Bose-Einstein Condensation

In this section we focus on a system that is driven by the symmetrizer Lindblad operator Qxy (23).
We will show that the final state (or limiting cycle) is among the completely symmetric states. By
mapping the spin system to hardcore bosons, we thus see that we can dissipatively drive our system
into a Bose-Einstein condensate. We will then discuss some dynamical aspects of how this final
state is approached, before we introduce competing unitary and thermal dynamics, to investigate
the stability of this process in a noisy environment.

4.1 Non-Equilibrium Steady States

The non-equilibrium steady states ρNESS are defined as fixed points of the dynamical map, they
are thus the kernel of the dissipator

L(ρNESS) =
∑
〈x,y〉
Lxy(ρNESS) = 0.

It is straightforward to show that totally symmetric superposition states |S = N/2, S3 = n〉, which

are characterized by the total spin ~S =
∑
x ~sx

~S2|N/2, n〉 =
N(N + 2)

4
|N/2, n〉, S3|N/2, n〉 = n|N/2, n〉, (24)

are the only states that fulfill the above condition. Thus the final state is fully characterized by a
positive (N + 1)× (N + 1)-matrix Fmn with unit trace

∑
n Fnn = 1, which defines the final state

ρNESS =
∑
mn

Fmn|N/2,m〉〈N/2, n|.

Since the total spin is conserved L̃(S3) = 0, no entanglement between different S3-sectors is built
up during the evolution. Block-diagonal (in S3) density matrices are thus always mapped to
block-diagonal density matrices, such that the final state can be described by a diagonal matrix
Fmn = pnδmn and density matrix

ρNESS =
∑
n

pn|N/2, n〉〈N/2, n|.

The weights pn are completely determined by the initial weight distribution among the different
spin sectors. In our numerical analysis we will always start from the completely disordered state
ρ = 1/2N , for which the final state is given by

ρNESS =
1

2N

N/2∑
n=−N/2

(
N

n+N/2

)
|N/2, n〉〈N/2, n|. (25)

Adding a local but homogenous Hamiltonian will change the final matrix Fmn, while introducing
thermal spin flips will force the system out of the totally symmetric sector.

4.2 Purely Dissipative Evolution

To study the approach to the NESS-state (25) it is sufficient to know the two-point functions which

contribute to the total spin ~S2. Furthermore it is sufficient to consider spin conserving operators,
as the density matrices are always block-diagonal. This only leaves three classes of operators
(Cxx = 4Dxx = 1)

s3
x, Cxy = s+

x s
−
y + s+

y s
−
x , Dxy = s3

xs
3
y,

and their expectation values

S3
x = 〈s3

x〉, Cxy = 〈Cxy〉, Dxy = 〈Dxy〉.
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The local dissipator acts on a local spin operator as

L̃xy(sax) =
1

4

(
say − sax

)
,

thus they obey the diffusion equation

∂tS
3
x = 〈L̃(s3

x)〉 =
1

4
∆xS

3
x,

with the discrete Laplacian given by ∆xfx =
∑
y|〈x,y〉(fy − fx). As we are already starting from

a spatially homogenous initial state their expectation value will not change over time. Since our
initial state is also symmetric under reversal of all spins their expectation value will always vanish
S3
x = 0. To calculate the evolution equation for the two point functions we can reuse the above

result, but need to calculate the additional action of the dissipator on nearest-neighbor correlation
functions

L̃xy(Cxy) =
1

2
(Cxx − 2Cxy − 4Dxy), L̃xy(Dxy) = 0, (26)

in order to calculate the full time-evolution of the expectation values

∂tCxy = 〈L̃(Cxy)〉 =
1

4
(∆x + ∆y)Cxy −

1

2
δ〈x,y〉(Cxy + 4Dxy), (27)

∂tDxy = 〈L̃(Dxy)〉 =
1

4
(∆x + ∆y)Dxy +

1

2
δ〈x,y〉(Dxy −Dxx), (28)

while the equal-site correlators are trivially constant Cxx = 4Dxx = 1 by the trace constraint.
From the completely disordered state ρ = 1/2N we determine the initial conditions for these
2-point functions

Cxy(0) = 4Dxy(0) = δxy.

Similarly we use the steady state (25) to calculate their asymptotic values

Cxy(∞) =
1

2
(1 + δxy) , (29)

Dxy(∞) =
1

4
δxy.

While Cxy has accumulated long-range correlations, Dxy has returned to its initial uncorrelated
value. In fact, it never changed at all. Equation 26 highlights the key difference between Cxy
and Dxy. The nearest-neighbor correlation function Cxy couples to the constant 0-point function
Cxx = 1, Dxy, on the other hand, does not (the appearance of Dxx in its evolution equation is
misleading, it cancels exactly with terms from the discrete Laplacian). Thus Dxy = 0 (x 6= y) is
a solution for the time-evolution. In fact, any constant function Dxy = D (x 6= y), is formally a
solution of (28), but only those with − 1

4(N−1) ≤ D ≤ 1
4 are compatible with the underlying spin

system. A non-zero constant D would also influence the asymptotic value of Cxy = C (x 6= y).
Inserting both into (27) we obtain the condition

1

2
(1− C)− 1

2
(C + 4D) = 0 ⇒ 0 ≤ C =

1− 4D

2
≤ N

2(N − 1)
.

which says nothing else than that the nearest-neighbor terms in (26) have to cancel. The relation-
ship of C and D can also be understood in terms of the linear combination ~sx · ~sy = Dxy + 1

2Cxy
which always approaches the asymptotic expectation value

〈~sx · ~sy〉(∞) = D +
1

2
C =

1

4
, (x 6= y),

confirming that the final state is given in terms of the totally symmetric states (24), which only
contain the triplet states of any two spins (not only nearest neighbors). The values of the asymp-
totic constant C then just reflects how often that triplet state lies in the 1, 2-plane (s3

x + s3
y = 0).
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Figure 1: The condensate fraction Cp=0 as a function of time τ for a fixed system size N = 4096
on a d = 1 (dotted), d = 2 square (dashed), and d = 3 primitive cubic (solid) lattice. The exact
asymptotic value Cp=0(∞) = (N+1)/(2N) is indicated by the dashed horizontal line (a). Numerical
results for the inverse dissipative gap ∆−1, the longest time scale in the system, as a function of
the number of sites (particles) N , confirming the analytical prediction (31) for hypercubic lattices
in dimensions d = 1 (squares), d = 2 (dots) and d = 3 (triangles) (b).

The physical limits of the value of C are therefore completely understood in terms of its expectation
value in each of the completely symmetric superposition states with S3 = n (x 6= y)

〈N/2, n|Cxy|N/2, n〉 = 2

(
N − 2

n+N/2− 1

)/(
N

n+N/2

)
=

2(n+N/2)(N/2− n)

N(N − 1)
=

(N2 − 4n2)

2N(N − 1)
.

For an infinite temperature ensemble within each sector of S3 the 2-point function Dxy = D +
( 1

4 −D)δxy will always remain homogenous and constant, and thus enters the evolution equation
of Cxy(t) as another constant term (in fact, it appears only in one particular linear combination
with Cxx (26); thus we can just redefine Cxx → 1 − 4D = 2C and forget about Dxy altogether).
The growth of entanglement between spins at x and y is then completely measurable in terms
of the evolution equation of Cxy (27). The general solution is given by linear combinations of
exponentially decaying functions (plus the constant term C). The various decay rates are given by
the eigenvalues of the operator Mxy,zw (with Cxx = 2C)

∂tCxy =
∑
z,w

Mxy,zwCzw.

The speed of the final approach to the steady state is governed by the largest real part in the
spectrum of M

∆ = − max
λ∈SpecM

<λ > 0,

which is known as the dissipative gap. Its dependence on the system size can be estimated by
mapping the correlation function Cxy → C(r) to a continuum diffusion equation for r = |x−y| � 1
[59]. This yields a valid approximation since Cxy is both translation invariant and isotropic (by
virtue of the chosen initial conditions) and varies only slowly at large distances. The difference
between the discrete Laplacian ∆x and the continuum diffusion equation in d-dimensions

∂tC(r, t) = ∂2
rC(r, t) + (d− 1)r−1∂rC(r, t) (30)

is then negligible. The short-range behavior (26) then enters the continuum equation as a boundary
condition C(ε, t) = C at some small scale ε and guarantees the correct asymptotic limit for the
correlation function C(r,∞) = C. Solutions of (30) have been derived in the context of statistical
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Figure 2: The inverse gap ∆−1 for the square (2), triangular (O) and honeycomb (7) lattice
geometries in two dimensions with fixed (periodic) boundary conditions (a). Comparison of the
inverse gap ∆−1 of the square lattice with open (dots) and periodic (squares) boundary conditions.
All systems exhibit the analytically predicted scaling with the system size N (31).

physics [60], and their late time behavior is given by (ξ(t) ∼ t1/2)

C(ε < r < ξ(t))

C
∼


1− r/ξ(t), d = 1,

1− ln(r/ε)/ ln(ξ(t)/ε), d = 2,

(ε/r)d−2, d ≥ 3.

The boundary condition eventually enforces long-range correlations in all systems, however, with
a power-law decay for d ≥ 3. To estimate the spectral gap ∆ ∼ t−1

∆ in dependence on the system
size N , we set the criterion for reaching long-range correlation to be

N ∼ 1

N

∑
x,y

Cxy ∼ lim
ε→0

∫ ξ(t)

ε

dr rd−1C(r, t) ∼


ξ(t), d = 1,

ξ(t)2/ ln(ξ(t)), d = 2,

ξ(t)2, d ≥ 3.

Thus we obtain the following predictions for the scaling of the dissipative gap with the system size
N

∆−1 ∼ t∆ ∼


N2, d = 1,

N lnN, d = 2,

N, d ≥ 3.

(31)

In all cases the dissipative gap vanishes in the infinite volume limit. In figure 1 we have fitted
these predictions to the values of the numerically extracted gap, and were able to confirm all three
scaling laws. Furthermore, we have checked the independence of the scaling against different lattice
geometries and boundary conditions (see figure 2).

To understand the full time-evolution from the initial state all the way to the final state it is
illuminating to consider the Fourier modes

Cp(t) =
1

N2

∑
x,y

eipµ(x−y)µCxy(t).

Their asymptotic values can be derived from (29) or directly from the final density matrix (25)

Cp(∞) =
1

2
δp,0 +

1

2N
.

In the final state all correlations have been transferred to the zero mode p = 0 which we call
the condensate fraction, with all others decaying to a minimal value 1/2N (which is due to the
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Figure 3: Time evolution of selected Fourier modes Cp(t) in a three dimensional system with
N = 363 sites. All momenta p point along a lattice axis. The three regimes are clearly visible:
Initial growth, transition and the final decay. They are separated by the time scales t1 ∼ |p|−2

(dots) and t2 ∼ |p|−1/3 (squares). The two asymptotic values Cp(∞) are indicated by the two
dashed horizontal lines.

constant 0-point function Cxx = 1). Figure 3 shows the full time-evolution of a subset of Fourier
modes in three dimensions. The evolution roughly splits into three regimes. First we observe
an initial growth of all Fourier modes up to a time-scale t1 ∼ p−2. After t ∼ L2 we enter a
transient regime where only the zero-mode continues to grow at an exponential rate, while the
remaining modes exhibit a long-lived plateau. After a time-scale t2 these modes start to feel
the slowed growth of the zero-mode, due to the asymptotic decay towards its maximum value
Cp(t) ∼ Cp(∞)[1−exp(−∆t)], and thus start to decay exponentially towards their final value 1/2N .
By fitting the single exponential decay to the late-time data, we define t2 as the intersection of
this fit with the transient value of the Fourier mode. We observe a non-trivial momentum scaling
t2 ∼ p−1/3 for low momentum modes.

4.2.1 Competing Unitary Dynamics

In section 3.4.1 we have shown that coupling the total spin to a magnetic field H = ~h · ~S is allowed
by the closure conditions. As S3 is conserved under evolution by Qxy we choose the magnetic field
in a perpendicular direction

H1 = hS1 = h
∑
x

s1
x.

The total spin S3 is now no longer conserved, which couples Cxy, Dxy to the additional operators
Exy = s2

xs
3
y + s3

xs
2
y and Fxy = s2

xs
2
y,

[H,Cxy] = −2 [H,Dxy] = 2 [H,Fxy] = 2ihExy , [H,Exy] = 2ih(Dxy − Fxy).

The additional nearest-neighbor dissipator term of the new operators is given by

L̃xy(Exy) = 0, L̃xy(Fxy) =
1

2

(
Fxx −Dxy −

1

2
Cxy

)
,
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Figure 4: Nearest-neighbor (〈x, y〉) correlation functions Cxy(τ) (dot-dashed), Dxy(τ) (solid),
Exy(τ) (dashed), Fxy(τ) (dotted) as functions of time. Results were obtained on a 2-dimensional
square lattice with N = 4096 sites and magnetic field h = 10−3. Late-time averages are indicated
by dashed lines. The time scale set by the dissipative gap is indicated by the gray region (τ < 1/∆).

which proves closure of the enlarged set of observables (Exx = 0, Fxx = 1/4). The evolution

equations under the full unitary and dissipative evolution L̃( · ) = i[H, · ] +
∑
〈x,y〉 L̃xy( · ) are

∂tCxy = 〈L̃(Cxy)〉 =
1

4
(∆x + ∆y)Cxy −

1

2
δ〈x,y〉(Cxy + 4Dxy)− 2h Exy,

∂tDxy = 〈L̃(Dxy)〉 =
1

4
(∆x + ∆y)Dxy +

1

2
δ〈x,y〉(Dxy −Dxx) + h Exy,

∂tExy = 〈L̃(Exy)〉 =
1

4
(∆x + ∆y) Exy +

1

2
δ〈x,y〉 Exy + 2h (Fxy −Dxy),

∂tFxy = 〈L̃(Fxy)〉 =
1

4
(∆x + ∆y)Fxy +

1

4
δ〈x,y〉 (2Fxy − 2Dxy − Cxy)− h Exy.

From the completely disordered initial state we determine the initial conditions for all ob-
servables Cxy(0) = 4Dxy(0) = 4Fxy(0) = δxy and Exy(0) = 0. The time-evolution can again
be solved by diagonalizing the corresponding linear operator Mh (as none of the sets decou-
ples anymore, the operator Mh now acts in the space spanned by all four sets). At vanishing
magnetic field h = 0, the linear operator Mh has three vanishing eigenvalues, associated with
the constant solutions C = (1 − 4D)/2, E and G, which is the constant value of the difference
Gxy = Cxy − 4Fxy = s+

x s
+
y + s−x s

−
y with evolution equation (Gxx = 0)

∂tGxy = 〈L̃(Gxy)〉 =
1

4
(∆x + ∆y)Gxy +

1

2
δ〈x,y〉Gxy + 2h Exy.

The eigenvalue with the largest non-zero real part is again given by the dissipative gap −∆. At non-
zero magnetic field only one zero eigenvalue remains, while the other two obtain an imaginary part
±2ih. The dissipative gap remains unchanged. As a consequences of the two purely imaginary
eigenvalues only one particular combination of constant solutions remains, while the other two
describe a non-decaying oscillatory mode with frequency 2h. This behavior of the observables is
completely comprehensible from the underlying quantum system. Since the Hamiltonian H =
hS1 = h(S+ + S−)/2 can be written in terms of the raising and lowering operators S± of the
total spin S3, the final state t � ∆−1 of the density matrix can still be written in terms of the
fully symmetric states (24). They are no longer affected by the dissipative part of the evolution
equations. The magnetic Hamiltonian, however, rotates these states into each other. Thus we can
go into the basis where S1 is diagonal and immediately read off the eigenvalues of the Hamiltonian
H ∈ −hN/2,−h(N/2 − 1), . . . , hN/2. All energy differences are multiples of h and therefore all
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Figure 5: The time-evolution of the condensate fraction Cp=0(τ) on a 2-dimensional square lattice
withN = 642 sites. The magnetic field takes values η = 0 (dotted), η = 10−5 (dot-dashed), η = 10−4

(dashed), η = 5 · 10−4 (solid, purple) and η = 1 (solid, black). The dashed horizontal lines indicate
the asymptotic value C∞p=0 = (N +1)/(2N) as well as the late-time average C∞p=0 = (3N +5)/(8N).

observable frequencies at late times have to be as well. The reason whyMh only knows about the
frequencies 0,±2h lies in our particular choice of observables. Neither of them contains a product
of s1 with either of s2,3. Thus all observables are either quadratic in the raising/lowering operators
ŝ± = s2 ± is3, or diagonal in the s1 basis. In the interaction picture of H their components
thus only transform with frequencies ±2h and 0. This means that our set of observables is at
most capable to extract information about those 3N − 2 entries in the final density matrix (of
a total of N(N + 2) = (N + 1)2 − 1) which transform under these frequencies. However, this is
a limitation of low-point functions in any system, and to obtain information about every entry
of the density matrix would require to measure up to N -point functions. The nature of the
achievement of our derivation lies somewhere else, namely in the fact that we can make exact
predictions about that limited subspace of observables (entries in the density matrix) with only
polynomial knowledge about the initial state, something which would be completely unfeasible
with unitary dynamics. The three non-decaying modes describe the limit cycle of the system and
a self-consistent parametrization of all observables at late times is given by (x 6= y)

Cxy(t� ∆−1) =
3

8
+ 2 g(h,N) cos(2ht− ϕ),

Dxy(t� ∆−1) =
1

16
− g(h,N) cos(2ht− ϕ),

Exy(t� ∆−1) = 2 g(h,N) sin(2ht− ϕ),

Fxy(t� ∆−1) =
1

16
+ g(h,N) cos(2ht− ϕ),

where the phase offset ϕ and the amplitude g(h,N) of the oscillation have to be determined
numerically. Figure 4 shows the behavior of the nearest-neighbor correlation functions. After
a phase of initial approach t < ∆−1 the synchronized oscillation of the limit cycle are clearly
visible. The condensate fraction only reaches its maximal value C∞p=0 = (N + 1)/(2N) in the
limit of vanishing magnetic field h → 0. The effect of non-zero magnetic field can be seen in
Figure 5. The condensate fraction now oscillates around a reduced value C∞p=0 = (3N + 5)/(8N)
and the numerically determined amplitude shows a decrease with the strength of the oscillation
g(h,N) ∼ h−1.
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Figure 6: Exponential decay of the steady state (t → ∞) correlation function Cxy on a 2-
dimensional square lattice with N = 642 sites due to thermal noise (κ/γ = 10−5, T/h ≈ 21).
The constant correlation function Cxy = 1/2 of pure Bose-Einstein condensation is indicated by
the dashed horizontal line. The correlation function is shown for slices with constant separation in
one direction z = |x2 − y2|. The estimated correlation length (38) is ξ ≈ 69, and thus of the order
of the linear extent of the system L = 64.

4.2.2 Competing Thermal Noise

We continue the investigation of dissipative processes by adding thermal noise to the evolution
equation. Here we model the noise as spin flips, induced by the local raising and lowering Lindblad
operators L±x = s±x (L̃±x ( · ) = (L±†x [ · , L±x ] + [L±†x , · ]L±x )/2) [47, 50, 61, 62]. Unlike the unitary
process studied in the previous section, these operators do not enlarge the closed set

L̃±x (s3
x) = −s3

x ±
1

2
, L̃±x (Cxy) = −1

2
Cxy, L̃±x (Dxy) = −Dxy ±

1

2
s3
y, (32)

and the evolution equations under the dissipator L̃ =
∑
〈x,y〉 γL̃xy +

∑
x(γ+L̃+

x + γ−L̃−x ) become

∂tS
3
x =

γ

4
∆xS

3
x − (γ+ + γ−)S3

x +
1

2
(γ+ − γ−),

∂tCxy =
γ

4
(∆x + ∆y)Cxy −

γ

2
δ〈x,y〉(Cxy + 4Dxy)− (γ+ + γ−)Cxy, (33)

∂tDxy =
γ

4
(∆x + ∆y)Dxy +

γ

2
δ〈x,y〉(Dxy −Dxx)− 2(γ+ + γ−)Dxy +

1

2
(γ+ − γ−)(S3

x + S3
y).

To investigate the asymptotic late-time behavior, we first consider the pure noise limit γ = 0. From
the above equations it is clear that the asymptotic state acquires a constant net magnetization

S3
x(∞) = m =

1

2

γ+ − γ−
γ+ + γ−

, Dxy(∞) = m2 (x 6= y), (34)

while the off-diagonal correlations Cxy decay exponentially with rate (γ+ + γ−). The final state is
thus a thermal state of the Hamiltonian

H = h
∑
x

s3
x,

where the temperature is set by the ratio of the spin flip rates

γ+

γ−
= exp

(
−2h

T

)
⇔ m =

1

2
tanh

(
− h
T

)
. (35)

34



Figure 7: Spectrum of the linear differential operator MT on a 2-dimensional square lattice (γ =
1, κ = 10−7, T/h = 2 · 102). The three smallest non-vanishing eigenvalues λ2 = −∆T , λ3 and
λ4 are compared with the dissipative gap ∆ of pure dissipative Bose-Einstein condensation. The
constant thermal gap ∆T ≈ 2 · 10−5 places a lower bound on the absolute value of all eigenvalues
of MT .

The Hamiltonian H could be added to the dissipator without changing the evolution equations
(33), and can thus be viewed as the true Hamiltonian of the system in the limit where it decouples
from its environment. The temperature only characterizes the asymptotic state (35), but not the
absolute rate κ = γ− − γ+ at which this state is approached. The full evolution equation

∂tS
3
x =

γ

4
∆xS

3
x +

κ

2m
(S3
x −m),

∂tCxy =
γ

4
(∆x + ∆y)Cxy −

γ

2
δ〈x,y〉(Cxy + 4Dxy) +

κ

2m
Cxy, (36)

∂tDxy =
γ

4
(∆x + ∆y)Dxy +

γ

2
δ〈x,y〉(Dxy −Dxx) +

κ

m

(
Dxy −m

S3
x + S3

y

2

)
,

is then characterized by the dimensionless ratios of the couplings κ/γ and the effective temperature
T/h (which sets the magnetizationm). When both couplings γ, κ > 0 are turned on, the asymptotic
values of S3

x and Dxy remain unchanged at their thermal values (34). However, the presence of
the Lindblad operator Qxy still forces a buildup of off-diagonal correlations Cxy, thus driving the
system away from the thermal state. However, with κ > 0, these correlations can no longer
be calculated analytically. We can, however, get an impression of the shape of the asymptotic
correlation function in figure 6, by solving for the steady state of the corresponding continuum
correlation function (30)

∂tC(r, t) = γ∂2
rC(r, t) + γ(d− 1)r−1∂rC(r, t) +

κ

2m
C(r, t) = 0. (37)

This equation can be solved in closed form in terms of a modified Bessel-function

C(r) ∝ r− d−2
2 K d−2

2
(r/ξ) ∼ r 1−d

2 exp(−r/ξ)(1 +O(r−1)), ξ =

√
−2mγ

κ
=

√
γ

γ+ + γ−
. (38)

The long-range order is thus destroyed by the thermal noise and in its place we find short-ranged
correlations governed by a finite correlation length. The linear operatorMT corresponding to the
differential equations (36) has only real eigenvalues, thus the asymptotic behavior is dominated by
the thermal dissipative gap (see figure 7)

∆T = γ+ + γ− = − κ

2m
≥ 0.
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Figure 8: The dependence of the asymptotic condensate fraction Cp=0(∞) for N = 642 particles
on the square lattice on the coupling ratio γ/κ and the temperature T/h. Indicate by the gray
line is the location of the maximum for a given ratio γ/κ (a). The maximal obtainable condensate
fraction on lattices of different sizes N = 162 (dotted), N = 482 (dashed) and N = 962 (solid) as
a function of the ratio γ/κ. Since the correlations are short-ranged, the condensate fraction drops
with increasing volume (b).

This is in complete agreement with the correlation length derived above. The physical picture is
that Qxy induces a random walk of the spins, while also correlating them along its path. The
number of steps it takes, before the correlation is destroyed by L±x is proportional to γ∆−1

T , which
thus sets the correlation length ξ2 ∼ γ∆−1

T . Since the asymptotic correlations are short-ranged,
the time needed to build up these correlations is finite and independent of the system size.

In figure 8a we investigate the steady state phase diagram on a square lattice of N = 642

spins. The condensate fraction of the steady state is measured as a function of the coupling ratio
γ/κ and the effective temperature T/h. Condensation only occurs for large dissipative coupling
ratio γ/κ ≥ O(103) at intermediate temperatures. At low temperatures T → 0 the spin-lowering
operators dominate γ− � γ, γ+, therefore the total spin is minimized S3 → −N/2. Therefore no
long-range order in the transverse plane, as measured by Cp=0, can occur. At high temperatures
T →∞ both thermal couplings diverge γ+ ∼ γ− � γ such that the spin flips completely dominate
the dynamics (ξ → 0). Figure 8b shows that the ratio γ/κ has to be drastically increased in order
to maintain the same condensate fraction in larger systems. This is evident from the estimate of
the correlation length (38), which states that in order to have a correlation length of the order of
the linear extent of the system ξ ∼ L, the coupling ratio has to scale as γ/κ ∼ L2 = N2/d. Once
again this shows that a condensate is much easier to obtain in higher dimensions d.
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5 Worm Algorithm

Before we discovered the closed hierarchy of observables described in section 3, we tried to tackle
the Lindblad equation with quantum Monte Carlo methods. Previous work already described a
sign-problem-free loop cluster algorithm for purely measurement-driven processes [56–58]. Our
goal was then to extend this to non-Hermitian Lindblad operators L 6= L†. We worked out a sign-
problem-free directed loop algorithm for a process closely related to the symmetrization process
described in section 3. However, approaching the final state, which is maximally correlated at all
scales, proved to be numerically much harder, than approaching a disordered state via measurement
operations. Nevertheless, we want to provide a description of our algorithm, as it might be useful
as a guidance for systems which do not have closed hierarchies. How the class of models with
closed hierarchies and the class which allow for sign-problem-free Monte Carlo algorithms overlap
is still an open question at this point. We were able to find more examples of the former class,
since the closure conditions are very simple to check for any model, while the following example
lies in both classes.

5.1 Model

We are considering a purely dissipative process with H = 0. Each Lindblad operator acts on
two spins 1

2 at neighboring sites of the lattice. For each pair of neighboring sites x, y there are
two different Lindblad operators given in terms of the individual raising and lowering operators
s+ = s−†

L1 =
1

2
(s+
x + s+

y )(s−x − s−y ) = −1

2
(s−x + s−y )(s+

x − s+
y ), L2 = 1− L1†L1. (39)

One can show that L1†L1 is the projection operator on the spin singlet state

L1†L1 = 1− (~sx + ~sy)
2

2
,

thus L2 = (~sx + ~sy)
2
/2 is the triplet projection operator and we have

L1†L1 + L2†L2 = 1− L2 + L2 = 1.

The Lindblad equation then takes the simplified form

∂tρ(t) = Lρ(t) =
∑
〈x,y〉

[ ∑
α=1,2

Lαxyρ(t)Lα†xy − ρ(t)

]
. (40)

Since it will become useful later, we solve the full time-evolution map for a 2-spin system. Using
the identities

L2L1 = L1, L1L2 = 0 = L1L1, L2L2 = L2, L0 = 1,

it is straightforward to make the ansatz

ρ(t) =

2∑
α=0

wα(t)LαρLα†, (41)

for the time-evolution of the 2-spin density matrix. The Lindblad equation then yields

∂tρ(t) =

2∑
α=0

∂twα(t)LαρLα† = w0(t)
[
L1ρL1† + L2ρL2† − L0ρL0†] .

The contribution of the identity map is clearly exponentially decaying, w0(t) = e−t, from its initial
value w0(0) = 1. The other two functions in the ansatz are then given by the integral

w1,2(t) =

∫ t

0

dτ w0(τ) = 1− e−t,
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such that the full map obeys the trace condition at all times

2∑
α=0

wα(t)Lα†Lα = 1e−t + (1− e−t)(L1†L1 + L2†L2) = 1.

5.2 Setup

To describe the algorithm, a few preliminary remarks are in order. First of all it is important to
realize that the dissipation superoperator L (40) can be described as a regular operator (matrix)
acting on the vector space of density matrices ρ. Two copies of an orthonormal basis |ψi〉 of the
underlying Hilbert space provide a basis for this vector space

∂tρij(t) = 〈ψi|Lρ(t)|ψj〉

=
∑
〈x,y〉
〈ψi|

∑
kl

[ ∑
α=1,2

Lαxy|ψk〉〈ψk|ρ(t)|ψl〉〈ψl|Lα†xy − |ψk〉〈ψk|ρ(t)|ψl〉〈ψl|
]
|ψj〉

=
∑
〈x,y〉

∑
kl

[ ∑
α=1,2

〈ψi|Lαxy|ψk〉〈ψl|Lα†xy|ψj〉 − δikδlj
]
ρkl

=
∑
kl

Lij,kl ρkl.

Since this is exactly the action of an operator in the doubled Hilbert space we can immediately
write down its solution

ρ(t) = Θ(t)ρ(0) = etLρ(0).

A simulation scheme of the exponentiated superoperator can now be constructed in complete
analogy to simulations in statistical quantum mechanics (where one is interested in the thermal
density matrix ρ ∼ exp(−βH) in terms of the exponentiated Hamiltonian). First we split the
full time-evolution into N time steps of duration ε = t/N . Each of these time step can then be
approximated by a series of M partial evolution operators

Θ(t) = Θ(ε)N =

N∏
i=1

 M∏
j=1

Θj(ε)

+O(ε2). (42)

On a hypercubic lattice in d dimensions with an even number of sites in all directions the number
of partial evolutions can be taken to the be the number of nearest neighbors of a site M = 2d. The
set of all nearest neighbors 〈x, y〉 can then be split into 2d disjoint sets {〈x, y〉j}2dj=1, such that no
site appears twice in a given set. Accordingly, the full dissipator can be split as well

L =

2d∑
j=1

Lj , Lj =
∑
〈x,y〉j

[ ∑
α=1,2

Lαxyρ(t)Lα†xy − ρ(t)

]
. (43)

The partial dissipators Lj now define the partial evolution operators Θj(ε) = exp(εLj). Although
different partial operators do not commute [Θj ,Θk] 6= 0 (thus the error of order ε2 in (42)), the
individual nearest-neighbor contributions from each partial operator do, such that we can express
them as

Θj(ε) =
∏
〈x,y〉j

Θxy(ε),

where Θxy(ε) is the exact 2-site solution derived earlier (41). Each of the evolution operators
Θ is a valid map of density matrices, Θxy is a solution of a Lindblad equation (and is readily
given in Kraus form (41)) and compositions of maps are again maps. By choosing an orthonormal
basis for the Hilbert space |ψk〉, and introducing a complete set of doubled states

∑
kl |Ψkl〉〈Ψkl|
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Figure 9: The Keldysh contour for the real-time-evolution of a thermal initial state. The imaginary
time separation of forward and backward propagation along the real-time axis is only to guide the
eye. After the imaginary time-evolution of duration β the contour is periodically identified with
the other real-time contour (◦). The infinite temperature initial condition ρ ∼ 1 corresponds to
β = 0, such that the two real-time contours can be identified directly at t = 0. Measurement
operators can be inserted in between forward and backward propagation (×).

(|Ψkl〉 = |ψk〉〈ψl|) between all Θj ’s we turn the transition amplitudes of the evolution operator
(42) into a statistical ensemble in (d+ 1)-dimensions

〈Ψ(kl)0
|Θ(t)|Ψ(kl)MN 〉 =

∑
(kl)j

〈Ψ(kl)1
|Θ1(ε)|Ψ(kl)1

〉〈Ψ(kl)1
|Θ2(ε)|Ψ(kl)2

〉

. . . 〈Ψ(kl)MN−2
|ΘMN−1(ε)|Ψ(kl)MN−1

〉〈Ψ(kl)MN−1
|ΘMN (ε)|Ψ(kl)MN 〉

=
∑
S

Θ
(kl)MN
(kl)0

(S),

where S = {(kl)i}MN−1
i=1 is the configuration of the density matrix in all time-slices and Θ

(kl)MN
(kl)0

(S)

is the weight of that configuration (given by the product of the weights of each time-slice). So
far all this has been constructed in complete analogy to statistical quantum mechanics, albeit on
a doubled Hilbert space. The crucial difference comes from the boundary condition. While in
statistical quantum mechanics one takes the trace (periodic boundary conditions) to define the
partition sum, the two ends correspond to different physical times and thus obey independent
boundary conditions, namely those of a Keldysh contour (see figure 9). The initial states are
weighed by an initial density matrix ρ(kl)0

(thermal, infinite temperature or general density matrix),
while the final state is weighed by an observable O(kl)MN (most trivial would be the measurement
of total probability δ(kl)MN ) to calculate the expectation value (for an illustration of how this works
see figure 9)

〈O〉(t) = TrOΘ(t)ρ =
∑
(kl)0

∑
(kl)MN

∑
S

ρ(kl)0
Θ

(kl)MN
(kl)0

(S)O(kl)MN .

In general, the weights Θ
(kl)MN
(kl)0

(S) would be riddled with complex phases, thus eliminating

any hope of efficiently sampling the above quantity. However, for the particular combination of
Lindblad operators chosen here we can show that in the s3-basis all configurations have positive

weight Θ
(kl)MN
(kl)0

(S) ≥ 0 and thus efficient sampling is possible. It is sufficient to prove that the

2-site solution Θxy(ε) has only positive weights. We write

(Θxy(ε))
mn
kl = 〈ψm|

[
e−ε|ψk〉〈ψl|+ (1− e−ε)(L1|ψk〉〈ψl|L1† + L2|ψk〉〈ψl|L2†)

]
|ψn〉

= e−εδkmδln + (1− e−ε)(〈ψm|L1|ψk〉〈ψl|L1†|ψn〉+ 〈ψm|L2|ψk〉〈ψl|L2†|ψn〉) (44)

= e−εδkmδln +
1− e−ε

2
(〈ψm|L+|ψk〉〈ψn|L+|ψl〉∗ + 〈ψm|L−|ψk〉〈ψn|L−|ψl〉∗),

where L± = L2 ± L1 can be rewritten as

L± = (s3
x + s3

y)2 +
(1± s3

x)(1∓ s3
y)

4
+ s∓x s

±
y , (45)
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<t

Figure 10: (Top) Insertion times of unitary (Hamiltonian) interactions are uncorrelated on the
forward and backward contours. (Bottom) Insertions for dissipative (Lindblad) interactions are
correlated, they happen simultaneously on both contours.

making it manifest that all matrix elements are real and positive in the s3 basis

〈s3
x
′, s3

y
′|L±|s3

x, s
3
y〉 ≥ 0 ⇒ (Θxy(ε))

mn
kl ≥ 0 ⇒ Θmn

kl (S) ≥ 0.

5.3 The Algorithm

We have decomposed the full time-evolution operator Θ(t) into a series of 2-site operators Θxy(ε)
with only positive weights. To sample efficiently from the full evolution operator we now need to
construct an algorithm. Although cluster-rules fulfilling detailed balance can be formulated for
the 2-site evolution operator (44), the resulting cluster algorithm becomes inefficient very quickly
in the time t. This is due to the fact that the operators L± represent specific constraints on
the state history S, that can only be represented by clusters which tend to grow very large. A
worm algorithm allows more flexibility, since the worm can simply backtrack whenever it faces a
constraint that is only fulfilled by the current configuration. As L± conserve the total spin s3

x + s3
y

in each copy of the doubled Hilbert space, the goal of the worm is to identify the world-line of a
spin within one copy and flip it to the opposite spin. This can be done ”on the fly” such that the
path does not have to be memorized. The worm can intersect itself and flip the same spin several
times before a new (globally) valid configuration is found. As the second copy of the Hilbert space
is not affected by the movement of the worm it serves solely as a spectator. The rules of the worm
in one copy thus depend on the state of the other copy. We adopt the simplified tensor product
notation

Θxy(ε) = e−ε1⊗ 1+
1− e−ε

2
(L+ ⊗ L̄+ + L− ⊗ L̄−),

acting on the doubled Hilbert space spanned by the states |ψk〉 ⊗ |ψl〉∗. Splitting the evolution
operator into pieces with equal configuration on the second copy yields five terms (as we are working
in a basis in which L± are real, we drop the complex conjugate for simplicity)

Θxy(ε) =

[
(1 + e−ε)

2
L‖ +

(1− e−ε)
2

L×
]
⊗ (s3

x + s3
y)2

4

+

[
e−εL‖ +

(1− e−ε)
2

L−
]
⊗ (1− s3

x)(1 + s3
y)

4

+

[
e−εL‖ +

(1− e−ε)
2

L+

]
⊗ (1 + s3

x)(1− s3
y)

4
(46)

+
(1− e−ε)

2
L+ ⊗ s+

y s
−
x

+
(1− e−ε)

2
L− ⊗ s+

x s
−
y .

The first term corresponds to all spins either up or down, the second and third term correspond to
different spins which do not cross, and the last two terms correspond to an exchange of different
spins. The operators on the left, acting on the first Hilbert space, now correspond to the set of
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Figure 11: Graphical representation of the worm rules (46). The rules depend on the configurations
of both the background (left) and current contour plaquette (top). The circles •, ◦ =↑, ↓ represent
either spin up or down (in both contours), with • 6= ◦. Real time future is towards the top. Solid
lines indicate possible paths. Multiple paths leaving a site are selected with equal probability,
while no paths indicate that the worm has to bounce back. The probabilities for choosing between

different sets of paths are given as functions of p = 1−e−ε
2 ≈ ε

2 .

worm-rules in a given background of the second Hilbert space. We have introduced the operators
L‖ = 1, L× = 2L2 − 1, such that all the operators L‖, L×, L+, L− have four entries 1 and
twelve zeros (in the σ3 basis). The worm rules then split into three steps. First, determine the
background on the other contour. Second, choose one among the allowed operators which support
the current state of the plaquette (have an entry 1 for that state), with the relative probabilities
given by their prefactors. Third, move the worm according to the rules of the chosen operator
and update the plaquette accordingly. For example, if the worm enters a plaquette with all spins
pointing up on both contours, it can choose between the operators L‖ and L× with probabilities
(1 + e−ε)/2 ≈ 1− ε/2 and (1− e−ε)/2 ≈ ε/2. The worm rules for L‖, L× are deterministic. They
only depend on the point where the worm enters the plaquette. For L‖ the worm always stays
on the same spatial site, but moves to the adjacent time-step, while L× moves in both time and
space. On the other hand, the moves for L± are chosen at random. For L‖, L× the worm always
has exactly two possibilities to leave a plaquette in a supported configuration, for all entry points.
Since one of them would have left the plaquette unchanged, the worm always chooses the other
with probability 1. However, for L± the number of possible exits depends on the entry point of
the worm. In the case that there is only one allowed exit, the worm has to backtrack and leave the
plaquette unchanged. The case with two exits is deterministic as above, while in the case of three
supported exits, the worm chooses with equal probability from the two non-backtracking options.
(The case of no options never occurs, since one can always backtrack, four options are impossible
due to spin conservation.) As the number of supported exits is symmetric under reversal of the
worm, and all supported configurations have weight 1, the rules obey detailed balance. These rules
are not unique, but other choices would either introduce higher backtracking probabilities (which
is undesirable in terms of efficiency) or violate detailed balance, thus unnecessarily complicating
the proof of convergence to the right distribution. A graphical summary of the worm rules for the
evolution (46) is given in figure 11.
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Figure 12: Evolution of correlation functions Cxy(τ) of N = 62 particles on the square lattice
under the modified dissipator (43). Monte Carlo results for selected correlation functions at spatial
separations z = x−y along a lattice axis (circles, diamonds) and on the diagonal (squares, triangles)
were obtained with the worm algorithm. Each time point represents an independent simulation
and error bars are Monte Carlo error estimates. The number of samples was increased linearly with
τ (τ = 1 :∼ 5 · 104, τ = 90 :∼ 5 · 105) to obtain a similar level of uncertainty for all data points.
The solid lines are the corresponding exact solutions obtained from the differential equations (47).
The dashed line indicates the asymptotic value Cxy(∞) = 1

2 (x 6= y).

5.4 Implementation and Verification

We have implemented the worm algorithm for a number of system sizes N ≤ 64 in one dimension
and on the square lattice. The measured correlation functions Cxy,Dxy agreed, within the statistical
errors, with the exact result obtained from the differential equations derived from the dissipator
(43)

∂tCxy = 〈L̃(Cxy)〉 =
1

2
(∆x + ∆y)Cxy −

1

2
δ〈x,y〉(Cxx + 4Dxy), (47)

∂tDxy = 〈L̃(Dxy)〉 =
1

2
(∆x + ∆y)Dxy + δ〈x,y〉(Dxy −Dxx). (48)

This is illustrated in figure 12, for selected spatial correlation functions on the N = 62 square
lattice. Sampling at late times τ , when the system is close to its asymptotic state, is quite costly,
as the worm has to run through the entire Keldysh contour to switch between different sectors of S3

to realize a state close to ρNESS (25). We observed a linear increase with τ in the number of samples
needed for a constant target error, with the effort per sample scaling linearly in τ as well. On the
other hand, resolving the difference to the asymptotic value would require exponential accuracy
δO ∼ exp(−τ∆T ) anyhow, making it unfeasible to extract information about the late time behavior
beyond the asymptotic values. The dynamical behavior far from the nonequilibrium steady state
seems to be amenable to Monte Carlo studies. This is best exemplified by the evolution of the
condensate fraction Cp=0 in figure 13, where the initial buildup of correlations is captured to high
precision by the Monte Carlo data. The worm algorithm also correctly captures the condensation
at late times τ > ∆−1

T even though the results become noisier.
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Figure 13: The evolution of the condensate fraction Cp=0(τ) in the same system as described in
figure 12. Simulation results are shown as individual points with Monte Carlo error estimates, while
the solid line is the exact result. The dashed line indicates the asymptotic value Cp=0(∞) = 1

2 + 1
2N .

6 Conclusions

6.1 Discussion

We have discussed the Lindblad equation as the Markovian master equation describing evolution of
an open quantum system in terms of its density matrix. The Lindblad equation is the most general
linear differential equation preserving the trace (total probability) and complete positivity of the
density matrix. Its solutions can be brought into the Kraus form, which brings forth a Heisenberg-
type interpretation of the dynamics, with evolving observables and a static density matrix. The
expectation values of observables then obey a set of linear coupled differential equations and a set
of initial values, depending on the initial density matrix. Hamiltonians and jump operators (with
the exception of ultra-local operators) usually lead to a hierarchy of observables, coupling any
observable acting on finitely many degrees of freedom to observables with an increasing number
of degrees of freedom it acts upon. Numerically solving the system of differential equations then
quickly becomes unfeasible and a truncation scheme has to be introduced. Here we showed that
for open systems obeying the Markovian master equation, conditions can be formulated such that
a scheme that is free of truncation errors arises. We have discussed in depth the case of a stronger
constraint which strictly forbids the growing of the domain-size of dependent variables in spin 1

2
systems or hardcore bosons. This enabled us to solve the full time-evolution of sets of 1- and
2-point functions exactly, without having to resort to observables of higher rank.

One might assume that closed hierarchies are an oversimplification such that the quantum
nature of the underlying system is lost and the equations merely describe classical physics. However,
we were able to show clearly that this is not the case. First of all, the initial state of the system
is not restricted at all by the closed hierarchy conditions. Entanglement is thus a naturally built
in feature of these systems. Furthermore, we have shown that entanglement can be created and
destroyed within this framework and that entanglement is measurable throughout the evolution.
The closed hierarchy allows us to follow the evolution for arbitrarily long times and for large
system-sizes that are otherwise unreachable.

Among the bi-local jump operators fulfilling the constraint we studied a symmetrizer, which
drives the system into a Bose-Einstein condensate. The symmetrization occurs by a dissipative
random walk of the spins. This leads to an interesting scaling phenomenon of the longest time-scale
(given by the inverse of the dissipative gap) in the system depending on the dimensionality of the
underlying lattice. The random walk is stable against the introduction of an arbitrary uniform
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magnetic field, but not against randomized spin flips induced by the contact with a thermal bath.
The relative strength of the spin flip and random walk rates yield a finite average number of steps
a spin takes, before the correlation is lost due to a spin flip. Naturally, the random walk thus only
correlates the system on a characteristic length scale, thus destroying the long range correlations
of the Bose-Einstein condensate. For finite systems, however, the symmetrization operator still
provides an effective protocol for creating many-body entanglement, as long as thermal fluctuations
can be sufficiently controlled. Our findings are consistent with small systems (N = 4) realized
experimentally so far [34], and do not preclude the creation of long-range order in larger systems
realizable in the foreseeable future.

6.2 Outlook

Although we have formulated the principle of closed hierarchies in the most general terms, our
work has focused solely on the stricter condition of non-growing observables. This made the task
of identifying closed sets of observables rather simple, but we were still able to find processes
with interesting dynamics. Nevertheless, it would be interesting to find more general examples, in
which the closure of 2-point functions would include higher-point functions. Gradually increasing
the maximal degree in the closure of 2-point functions would allow for a controlled approach of the
complexity of unitary quantum physics.

The closure conditions derived in this work are specific to spin 1
2 . Increasing the number of

local degrees of freedom (higher spin representations) would make them even more involved, but
also provides the possibility for even more complex behavior.

Another interesting approach would be to classify and study systems for which a sign-problem-
free Monte Carlo algorithm can be formulated. Some of these might not be covered by our analysis
of closed hierarchies. Our comparison of data obtained with the worm algorithm and the exact
results derived from the closed hierarchy provide a proof of concept, that Monte Carlo techniques
are able to capture interesting quantum real-time dynamics, albeit for open systems only.

Both homogenous and inhomogeneous systems could be of interest for quantum computation,
as a mean to study initial state preparation. Creation of highly entangled initial states might be
constrained by similar scaling limitations as we have found here, with and without thermal noise.

The application of linear response theory [63] could provide additional insights into the asymp-
totic dynamics of dissipative processes near the nonequilibrium steady state. Whether a general-
ization of the fluctuation-dissipation theorem [64] for open quantum systems exist is an intriguing
question for future studies.
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Part II

Anyonic Statistics in
Doubled-Chern-Simons Theories
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7 Introduction

The idea of quantum computing, or universal quantum simulation is nearly four decades old [65–
67]. During the first two decades research focused primarily on theoretical aspects of quantum
computation, such as a fundamental theoretical framework, necessary requirements [68, 69], possi-
ble applications and developing algorithms [70] which harness the resource provided by quantum
entanglement. In terms of a physical realization of a quantum computer, the vast progress of the
last two decades in the ability to manipulate quantum many-body systems [71, 72] have brought
us to the cusp of surpassing classical computation capabilities. However, some of the most funda-
mental issues in quantum computing remain unsolved. Most prominent among them is the issue of
decoherence, whereby the entanglement is destroyed by errors, inevitably occurring in any realistic
system. One theoretical resort is to use topological quantum states [73], whose information is
stored nonlocally in a many-body system and thus allows for fault-tolerant quantum computation
schemes [74–76]. Topological quantum computations are executed by realizing unitary operations
[73, 77, 78] through braiding of anyonic quasi-particles with fractional statistics [79–82]. In order
to realize a universal set of quantum gates, the anyons have to be non-Abelian and their fractional
statistics have to allow for arbitrarily good approximations of the quantum gates.

The prototype for topological field theories are Chern-Simons theories [83]. They have been
studied extensively in relation to the fractional quantum Hall effect [84–86] and numerous other
condensed matter applications [87–89]. Inspired by the latest progress with gauge theories in
atomic quantum simulators, we investigate the possibilities of formulating Chern-Simons theories
as doubled lattice gauge theories [90–94] with finite gauge groups [95–98]. The doubling is realized
by two gauge fields, one living on the links of the primal lattice, the other on its dual. The theory
is described in the Hamiltonian formulation [99–101] where the Chern-Simons term manifests itself
through a non-commuting operator algebra for the primal and dual degrees of freedom. Similar
theories have been proposed for lattice loop models [87] and spin liquids [102–104], while some
constructions avoid the explicit construction of the dual field [105–109].

As the Hamiltonian of a pure Chern-Simons gauge theory vanishes, it is very difficult to create
the states with the desired anyonic properties in condensed matter systems, since the physical
states are intricately linked to the topology of the manifold on which the theory is formulated
[110, 111]. This can be circumvented by starting with a Yang-Mills-like interaction and adding the
Chern-Simons term on top of that. The gauge field of the pure Yang-Mills theory then acquires a
(topological) mass [112–115]. The topological nature of the Chern-Simons term is still present and
reappears in the ground state, when gaping out all higher states (by sending the mass to infinity).
To illustrate this procedure we explicitly calculate the spectrum for a series of small finite groups,
the cyclic group Z(k) ⊂ U(1) as an example of an Abelian group as well as the permutation
group S3 ⊂ O(2) (real representations) with trivial center, the quaternion group H ≡ D̄2 ⊂ SU(2)
(pseudo-real) with center Z(2) and finally ∆(27) ⊂ SU(3) [116–119], a 27-element subgroup of
SU(3) with irreducible complex representations and center Z(3).

Many different models have been suggested to investigate anyonic quasi-particles, starting from
Kitaev’s Abelian toric code [73] and its non-Abelian extensions [120], all the way to a broad clas-
sification of topological orders by Levin and Wen [121]. Although these theoretical explorations
have deepened our understanding of topological theories, we have been denied a practical real-
ization of these models so far. Thus the question whether topological quantum systems with the
desired non-Abelian anyonic quasi-particles can be designed, can still not be answered affirmatively
[122, 123]. Our approach has the advantage of directly working in the Hamiltonian language on
a locally finite Hilbert space. Thus it immediately lends itself to an implementation in an atomic
simulator. Another main obstacle to a practical realization of any model is the stability at non-zero
temperature [37, 124–129], which we do not address in this work.
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This part of the thesis is structured as follows: First we introduce a few useful concepts of
the theory of finite groups. We follow Ref. [130] in deriving the Hamiltonian formulation from the
doubled Chern-Simons-Maxwell action of two U(1) gauge fields in the continuum. We use canonical
quantization to derive its operator algebra. We derive the same algebra in the lattice formulation,
and show how it can be naturally embedded on crosses of the primal lattice and its dual. By
compactifying the gauge field we obtain the lattice formulation of Chern-Simons-Maxwell theory
for the discrete groups Z(k). We then extend the formalism to Chern-Simons-Yang-Mills theories
for arbitrary discrete groups [131]. In the process we consolidate many features of the doubled
Chern-Simons-Maxwell theory as an integral part of the broader framework. The consistency
conditions of these theories allow for entire families of Chern-Simons-Yang-Mills-like theories. After
introducing a classification scheme for these theories, we discuss the electric spectrum on a single
cross. From these states the ground state in the infinite mass limit can be calculated exactly [132].
We show that these models have Abelian anyons, by calculating the fractional statistics of primal
and dual charges, and show how they can be interpreted as extensions of the toric code [73].
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8 Groups and Representations

8.1 Axiomatic Definition of a Group

A group (G, •) is a set of elements g ∈ G and a group law

• : G×G→ G.

It has to fulfill the following axioms

Associativity : (g • h) • k = g • (h • k),

Existence of identity element : ∃e ∈ G : e • g = g = g • e ∀g ∈ G,
Existence of inverse : ∀g ∈ G,∃h ∈ G : g • h = e = h • g.

In the following we will denote the inverse of an element g as g−1, and use the short-hand notation
gh ≡ g • h for the group law, wherever it is implicit and unambiguous from the context.

8.2 Group Homomorphisms and Representations

A group homomorphism is a map f : G → H from one group (G, •) to another (H, ∗) which
preserves the group law

f(g • h) = f(g) ∗ f(h).

In particular we have f(eG) = eH and f(g−1) = f(g)−1. We distinguish Abelian groups for which
the group law is commutative

g • h = h • g ∀g, h ∈ G,

from non-Abelian groups where the order matters. In the special case where H = U(n), the group
of unitary n×n matrices under matrix multiplication, we call the homomorphism a representation
of the group G.

8.3 Abelianization

For every group G we can calculate its derived (commutator) subgroup G(1) = [G,G]. It is defined
as the smallest subgroup containing all commutators

g, h ∈ G ⇔ [g, h] = g−1h−1gh ∈ G(1),

or equivalently the subgroup generated by all commutators. Since it contains all commutators, the
derived subgroup is a normal subgroup G(1) �G and its quotient

Gab = G/G(1),

is an Abelian group, which we call the Abelianization of G (or G made Abelian). It is by definition
the largest Abelian quotient group ofG. For an Abelian group the derived subgroup is trivialG(1) =
e and therefore the group is equal to its own Abelianization. The elements of the Abelianization
are given by the cosets of G(1)

Gab = {gG(1)|g ∈ G}.

8.4 Group Symmetries

8.4.1 Automorphisms

Automorphisms Aut(G) are a special set of bijective homomorphisms φ : G↔ G, from the group
G to itself. Since they are invertible they form a group under composition

◦ : Aut(G)×Aut(G)→ Aut(G), (φ ◦ τ)(·) = φ(τ(·)).
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The unit-element is given by the trivial map g → g and associativity is inherited from the composi-
tion of maps. Automorphisms are sometimes called symmetries of the group G, since they just per-
mute the group elements while preserving the group law. For discrete groups (with |G| <∞) they
have a representation in U(|G|) acting on the vector space C|G| = span{|g〉 , g ∈ G}, 〈g|h〉 = δgh
as

U(φ) |g〉 = |φ(g)〉 .

Automorphisms define equivalence classes of Hermitian operators H on C|G| through

H ∼ H′ ⇔ ∃φ ∈ Aut(G) : H′ = U(φ)HU(φ)† .

All operators in the same class share the same spectrum, they differ only in the labeling of the
states.

8.4.2 Inner Automorphisms

Conjugations by a group element gh = h g h−1 define a group homomorphism from the group G
to its own automorphism group Aut(G)

Inn : G→ Aut(G), Inn(h) = (·)h.

The set of all conjugations Inn(G) � Aut(G) form a normal subgroup and are called inner auto-
morphisms. The group law is given by the isomorphism

Inn(G) ' G/C(G) ,

which is a consequence of the center z ∈ C(G) being the preimage of the trivial map gz = g. The
inner automorphisms form a normal subgroup since they are invariant under conjugation by any
φ ∈ Aut(G)

φ ◦ (·)h ◦ φ−1 = (·)φ(h) .

In the theories we are about to define, a global gauge transformation acts as an inner automorphism
on all group valued objects. Therefore the inner automorphism group can be viewed as a part of
the symmetry group of theses theories.

8.4.3 Outer Automorphisms

Since Inn(G) is normal in Aut(G) we can characterize all non-inner automorphisms by the quotient

Out(G) = Aut(G)/Inn(G) ,

which is called the outer automorphisms group. By construction the outer automorphism group
acts on conjugacy classes C(g) ⊂ G (their image as an automorphism is given up to a conjugation).
Furthermore for any representation

Γ : G→ U(n) ,

it follows that also Γφ(g) = Γ(φ−1(g)) (∀φ ∈ Aut(G)) is a representation. Since the character is
a class function χΓ(gh) = χΓ(g), the outer automorphism group also acts on the characters. The
outer automorphism group is therefore a subgroup of the symmetry group of the character table

g → g′ = φ(g) , Γ → Γ′ = Γφ ,

Γ(g) → Γ′(g′) = Γφ(φ(g)) = Γ(φ−1(φ(g))) = Γ(g) .

This relation can be used to either construct new representations using outer automorphisms or
restrict the outer automorphism group given the character table.
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8.5 Theory of Discrete Groups

Discrete Groups can be characterized by their conjugacy classes and irreducible representations.
Two group elements are conjugate to each other if

g ∼ h ⇔ ∃k ∈ G : g = (h)k = khk−1.

Irreducible representations are realizations of the group law as unitary matrices Γ(G) ⊂ U(n) which
cannot be decomposed into a direct sum of lower dimensional representations. Two representations
are unitarily equivalent if they are related by a unitary transformation

Γ ∼ Γ′ ⇔ ∃U ∈ U(n) : Γ(g) = UΓ′(g)U† ∀g ∈ G.

The character of a representation

χΓ(g) = Tr Γ(g) ,

is invariant under unitary transformation of the representation and conjugation of the group el-
ement. The characters of all conjugacy classes C(g) = gG are thus a unique fingerprint of an
irreducible representation. The characters of a reducible representation are given by the sum of
its irreducible parts. The decomposition of a product of representations can therefore be inferred
solely from its characters

χΓi(C)× χΓj (C) =
∑
k

mk
ijχΓk(C),

where m(Γ) ∈ N0 are the multiplicities of all irreducible representations appearing in the sum

Γi ⊗ Γj =
⊕
k

mk
ij Γk.

Since there is an equal number of conjugacy classes and irreducible representations the character
table χΓj (Ci) can be viewed as a transformation matrix from the basis of multiplicities to the basis
of characters 

χΓ(C1)
χΓ(C2)

...
χΓ(Cn)

 =


χΓ1(C1) χΓ2(C1) . . . χΓn(C1)
χΓ1(C2) χΓ2(C2) . . . χΓn(C2)

...
...

. . .
...

χΓ1(Cn) χΓ2(Cn) . . . χΓn(Cn)



m(Γ1)
m(Γ2)

...
m(Γn)

 .

Very useful equations are the orthogonality relation of the characters∑
g∈G

χΓi(g)∗χΓj (g) =
∑
C
|C|χΓi(C)∗χΓj (C) = |G| δij ,

as well as the sum rule for the dimensions of irreducible representations∑
Γ

d2
Γ = |G|.

Both are corollaries of the more general orthogonality relation∑
g∈G

Γi(g)∗abΓ
j(g)cd =

|G|
dΓi

δijδacδbd,

among all matrix entries Γi(g)ab (a, b ∈ 1, . . . , dΓi) of all irreducible representations.
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9 Doubled Chern-Simons-Maxwell Theory

In this section we give a brief introduction to doubled Chern-Simons-Maxwell theory. Naive lattice
regularization of the Chern-Simons term suffers from a doubling problem, similar to the one in
fermionic systems (both theories have terms with a single derivative in their Lagrangian). Avoiding
this subtle issue altogether, we start our investigation directly from a doubled continuum theory
and derive its operator algebra (section 9.1). We then show how to implement this algebra on the
lattice, first with non-compact gauge fields (section 9.2) and later we compactify them in section
9.3.

9.1 In the Continuum

In the continuum we can write down the Lagrangian density for the doubled Chern-Simons-Maxwell
theory

LMaxwell = − 1

4e2
FµνF

µν − 1

4ẽ2
F̃µν F̃

µν , LCS =
k

4π
εµνρ(Aµ∂νÃρ + Ãµ∂νAρ),

with the usual field strength tensor Fµν = ∂µAν − ∂νAµ and metric signature gµν ∼ (−,+,+).
Unlike in four dimensions, the charges are dimensionful quantities [e2] = [ẽ2] = [M−1]. Through
a field redefinition one can achieve parity between the primal and dual charges e = ẽ, and this
will be assumed throughout. The Chern-Simons coupling k on the other hand is dimensionless,
and is called the level of the theory. While a standard Chern-Simons term would break parity
and time-reversal, this can be remedied in the doubled theory, by declaring the dual field Ã a
pseudo-vector. To illustrate what we mean, we look at the symmetry properties under full space-
time inversions Ixµ = −xµ which are closely related to parity and time-reversal. We define the
following transformation properties for the vector and pseudo-vector field

IAµ(x) = −Aµ(−x), IÃµ(x) = Ãµ(−x).

It is then straightforward to show that each term in the Lagrangian contains an even number of
vectors, and is thus symmetric under inversions. We now proceed to the Hamiltonian formulation,
by first fixing the temporal gauge A0 = 0 = Ã0. From the gauge-fixed Lagrangian density

L =
1

4e2

(
2Ȧ2

i − (εij∂iAj)
2 + 2 ˙̃A2

i − (εij∂iÃj)
2
)

+
k

4π
εij(

˙̃AiAj + ȦiÃj),

we derive the conjugate momenta

Πi =
1

e2
Ȧi +

k

4π
εijÃj , Π̃i =

1

e2

˙̃Ai +
k

4π
εijAj .

The Legendre transformation yields the Hamiltonian density

H = ΠiȦi + Π̃i
˙̃Ai − L =

e2

2
E2
i +

1

2e2
B2 +

e2

2
Ẽ2
i +

1

2e2
B̃2.

The Hamiltonian looks like pure doubled Maxwell theory, but the Chern-Simons coupling k reenters
through the definition of the electric fields

Ei = Πi −
k

4π
εijÃj , B = εij∂iAj ,

Ẽi = Π̃i −
k

4π
εijAj , B̃ = εij∂iÃj .

After canonical quantization of the gauge fields and their conjugate momenta

[Πi(x), Aj(y)] = [Π̃i(x), Ãj(y)] = −iδijδ(x− y),

[Πi(x), Ãj(y)] = [Π̃i(x), Aj(y)] = 0,
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Figure 14: The action of the boundary operator ∂ on 1-cells (left) and 2-cells (middle). The
Hodge-dual operator ? rotates a cross of primal and dual links counter-clockwise by π/2 (right).

the Chern-Simons term interlocks the algebras of the two gauge fields

[Ei(x), Ẽj(y)] = −i k
2π
εijδ(x− y), (49)

with all other fields commuting except

[Ei(x), B(y)] = [Ẽi(x), B̃(y)] = iεij∂jδ(x− y), (50)

as in pure Maxwell theory. The non-zero commutator of the primal and dual electric fields implies
that we have to complement the generators of gauge transformations

G = ∂iEi +
k

2π
B̃, G̃ = ∂iẼi +

k

2π
B,

to define gauge invariance [G(x), H] = [G̃(x), H] = 0 of the Hamiltonian H =
∫
d2xH and a

sensible Gauss law G(x)|Ψphys〉 = G̃(x)|Ψphys〉 = 0 ([G(x), G̃(y)] = 0). The dual magnetic field B̃
has the effect of a charge density for the primal field (and vice versa), a feature we will encounter
for all theories of this type. The quantized field operators transform under space-time inversions
as

IEi(x) = Ei(−x) IB(x) = B(−x) IẼi(x) = −Ẽi(−x) IB̃(x) = −B̃(−x).

9.2 On the Lattice

Before proceeding to compact gauge fields, it is interesting to see how neatly the non-compact
Chern-Simons-Maxwell algebra (49,50) can be realized on a square lattice X = a(Z,Z) and its
dual X̃ ' X (the lattice of all plaquettes. Since our gauge theories contains 0-forms (G), 1-forms
(Ai,Πi, Ei) and 2-forms (B) that are associated with vertices, links, and plaquettes of the lattice,
we will start by defining the latter in terms of 0, 1, 2-cells in a cell-complex.

9.2.1 Lattice Conventions

We describe the two-dimensional lattice X in terms of oriented p-cells σpi (p = 0, 1, 2), where σ0
i

are vertices, σ1
i are links, and σ2

i are plaquettes. We can evaluate any p-form αp on any linear
combination of p-cells (an element of the cell-complex), using the bilinear contraction

αp

(∑
i

wiσ
p
i

)
=
∑
i

wiα
p(σpi ) =

∑
i

wiα
p
i ,
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where we used the shorthand notation αpi = αp(σpi ) for the value of the p-form on a particular
p-cell. The geometric relations of the lattice are encoded in the incidence matrices Cpij ∈ {0± 1},
which define the boundary operator ∂ on a (p+ 1)-cell

∂σp+1
i =

∑
j

Cpijσ
p
j ,

as well as a coboundary operator d

dσpi =
∑
j

Cpjiσ
p+1
j .

Using the constraint
∑
k C

p+1
ik Cpkj = 0 (which in 2-d just means that the boundary of an area is

a set of closed curves), one can show that ∂2 = 0 = d2. Furthermore we can define a Hodge-dual
operator ?, that takes a primal p-cell to a (2 − p)-cell of the dual lattice and vice versa (as the
primal and dual lattice element live at the same physical location, we will use the same index for
them)

?σ0
i = σ̃2

i , ?σ1
i = ±σ̃1

i , ?σ̃1
i = ∓σ1

i , ?σ2
i = σ̃0

i .

The signs ± depend on the relative orientation of the primal and dual link, with ?σ1
i = σ̃1

i if
σ1
i ‖ 1̂, σ̃1

i ‖ 2̂. Applying the Hodge-dual operator twice returns the original cell up to a minus sign
for 1-forms ? ? σ1

i = −σ1
i . Thus the Hodge dual operator ? naturally realizes the ε-tensor on the

lattice. In two dimensions the primal and dual incidence matrices are related by

C0
?ji = C̃1

ij , (?σ̃1
j = ±σ1

j ⇒ C0
?ji = ±C0

ji),

C̃0
?ji = C1

ij , (?σ1
j = ±σ̃1

j ⇒ C̃0
?ji = ±C̃0

ji),

which implies the following operator identity

d = ?∂ ? .

9.2.2 Form Language Lattice Gauge Theory

The (vector-)gauge fields Ai, Ãj are naturally 1-forms. Since the Chern-Simons term couples

orthogonal components of Ai and Ãj , it is natural to associate the primal field A with the links

of the primal lattice σ1
i ∈ X, and the dual field Ã with the links of the dual lattice σ̃1

i ∈ X. The
Gauss-law G lives on the vertices σ0

i , while the magnetic fields are exterior derivatives of the gauge
field defined by the boundary of a plaquette

aB(σ2
i ) = dA(σ2

i ) = A(∂σ2
i ) =

∑
j

C1
ijAj

Introducing the shorthands

Gi = G(σ0
i ), Ai = A(σ1

i ), Ã?i = Ã(?σ1
i ) = ±Ã(σ̃1

i ), Bi = B(σ2
i ),

allows us to write the the lattice Lagrange function L ∼
∫
d2xL in a very compact way

L =
∑
i

[
a2

2e2
(Ȧ2

i + ˙̃A2
i ) +

ka2

4π
( ˙̃AiA?i + ȦiÃ?i)

]
−
∑
i

a2

2e2

[
B2
i + B̃2

i

]
.

The gauge fields transforms under the 0-form χi = χ(σ0
i ) as

A′i = Ai −
1

a
χ(∂σ1

i ) = Ai −
1

a

∑
j

C0
ijχj ,

which leaves the magnetic fields unchanged

aB′(σ2
i ) = A′(∂σ2

i ) = A(∂σ2
i )− 1

a
χ(∂2σ2

i ) = aB(σ2
i ),
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while the Lagrange function changes by a total time derivative

L′ = L− 1

a

∂

∂t

(∑
i

ka2

4π
(Ãiχ(∂ ? σ̃1

i ) +Aiχ̃(∂ ? σ1
i ))

)
.

Again we derive canonically conjugate momenta

Πi =
a2

e2
Ȧi +

ka2

4π
Ã?i, Π̃i =

a2

e2

˙̃Ai +
ka2

4π
A?i,

and obtain the lattice Hamiltonian through the Legendre transformation

H =
∑
i

a2e2

2
(E2

i + Ẽ2
i ) +

∑
i

a2

2e2

[
B2
i + B̃2

i

]
,

with the electric field 1-forms given by (Ei = E(σ1
i ))

Ei =
1

a2
Πi −

k

4π
Ã?i, Ẽi =

1

a2
Π̃i −

k

4π
A?i.

After canonical quantization we find that the electric fields living on dual links do not commute

[Ei, Ẽ?i] = [Ẽi, E?i] = −i k

2πa2
.

The remaining non-trivial commutators are given by

[Ei, Ai] = [Ẽi, Ãi] = −i 1

a2
, [Ei, Bj ] = −i

C1
ji

a3
, [Ẽi, B̃j ] = −i

C̃1
ji

a3
,

and the local gauge transformations are generated by (B(?σ0
i ) = B(σ2

i ) = Bi)

Gi
a2

= −1

a
E(dσ0

i ) +
k

2π
B̃i,

G̃i
a2

= −1

a
Ẽ(dσ̃0

i ) +
k

2π
Bi, (51)

which commute with the electric and magnetic field operators

[Gi, Ẽj ] = −
∑
k

C0
kia[Ek, Ẽj ] +

ka2

2π
[B̃i, Ẽj ] = −i k

2πa
(C0

?ji − C̃1
ij) = 0,

[Gi, Bj ] = −
∑
k

C0
kia[Ek, Bj ] = i

1

a2

∑
k

C0
kiC

1
jk = 0.

and therefore also with the Hamiltonian [Gi, H] = [G̃i, H] = 0.

9.3 Compact Gauge Theory on the Lattice

We now compactify the gauge fields from R to U(1) by turning them into the complex phases
φi, φ̃i ∈ [0, 2π[ of the parallel transporters

Ui = exp(iaAi) = exp(iφi), Ũi = exp(iaÃi) = exp(iφ̃i).

The magnetic field then becomes a phase as well

a2Bi = a
∑
j

C1
ijAj =

∑
j

C1
ijφj ∈ [0, 2π[ .

We incorporate it by making the magnetic Hamiltonian 2π-periodic (up to a constant shift)

HB = −
∑
i

1

a2e2

[
cos(a2Bi) + cos(a2B̃i)

]
= −

∑
i

1

a2e2
Re
[
U2i + Ũ2i

]
, (52)
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which we can express in terms of the parallel transporters U2i =
∏
j U

C1
ij

j . To simplify the deriva-
tion of the electric operator algebra, we are only considering a pair of positively oriented links (the
other case is analogous, with primal and dual degrees of freedom interchanged)

?σ1 = σ̃1, ?σ̃1 = −σ1.

The conjugate momenta can then formally be expressed as partial derivatives Π = −i∂A, Π̃ = −i∂Ã
and we obtain the following electric field operators

aE = −i1
a
∂A −

k

4π
aÃ = −i∂φ −

k

4π
φ̃,

aẼ = −i1
a
∂Ã +

k

4π
aA = −i∂φ̃ +

k

4π
φ.

The parallel transporters are now the true degrees of freedom of each cross, and we get the following
non-trivial commutation relations on each cross

[E,U ] =
1

a
U, [Ẽ, Ũ ] =

1

a
Ũ , [E, Ẽ] = −i k

2πa2
.

The phases φ, φ̃ are not self-adjoint operators. Therefore additional care has to be taken to make
the local electric Hamiltonian

HE =
a2e2

2
(E2 + Ẽ2),

self-adjoint. This can be achieved by choosing twisted boundary conditions on the wave function
Ψ(φ, φ̃) on the local gauge-field torus [0, 2π[2

Ψ(φ+ 2π, φ̃) = exp(−ikφ̃/2)Ψ(φ, φ̃), Ψ(φ, φ̃+ 2π) = exp(ikφ/2)Ψ(φ, φ̃). (53)

The simplest way to understand this is by an analogy to a quantum mechanical particle on a
torus [133], with mass m = e−2, covariant derivative ~D = a(E, Ẽ) = −i~∇φ + ~a moving in a gauge

potential ~a = k
4π (−φ̃, φ) corresponding to a constant magnetic field

b = εij∂iaj =
k

2π
.

Since the gauge potential a is only periodic up to a gauge transformation

~a(φ+ 2π, φ̃) = ~a(φ, φ̃)− ~∇φ(−k
2
φ̃), ~a(φ, φ̃+ 2π) = ~a(φ, φ̃)− ~∇φ(

k

2
φ), (54)

the same gauge transformation must also be applied to the wave function, thus the boundary
conditions (53). The effect of this is twofold. First, the Chern-Simons level gets quantized k ∈ Z,
to make the boundary conditions self-consistent

Ψ(φ+ 2π, φ̃+ 2π) = exp(−ik(φ̃+ 2π)/2)Ψ(φ, φ̃+ 2π)

= exp(−ik(φ̃+ 2π)/2 + ikφ/2)Ψ(φ, φ̃),

= exp(−ikπ + ikφ/2)Ψ(φ+ 2π, φ̃),

= exp(−ik2π)Ψ(φ+ 2π, φ̃+ 2π).

Second, the primal and dual U(1) gauge symmetry each break down to a Z(k) symmetry. The
generators of gauge transformations (51) can be rewritten as a sum of mutually commuting oper-
ators

Gi = −G(dσ0
i ), Gi = aEi +

ka

2π
Ã?i =

1

a
Πi +

k

4π
aÃ?i = −i∂φ +

k

4π
φ̃,
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where Gi is a local operator on a pair of crossing primal and dual links. The intimate relation with
the electric field operators k ↔ −k ⇒ aE ↔ G leads to the following algebra on a single cross

[G, Ũ ] = [G̃, U ] = 0, [G, U ] = U, [G̃, Ũ ] = Ũ ,

[E,G] = [Ẽ,G] = [E, G̃] = [Ẽ, G̃] = 0, [G, G̃] = i
k

2π
, [G, HE ] = [G̃, HE ] = 0. (55)

However all these commutators are only valid on a formal level in the compact theory. On further
inspection one sees that G does not preserve the boundary conditions (53)

Ψ′(φ, φ̃+ 2π) = exp(iχG)Ψ(φ, φ̃+ 2π)

= exp(iχ
k

4π
(φ̃+ 2π))Ψ(φ+ χ, φ̃+ 2π)

= exp(iχ
k

4π
(φ̃+ 2π) + ik(φ+ χ)/2)Ψ(φ+ χ, φ̃)

= exp(ikφ/2 + iχk)Ψ′(φ, φ̃),

but introduces a self-adjoint extension parameter θ̃ = χk (rotating into a different domain of H),
which only vanishes for χ an integer multiple of 2π

k , and thus breaking the U(1) symmetry down

to Z(k) (the same also happens to G̃, breaking the dual gauge symmetry from U(1)→ Z(k)). As
the gauge symmetry is not a fundamental symmetry of the system but rather a redundancy in
the description, this breakdown is not further worrisome. It is just a reflection of the fact that
all energy levels of the electric Hamiltonian in the compact theory are only k-fold degenerate and
not infinitely as in the non-compact theory. Thus the Z(k) gauge invariance just lifts the k-fold
redundancy present in this system. The operators

T = exp(i
2π

k
G), T̃ = exp(i

2π

k
G̃),

act on the degenerate states, while preserving the domain. Furthermore their k-th power represents
the boundary condition

T kΨ(φ, φ̃) = exp(iσk/2)Ψ(φ+ 2π, φ̃) = Ψ(φ, φ̃),

T̃ kΨ(φ, φ̃) = exp(−iσk/2)Ψ(φ, φ̃+ 2π) = Ψ(φ, φ̃),

thus the physical states are eigenstates of T, T̃ with the eigenvalues being the k-th roots of unity
ξlk = ei

2πl
k . However, since the two operators do not commute

T T̃Ψ(φ, φ̃) = exp(−iφ/2)TΨ(φ, φ̃+
2π

k
)

= exp(i(−φ+ φ̃+
2π

k
)/2)Ψ(φ+

2π

k
, φ̃+

2π

k
)

= exp(i(φ̃+
4π

k
)/2)T̃Ψ(φ+

2π

k
, φ̃)

= exp(i
2π

k
)T̃ TΨ(φ, φ̃), (56)

we can label all states by their energy level En and unit-root ξlk eigenvalue of T

H|n, l〉 = En|n, l〉, T |n, l〉 = ξlk|n, l〉, T̃ |n, l + 1〉.

The last equality follows from the commutation relations, and identifies T̃ as a raising operator
of l modulo k. The roles of T, T̃ are interchangeable, we could have just as well diagonalized T̃ ,
turning T into the lowering operator.

57



10 Lattice Gauge Theories with Discrete Gauge Group

In this section we want to generalize the algebra we uncovered in section 9.2.2 for the compact
U(1)/Z(k) gauge theory on the lattice to arbitrary finite discrete groups G. We start by defining
field-value and transformation operators in the discrete gauge group G in section 10.1. We then
identify the non-abelian charges and their fluxes (section 10.2), before establishing the Gauss law
(section 10.3). This enables us to identify gauge invariant quantities to construct electric and
magnetic Hamiltonians for the lattice theory (section 10.4).

10.1 Operator Algebra on a Single Link

As we have seen before, the compact gauge field degrees of freedom are parallel transporters U
living on the links of the lattice and taking values in the gauge group U ∈ G. They form the
|G|-dimensional Hilbert space C|G|, with an orthonormal basis {|U〉, U ∈ G}. As we are no longer
dealing with a cyclic group Z(k) we can no longer faithfully represent the parallel transporter
by a unitary operator (we will show in section 11.7.1 how such an operator can be defined for
each Abelian representation of the group). However, we can talk about the projection operators
P (u), u ∈ G

P (u)|U〉 = δu,U |U〉, P (u)P (u′) = δu,u′P (u), (57)

which allow us to define operators from arbitrary complex functions f : G→ C

f(U) =
∑
u∈G

f(u)P (u).

For the cyclic groups Z(k) a single operator T sufficed to describe all possible gauge transformations
T (l) = T l. The structure for a general (non-Abelian, non-cyclic) group is more complex. For non-
Abelian groups the set of gauge transformation operators acting at one end of the link can no
longer be expressed in terms of operators acting on the other end. We will call these two distinct
sets left and right gauge transformation operators, as they act on the parallel transporter by left
and right multiplication,

L(g)|U〉 = |gU〉, R(g)|U〉 = |Ug−1〉,
L(g)P (u) = P (gu)L(g), R(h)P (u) = P (uh−1)R(h).

It follows immediately that L,R are both |G|-dimensional representations obeying the group law

L(g)L(h) = L(gh), L(g−1) = L(g)†, L(e) = 1|G|,

R(g)R(h) = R(gh), R(g−1) = R(g)†, R(e) = 1|G|,

and that they commute with each other

[L(g), R(h)] = 1|G|.

The left transformation operators L(g) of a link σ1
i are associated with the vertex σ0

j with C0
ij = −1,

while the right transformation operators R(g) are associated with the vertex σ0
j with C0

ij = +1.

10.2 Flux Basis

The decomposition of the |G|-dimensional representation into irreducible representations yields the
flux basis

{|Γpab〉, Γp irreducible representation of G, a, b ∈ 1, . . . , dΓp}.

They are connected to the link states by a unitary transformation

|Γpab〉 =
∑
U∈G
|U〉〈U |Γpab〉 =

√
dΓp

|G|
∑
U∈G

Γp(U)ab|U〉.
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The prefactors in the matrix elements 〈U |Γpab〉 =
√
dΓp/|G|Γp(U)ab are chosen such that the flux

states form an orthonormal basis

〈Γpab|Γ
q
cd〉 =

∑
U∈G
〈Γpab|U〉〈U |Γ

q
cd〉 =

√
dΓpdΓq

|G|
∑
U∈G

Γp(U)∗abΓ
q(U)cd = δpqδacδbd.

As expected the different fluxes Γp decouple under gauge transformations, and each transforms
according to its irreducible representation

L(g)R(h)|Γpab〉 =
∑
U∈G
|gUh−1〉〈U |Γpab〉

=
∑
U∈G
|U〉〈g−1Uh|Γpab〉

=
∑
cd

Γp(g−1)ac|Γpcd〉Γp(h)db

=
∑
cd

Γp(g)∗ca|Γpcd〉Γp(h)db.

10.3 Gauss Law

Local gauge transformations Vi(g) at a single site σ0
i also form a representation of the group G

Vi(g)Vi(h) = Vi(gh).

They are a product of transformation operators acting on adjacent links

Vi(g) =
⊗
σ1
j

Tij(g), Tij(g) =


Lj(g), for C0

ij = −1

1|G|, for C0
ij = 0

Rj(g), for C0
ij = 1

.

The Gauss law then restricts the Hilbert space to the physical states which obey

Vi(g)|physical〉 = |physical〉,
which means that the physical states transform under the trivial representation Γ1 at each site.
Alternatively one could choose a representation p (and a component a ∈ 1, . . . , dΓp) for all sites
independently, which would correspond to having static charges in the system, such that the local
transformation behavior at site i with charge (p, a) would become

Vi(g)|p, a〉 =

dΓp∑
b=1

Γp(g)ab|p, b〉.

10.4 Hamiltonian

The magnetic Hamiltonian (52) generalizes to non-Abelian theories. The ordered parallel trans-

porters around a plaquette U2i =
∏
j U

C1
ij

j are no longer gauge invariant, but they transform
as

U ′2i = gkU2ig
−1
k ,

where gk is the gauge transformation applied to an arbitrarily chosen starting and endpoint σ0
k of

the plaquette boundary loop U2i . This implies that the conjugacy class of the plaquette variable
U2i is gauge invariant and independent of the choice of the starting point σ0

k and thus represents
a magnetic flux on the plaquette. The irreducible representations Γp provide a complete basis for
the class-functions of G. Thus we can write the most general magnetic Hamiltonian on a single
plaquette as

HB =
1

a2e2
hB(U2) =

1

a2e2

∑
Γp

hB(Γp) ReχΓp(U2).
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We introduce the distance measure between two group elements

d(g, h) = 1− 1

dΓf
ReχΓf (g−1h),

where Γf is the smallest faithful representation of G. This allows us to write a magnetic Hamilto-
nian that favors flat connections U2 = e

hB(U2) = dΓf d(U2, e) = dΓf − ReχΓfU2,

with the constant term chosen such that hB(e) = 0. The electric Hamiltonian should act separately
on the individual links. The gauge invariant quantities on the link are the fluxes (the irreducible
representations). Assigning different energies to different flux states is exactly the role of the
electric part of the Hamiltonian

HE =
e2

2

∑
ΓPab

hE(Γp)|Γpab〉〈Γ
p
ab| =

e2

2

∑
Γp

hE(Γp)PΓp .

For continuous groups the electric Hamiltonian is usually a Laplacian in group space. We can
mimic that for discrete groups by a discrete Laplacian in terms of hopping operators h(g)

HE =
e2

2

∑
〈g,e〉

(1− h(g)).

Here the sum goes over all nearest neighbors of the unit-element e, defined by the distance measure
d(g, e). Since all elements in the same conjugacy class have the same distance to the unit element
d(e, gh) = d(e, g), this discrete Laplacian is gauge invariant and the hopping can be realized
with either all left or all right transformation operators h(g) = L(g), R(g). The manifestly gauge
invariant coefficients hE(Γp) can be obtained by calculating

hE(Γp) =
2

e2
〈Γpab|HE |Γ

p
ab〉,

especially hE(Γ1) = 0 for the trivial representation (flux) Γ1.
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Figure 15: The cross-based operator algebra. The parallel transporter U (Ũ) is associated with an
oriented link of the primal (dual) lattice. The parallel transporter transforms under left and right
multiplications L,R (L̃, R̃), which are part of gauge transformation operators at opposite ends of
the primal (dual) links. The thin arrows indicate the action of the Hodge-dual operators ? on the
links and their transformation operators T = L,R, L̃, R̃ as well as the convention for the twisted
commutator [T, ?T ] = ω. The algebra is the same on the other type of crosses with the roles of
the primal and dual lattice interchanged, while keeping the orientation of ? and ω.

11 Doubled Lattice Chern-Simons-Yang-Mills Theories

In this section we use the basic building blocks derived in the previous section 10 and generalize
the algebra on crosses of links on the doubled lattice. The commutator of operators from different
copies of the lattice are not completely fixed by the Gauss law constraints we derive in section 11.1,
and classes of different theories can be identified (see section 11.4). In section 11.2 we demonstrate
how charge fluxes are no longer well-defined on both lattices simultaneously, if the theory has
a non-trivial commutator and as a consequence thereof the Hamiltonians on the two lattices no
longer commute (see section 11.3). For some small groups we derive the classes of possible theories
in section 11.5 and derive the spectrum of their electric Hamiltonians (section 11.6). In the strong
coupling limit (in the absence of a magnetic Hamiltonian) these theories feature excitations with
Abelian anyonic statistics, as we demonstrate in section 11.7.

11.1 Operator Algebra on a cross of links

The algebra of a cross of links is given by two copies of the single link algebra presented in section
10.1, one acting on the primal lattice P,L,R and one on the dual P̃ , L̃, R̃. All projection operators
commute with each other, as well as with the transformation operators of the other sublattice. This
is a necessary property of the parallel transporters U, Ũ . For simplicity, we derive all relations for a
positively oriented cross only and indicate how to convert this to the other crosses. Inspired by the
non-commutativity of transformation operators T, T̃ of the cyclic group Z(k) (56) we implement
the Chern-Simons like interaction through a twist of the commutator of the transformations of the
primal and the dual link

[L(g), L̃(h)] = ω(g, h), (58)

where ω is a unitary operator since both L, L̃ are. The need for a sensible Gauss law on all sites
heavily constrains the possible commutators ω(g, h). Since any pair of one primal and one dual
site share operators from either zero or two crosses we get the following constraint

[V (g), Ṽ (h)] = [L1(g), L̃1(h)][R2(g), R̃2(h)] = ω1(g, h)ω2(g, h) = 1. (59)

Since ω1,2(g, h) act on the Hilbert space of different crosses, they are restricted to U(1) phases in
order to be able to fulfill the constraint, and we have

ω2(g, h) = ω1(g, h)−1 = ω̄1(g, h), (60)

for any two neighboring crosses. Furthermore the commutator ω(g, h) ∈ U(1) itself commutes with
all other operators in the algebra, which implies that it has to fulfill the group law

ω(gg′, h) = [L(gg′), L̃(h)] = L(g′)−1[L(g), L̃(h)]L̃(h)−1L(g′)L̃(h) = ω(g, h)ω(g′, h),
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and is therefore a homomorphism ω(·, h) : G → U(1), for all h ∈ G (the same is also true with
the roles of the two arguments exchanged). We will show in section 11.4 how we can use this to
characterize all sensible twists ω(g, h) by homomorphisms from the group G to its Abelianization
Gab. The other commutators on the same cross are related to this one if we demand invariance
under 90◦ rotations of the cross

[L(g), L̃(h)] = [L̃(h), R(g)] = [R(g), R̃(h)] = [R̃(h), L(g)] = ω(g, h). (61)

From (59) and (60) we see that we have to replace ω → ω̄ for all crosses where the orientation of
the links is reversed (the two interacting crosses in (59) have different relative orientation of their
links). This also provides a symmetry which interchanges the two types of crosses and the primal
and dual fields. All this is reminiscent of the cyclic case Z(k), where L ∼ T , R ∼ T−1 and

[T, T̃ ] = [T̃ , T−1] = [T−1, T̃−1] = [T̃−1, T ] = exp(i
2π

k
), (62)

are trivial identities following from (56). In fact we can rewrite (61,62) as

[T (g), ?T (h)] = ω(g, h), (63)

for both crosses and all T = L, L̃, R, R̃, if we define ?T as in figure 15. The twisted algebra of a
single cross lives on the doubled Hilbert space C2|G|, with an orthonormal basis

{|U, Ũ〉, U, Ũ ∈ G}, 〈U, Ũ |U ′, Ũ ′〉 = δUU ′δŨŨ ′ .

The twist can be realized by an insertion of appropriate phase factors on the primal transformation
operators

L(g)|U, Ũ〉 = ω(g, Ũ)|gU, Ũ〉, R(g)|U, Ũ〉 = ω̄(g, Ũ)|Ug−1, Ũ〉,
L̃(h)|U, Ũ〉 = |U, hŨ〉, R̃(h)|U, Ũ〉 = |U, Ũh−1〉. (64)

It is straightforward to verify the commutation relations

[L(g), L̃(h)] |U, Ũ〉 = L(g)−1L̃(h)−1ω(g, hŨ)|gU, hŨ〉
= ω(g−1, Ũ)ω(g, hŨ)|U, Ũ〉
= ω(g−1g, Ũ)ω(g, h)|U, Ũ〉
= ω(g, h)|U, Ũ〉.

This is just one realization. By a change of basis we could move the phases to the dual operators,
or distribute them among both. Of special interest are unitary transformations which are diagonal
in the link basis and therefore commute with the projection operators P (u), P̃ (u)

|U, Ũ〉′ = exp(iϕ(U, Ũ))|U, Ũ〉,

which correspond to gauge transformations of the abstract gauge field a in (54). The transformed
realization is then given by

L(g)′|U, Ũ〉′ = exp(iϕ(gU, Ũ)− iϕ(U, Ũ))ω(g, Ũ) |gU, Ũ〉′,
R(g)′|U, Ũ〉′ = exp(iϕ(Ug−1, Ũ)− iϕ(U, Ũ)) ω̄(g, Ũ) |Ug−1, Ũ〉′,
L̃(h)′|U, Ũ〉′ = exp(iϕ(U, hŨ)− iϕ(U, Ũ)) |U, hŨ〉′,
R̃(h)′|U, Ũ〉′ = exp(iϕ(U, Ũh−1)− iϕ(U, Ũ)) |U, Ũh−1〉′. (65)

By setting eiϕ(U,Ũ) = ω̄(U, Ũ), for instance, one can move the twist to the dual operators

L(g)′|U, Ũ〉′ = |gU, Ũ〉′, R(g)′|U, Ũ〉′ = |Ug−1, Ũ〉′,
L̃(h)′|U, Ũ〉′ = ω̄(U, h)|U, hŨ〉′, R̃(h)′|U, Ũ〉′ = ω(U, h)|U, Ũh−1〉′.

This small exercise illustrates how the twisted commutator (58) subject to the Gauss law constraint
(59) reduces to the operators in (64), and even though (65) looks like a more general construction,
it is, in fact, unitarily equivalent.
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Figure 16: The commutator of neighboring primal and dual gauge transformations V, Ṽ vanishes
through a non-trivial interplay of the twists ω of the operators on the positively oriented cross
L1, L̃1 and the negatively oriented cross R2, R̃2 (see eq. 59).

11.2 Link-Flux Basis

One important effect of the twist ω is that fluxes are non longer simultaneously well-defined on
both sublattices. One simple way to see this is by going to a partial flux basis, with definite flux
on the dual lattice

|U,Γpab〉 = |U〉 ⊗
∑
Ũ∈G
|Ũ〉〈Ũ |Γpab〉 =

√
dΓp

|G|
∑
Ũ∈G

Γp(Ũ)ab|U, Ũ〉.

Dual transformations do not mix dual fluxes

L̃(g)R̃(h)|U,Γpab〉 =
∑
cd

Γp(g)∗ca|U,Γpcd〉Γp(h)db,

but the primal transformations do

L(g)R(h)|U,Γpab〉 =

√
dΓp

|G|
∑
Ũ∈G

Γp(Ũ)abω(g, Ũ)ω̄(h, Ũ)|gUh−1, Ũ〉

=

√
dΓp

|G|
∑
Ũ∈G

Γp(Ũ)abΓ
p̃(g)(Ũ)Γ̄p̃(h)(Ũ)|gUh−1, Ũ〉

=

√
dΓp

|G|
∑
Ũ∈G

Γp?p̃(g)?p̃(h)−1

(Ũ)ab|gUh−1, Ũ〉

= |gUh−1,Γ
p?p̃(g)?p̃(h)−1

ab 〉.

The flux states on the primal lattice need to compensate the twist ω, but are also easy to define

|Γpab, Ũ〉 =

√
dΓp

|G|
∑
U∈G

Γp(U)ab ω(U, Ũ)|U, Ũ〉.

Primal transformations do not mix primal fluxes

L(g)R(h)|Γpab, U〉 =

√
dΓp

|G|
∑
U∈G

Γp(U)ab ω(gUh−1, Ũ)|gUh−1, Ũ〉

=
∑
cd

Γp(g)∗ca|Γpcd, Ũ〉Γp(h)db,

63



but the dual transformations do

L̃(g)R̃(h)|Γpab, Ũ〉 =

√
dΓp

|G|
∑
U∈G

Γp(U)ab ω(U, Ũ)|U, gŨh−1〉

=

√
dΓp

|G|
∑
U∈G

Γp(U)ab Γp(g)(U)Γ̄p(h)(U)ω(U, gŨh−1)|U, gŨh−1〉

= |Γp?p(g)?p(h)−1

ab , gŨh−1〉.

11.3 Hamiltonian

We use the same principles to build the Hamiltonian as before when the algebra was link-based.
In particular, we use the same magnetic Hamiltonian

hB(U2) = dΓf − ReχΓfU2

for both sublattices, as conjugacy classes of plaquette fields U2, Ũ2 are still invariant under all
gauge transformations. The electric part needs to be adapted, because the hopping operators
h(g) = L(g), R(g) no longer commute with the dual gauge transformation operators L̃(g), R̃(g).
This can be cured easily by redistributing the twist ω among the hopping operators

h(g)|U, Ũ〉 = |gU, Ũ〉,
h̃(g)|U, Ũ〉 = ω(U, g)|U, gŨ〉.

We then obtain the following commutation relations

L(h)h(g)L(h)−1 = h(gh), L̃(h)h(g)L̃(h)−1 = h(g),

L(h)h̃(g)L(h)−1 = h(g), L̃(h)h̃(g)L̃(h)−1 = h(gh),

which shows the gauge invariance of the electric Hamiltonian

HE =
∑
〈g,e〉

(2− h(g)− h̃(g)). (66)

The key observation is now that the hopping operators do not commute

[h(g), h̃(k)] = ω̄(g, k). (67)

This means that the eigenstates will not be product states, which mirrors what we have seen for
the flux states. The commutator of the hopping operators (67) comes with the inverse twist ω̄
with respect to the transformation operators (58). This generalizes the similarity between the
commutation relations for the gauge transformation G and electric field operator E in the Z(k)
gauge theory (55), up to an inversion k → −k. This relation also manifests itself by the fact that
we can rewrite the gauge transformation operators in terms of hopping operators

Vi(g) = ω(g, ˆ̃U2,i)
⊗
σ1
j

hij(g) = ω(g, ˆ̃U2,i)Hi(g), hij(g) =


hLj (g), for C0

ij = −1

1|G|, for C0
ij = 0

hRj (g), for C0
ij = 1

, (68)

where hLi (g) are the hopping operators defined above and hRi (g) are their right-multiplication
counterparts. But this is exactly the discrete group analogue of (51), which separates the gauge
transformations into an electric part on the outgoing links (h,E) plus a part depending on the
dual magnetic flux (Ũ2, B̃).
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11.4 Characterization of the Twisted Algebras

We will discuss two equivalent characterization schemes for the twists ω. The first identifies the
twist by two maps p, p̃ : G → Gab and their kernels Np, Np̃, which are normal subgroups of G.
This classification makes it very simple to identify conjugacy classes of twists defined by

ω ∼ ω′ ⇔ ∃φ, φ̃ ∈ Aut(G) : ω′(g, h) = ω(φ(g), φ̃(h)), ∀g, h ∈ G.

The second method classifies twists from the Abelianization Gab in terms of a twist matrix Kij

which provides a simple method for counting all possible twists.

11.4.1 Normal Subgroups

We have shown that the twists ω(g, h) are homomorphisms in both arguments

ω :G×G→ U(1) ω(gg′, h) = ω(g, h)ω(g′, h), ω(g, hh′) = ω(g, h)ω(g, hh′).

This implies maps p, p̃ : G → {Γ : dΓ = 1} from the group on one lattice to the set of one-
dimensional irreducible representations on the other

Γp(h)(g) = ω(g, h) = Γp̃(g)(h).

Each notation only makes the group law apparent in one argument. In order to reveal both we
have to define a group structure

Γp ⊗ Γq = Γp∗q,

on the set of one-dimensional representations. The group axioms are straightforward fulfilled,
with the trivial representation Γ1 = 1 being the unit-element, while complex conjugation yields
the inverse Γ−1 = Γ̄. By definition the one-dimensional representations are the Abelian subset
of all irreducible representations. Being Abelian means they are constant on all cosets of the
commutator subgroup G(1), which makes them identical to the set of all irreducible representations
of the Abelianization Gab = G/G(1) and therefore also isomorphic to the Abelianization itself. We
can thus think of p, p̃ as group homomorphisms from G to its Abelianization Gab. They are
characterized by normal subgroups G(1) ⊆ Np, Np̃ ⊆ G, which form the kernel of their maps

Np = p−1(e), Np̃ = p̃−1(e).

A theory which is symmetric under the exchange of the two sublattices should obey

Np = φ(Np̃) = Nω, (69)

for some automorphism φ ∈ Aut(G). They are therefore characterized by a single normal subgroup
Nω. For non-symmetric theories the two subgroups are not related by an automorphism, but they
have the same size |Np| = |Np̃| and their quotient groups are isomorphic G/Np ' G/Np̃.

11.4.2 Abelianization

Without loss of generality we can write the homomorphic twist as a map in terms of the Abelian-
ization Gab = G/G(1)

ω : Gab ×Gab → U(1).

Any finite Abelian group Gab can be written unambiguously as the product of cyclic groups Gab =⊗u
i=1 Z(ni), where the order of each cyclic group is a divisor of all subsequent orders ni|nj ,∀i ≤ j.

The twist can then be factorized into twists among pairs of cyclic groups ωij : Z(ni)×Z(nj)→ U(1)

ω(g, h) =

u∏
i,j=1

ωij(gi, hj).
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Since we know that the group Gab is finitely generated, it is sufficient to specify the twist on the
generating set {ĝi}ui=1, where ĝi has order ni and generates the i-th factor in Gab. We can the
identify

ωij(ĝi, ĝj) ≡ ω(ĝi, ĝj),

and the product structure is inherited from the group. Classification of homomorphisms from a
cyclic group Z(nj) to the dual (the representations) of the cyclic group Z(nj) (which is again the
cyclic group Z(nj)) is then given by simple number theory. Writing the group law additively, with
generators ĝi = 1 = ĝj the twist is characterized by the single phase ωij = ωij(1, 1), which has to
fulfill the consistency conditions

ωij(ni, 1) = ωniij = 1 = ω
nj
ij = ωij(1, nj).

So ωij has to be a ni-th and nj-th root of unity simultaneously. By construction, one order has to
be a divisor of the other, so we get (nij = min(ni, nj))

ωij = exp(i
2πkij
nij

), kij ∈ Z(nij).

The full twist ω is therefore unambiguously characterized by a u × u-matrix kij . Writing g =
(g1, g2, . . . , gu)t and Kij = 2πkij/nij we get

ω(g, h) = exp(igt ·K · h).

It is straightforward to calculate the total number of possible twists

|{ω}| =
u∏

i,j=1

nij .

11.5 Finite Group Examples

We continue the discussion by choosing Z(k), S3, D̄2,∆(27) as examples of small discrete finite
groups to illustrate some of the key features of the doubled Chern-Simons-Yang-Mills theories
constructed so far.

11.5.1 The Abelian Groups Z(n)

We start with the simple example of the cyclic groups G = Z(n). Their twists are characterized
by a single number k ∈ Z(n)

ωk(g, h) = exp(i2πgkh/n).

Equivalence classes are formed by numbers with the same order

k ∼ k′ ⇔ ord(k) = ord(k′),

therefore we have a different theory for every divisor k|n of the group order. Special cases are
k = 1, n (they are the only ones if n is prime) with twists

ω1(g, h) = exp(i2πgh/n), ωn(g, h) = 1,

which we call the maximal and the trivial twist, respectively.

11.5.2 The Permutation Group S3

The Abelianization of the permutation group G = S3 is Gab = Z(2) (odd and even permutations).
As its order is prime, we only get the trivial ω = 1 and the maximal theory (g, h ∈ Z(2))

ω(g, h) = (−1)gh.
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11.5.3 The Quaternion Group H ≡ D̄2

The commutator subgroup of the quaternion group is equal to its center ±e, therefore its Abelian-
ization is Gab = Z(2) × Z(2), a group of order 4 (the Abelianization identifies i ∼ −i, therefore
it has no elements of order 4 anymore). This group is generated by two elements, so kij ∈ Z(2)
has four elements. This gives a total of 24 = 16 theories, which we can split into three conjugacy
classes. The trivial class has only one element with k = 0, an intermediate class with those nine
elements k 6= 0 with linearly dependent columns (modulo 2) and finally the 6 maximal theories
with linearly independent columns. The dependencies of the columns tells us something about the
image of the homomorphism defined by k : Gab → Gab, which is the trivial group {e}, Z(2), and
Z(2)× Z(2) for the three different theories respectively. All of them have a manifestly symmetric
representation, for instance

k ∈
{(

0 0
0 0

)
,

(
1 0
0 0

)
,

(
1 0
0 1

)}
. (70)

11.5.4 The Group ∆(27)

The group G = ∆(27) is the SU(3) analogue to the quaternion group. Its elements are given by

(ξ3 = ei
2π
3 )

G = {T aQbRc, a, b, c = 0, 1, 2},

T =

0 0 1
1 0 0
0 1 0

 , Q =

1 0 0
0 ξ3 0
0 0 ξ−1

3

 , R =

ξ3 0 0
0 ξ3 0
0 0 ξ3

 .

Its commutator subgroup is also equal to its center C(G) = G(1) ∼= Z(3), therefore its Abelian-
ization is Gab = Z(3) × Z(3) a group of order 9 (∆(27) has only elements of order 1, 3, therefore
its Abelianization cannot have an element of order 9). This group is generated by two elements,
so kij ∈ Z(3) has again four elements. This gives a total of 34 = 81 theories, which we can split
into three conjugacy classes. The trivial class has only one element with k = 0, an intermediate
class with those 32 elements k 6= 0 with linearly dependent columns (modulo 3) and finally the 48
maximal theories with linearly independent columns. The image of the homomorphism k is either
the trivial group {e}, Z(3), or Z(3)× Z(3) for the three conjugacy classes. The matrices (70) are
again examples of manifestly symmetric class representatives.

11.6 Spectrum of the Electric Hamiltonian

11.6.1 Projection Operators

The spectrum of the electric Hamiltonian on a single cross (71) can be understood in terms of the
three normal subgroups

N1 = G(1) ⊆ Nω = {g ∈ G : ω(g, h) = 1, ∀h ∈ G} ⊆ N0 = G,

and the projection operators associated with them

Pi =
1

|Ni|
∑
g∈Ni

h(g), P̃i =
1

|Ni|
∑
g∈Ni

h̃(g).

All of them commute except

P0P̃0 6= P̃0P0,

for any non-trivial twist with Nω 6= G. Coincidentally, the non-Abelian groups S3, D̄2,∆(27)
all share the property that the set of nearest neighbors spans the whole group except for their
commutator subgroups

H = {g ∈ G : 〈e, g〉} = G \G(1).
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i (n, ñ) 2Ei/(e
2|G|) di

0 (2, 2)+ 1− |Gω|−1/2 |Gω|
1 (0, 3), (3, 0) 1− |Gab|−1 2(|G| − |Gab|)
2 (1, 3), (3, 1) 1 2(|Gab| − |Gω|)
3 (2, 2)− 1 + |Gω|−1/2 |Gω|
4 (0, 0) 2− 2|Gab|−1 (|G| − |Gab|)2

5 (0, 1), (0, 2), (1, 0), (2, 0) 2− |Gab|−1 2(|G| − |Gab|)(|Gab| − 1)
6 (1, 1), (1, 2), (2, 1), (2, 2)0 2 |Gab|(|Gab| − 2)

Figure 17: The full spectrum of the electric Hamiltonian for the non-Abelian groups G =
S3, D̄2, ∆(27). As |Gω| divides both |Gab| and |G| all degeneracies di are multiples of |Gω|.
In some special cases the degeneracy of some level vanishes, d6 = 0 for S3 (|Gab| = 2) and d2 = 0
for maximally twisted theories (Gω = Gab). By accident some of these levels may have the same
energy, E4 = E2 for S3 and E3 = E6 for the trivial theory (|Gω| = 1). The order of the levels
i = 3, 4, 5 may change in some theories. The ground state is always given by (2, 2)+ (72) and is
|Gω|-fold degenerate. States with n, ñ = 0 carry non-Abelian flux, the first excited states i = 1
always carry non-Abelian flux on one link.

This implies that H is a union of cosets of N1 = G(1) and we can thus factor the Abelian projectors
P1, P̃1 from the hopping terms

2

e2
HE = 2|H| −

∑
g∈H

(h(g)P1 + h̃(g)P̃1)

= 2|H| − (
∑
g∈G

h(g)− |N1|)P1 − (
∑
g∈G

h̃(g)− |N1|)P̃1

= 2|H| − (|N0|P0 − |N1|)P1 − (|N0|P̃0 − |N1|)P̃1

= 2|H|+ |N1|(P1 + P̃1)− |N0|(P0 + P̃0). (71)

Although the projectors Pω, P̃ω do not appear in the Hamiltonian, they are key to identifying the
subspace, where [P0, P̃0] 6= 0, since

[P0, P̃0] = [P0Pω, P̃0P̃ω] = [P0, P̃0]PωP̃ω.

Thus only for the states PωP̃ω|ψ〉 = |ψ〉 is the Hamiltonian (71) not a sum of mutually commuting
operators. For all other states the energy can be read off immediately. If we define the two quantum
numbers

n = P1 + Pω + P0(1− P̃ω), ñ = P̃1 + P̃ω + P̃0(1− Pω),

then all states with the same quantum numbers (n, ñ) are degenerate, except for the sector n =
ñ = 2 (for the full spectrum see figure 17).

11.6.2 The Twisted Sector (n, ñ) = (2, 2)

The states with n = ñ = 2 (PωP̃ω|ψ〉 = |ψ〉) form the only sector where P0 6= 0 6= P̃0, such that
the Hamiltonian contains non-commuting terms. The cosets C, C̃ of Nω provide an orthonormal
basis for this sector

|C, C̃〉 =
1

|Nω|
∑
g∈C

∑
h∈C̃
|g, h〉.

Since all the transformation and hopping operators commute with Pω, P̃ω, they form a represen-
tation of the algebra within this sector and we write

L(C)|C ′, C̃〉 = ω(C, C̃)|C ′ + C, C̃〉, . . . ,
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where L(C) = PωL(g ∈ C) and we use the additive notation for the quotient group C ∈ Gω =
G/Nω (which is an Abelian group since G(1) ⊂ Nω). On these cosets the twist obeys the complete-
ness relations∑

C̃

ω(C, C̃)ω̄(C ′, C̃) = |Gω|δC,C′ ,
∑
C

ω(C, C̃)ω̄(C, C̃ ′) = |Gω|δC̃,C̃′ ,

which define a discrete Fourier transformation on Gω. We leverage this to define a new set of basis
states

|C,Q〉 = L(Q)
1√
|Gω|

∑
C̃

|C, C̃〉 =
1√
|Gω|

∑
C̃

ω(Q, C̃)|C +Q, C̃〉,

〈C ′, Q′|C,Q〉 =
1

|Gω|
∑
C̃,C̃′

ω̄(Q′, C̃ ′)ω(Q, C̃)〈C ′ +Q′, C̃ ′|C +Q, C̃〉

= δC′+Q′,C+Q
1

|Gω|
∑
C̃,C̃′

ω̄(Q′, C̃)ω(Q, C̃)

= δC′,C δQ′,Q,

which have the advantage that they separate the action of the transformations

L(C ′)|C,Q〉 = |C,Q+ C ′〉, L̃(C ′)|C,Q〉 = ω̄(Q,C ′)|C,Q〉,
from that of the hopping terms

h(C ′)|C,Q〉 = |C + C ′, Q〉, h̃(C ′)|C,Q〉 = ω(C,C ′)|C,Q〉.
In this basis it is manifest how the twist ω ensures a minimal degeneracy |Gω| (labeled by Q) in
this sector. The electric Hamiltonian (71) now acts solely on the states |C〉 and is given by

2

e2
HE = |G|(2− P0 − P̃0), P0 = |Θ〉〈Θ|, P̃0 = |Θ̃〉〈Θ̃|,

where the two projector eigenstates are given by

|Θ〉 =
1√
|Gω|

∑
C

|C〉, |Θ̃〉 = |Gω〉, 〈Θ|Θ̃〉 =
1√
|Gω|

.

The states |Θ〉, |Θ̃〉 provide the two eigenstates

|±〉 =
1√

2 + 2|Gω|−1/2
(|Θ〉 ± |Θ̃〉), 2

e2
HE |±〉 = |G|

(
1∓ |Gω|−1/2

)
(72)

We will label these states with (2, 2)± respectively, while the remaining |Gω|(|Gω| − 2) states of
energy e2|G| will be labeled as (2, 2)0 (compare with figure 17).

11.7 Abelian Anyons

We conclude the analysis of the doubled Chern-Simons-Yang-Mills theory, by showing that in the
strong coupling limit e2 → ∞, where the electric Hamiltonian dominates, the primal and dual
Abelian charges exhibit mutual Abelian anyonic statistics.

11.7.1 Parallel Charge Transporters

The parallel charge transporters for an Abelian charge Γp are defined as

U(Γp)|U, Ũ〉 = Γp(U)|U, Ũ〉, Ũ(Γp)|U, Ũ〉 = Γp(Ũ)|U, Ũ〉. (73)

The commutation relations with the transformation operators

L(g)R(h)U(Γp)|U, Ũ〉 = Γp(U)ω(gh−1, Ũ)|gUh−1, Ũ〉,
= Γ̄p(g)Γp(h)U(Γp)L(g)R(h)|U, Ũ〉,

L̃(g)R̃(h)Ũ(Γp)|U, Ũ〉 = Γ̄p(g)Γp(h)Ũ(Γp)L̃(g)R̃(h)|U, Ũ〉,
show that they remove a charge Γp on the left and add one on the right end of the link.
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11.7.2 Anyonic Statistics

The proof of mutual Abelian anyonic statistics between primal and dual charges is very simple.
Imagine a plaquette of the primal lattice consisting of four crosses. We assume that each cross is
in one of the ground states of its electric Hamiltonian |ψ〉 = ⊗|0〉. Additionally we put an Abelian
charge Γp on the dual site at the center of the plaquette, thus Ṽ (g)|ψ〉 = Γp(g)|ψ〉. Now we move
a primal charge Γk counter-clockwise around the plaquette using the parallel charge transporters
(73) thus returning to a state |ψ′〉 in the same charge sector as |ψ〉 and we can formally write

|ψ′〉 = Γk(Û2)|ψ〉 = ω(Û2, g)|ψ〉,

where we assume that Γk = p̃(g) for some g ∈ G (only those charges Γk ⊂ p̃(G) which are part of
the twist show anyonic statistics, the others are even confining as their fluxes are gapped from the
ground state). Using (68) we can rewrite the final state as

|ψ′〉 = H̃(g)−1Ṽ (g)|ψ〉.

We are now interested in the phase accumulated with respect to the initial state |ψ〉

〈ψ|ψ′〉 = 〈ψ|H̃(g)−1Ṽ (g)|ψ〉
= 〈ψ|H̃(g)−1|ψ〉Γp(g).

The form of the ground-state of the individual crosses guarantees that the prefactor

1 ≥ 〈ψ|H̃(g)−1|ψ〉 = (〈0|h̃(g)−1|0〉)4 > 0

is real and positive. Thus the braiding of a primal charge Γk = p̃(g) and a dual charge Γp generates
an Abelian phase Γp(g). The prefactor is generally not equal to 1 since the charge transporter
does not commute with the electric Hamiltonian, thus it excites the links. This is irrelevant for the
discussion here, but could in principle be overcome by an adiabatic charge-transport procedure. It
is not at all surprising to find Abelian anyons in the strong coupling limit. After projecting all links
to the ground state, we are left with implementing the Gauss-law on the primal and dual lattice.
The degeneracy of a single link is characterized by the quotient group Gω = G/Nω. The states
can be characterized by the eigenvalues of the dual transformation operators L̃, while the primal
transformation operators act as raising/lowering operators in Gω. Since the gauge transformation
operators V, Ṽ all commute, they can be interpreted as stabilizer operators in a toric code with the
Z(2)-spins replaced by Gω-spins. Defects are constructed by simply assigning non-trivial Abelian
charges to the primal and dual lattice.
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12 Conclusions

We have derived doubled Chern-Simons-Yang-Mills gauge theories on the lattice for arbitrary
discrete gauge groups G. These theories are characterized by a finite Hilbert space of dimension
|G|2 on each cross of primal and dual lattice links. The Chern-Simons character is introduced by
a non-trivial commutator of the primal and dual electric field components (and transformation
operators) on each cross. We have characterized all such twisted algebras in terms of subgroups of
the Abelianization of the gauge group Gab. Furthermore we have calculated the spectrum of the
electric Hamiltonian on a single cross for the non-Abelian groups S3, D̄2,∆(27) and have shown
that the state degeneracy is related to a quotient-group of the Abelianization. In the infinite mass
limit e → ∞ we can calculate the (global) ground state exactly for any charge sector, from the
degenerate ground states of the single cross. The dual nature of primal and dual transformation
operators on the degenerate states allows us to reinterpret the Gauss law as stabilizer operators in
a generalized toric code and we show explicitly the presence of mutual fractional statistics among
primal and dual charges.

However the anyons are only Abelian, although we explicitly investigated non-Abelian gauge
groups. The reason for this shortcoming is easily found. Our doubled lattice construction allows
us to create interactions between dual quantities, by twisting their commutators. The twisting is
induced by maps from the gauge-group to the representations p, p̃ : G → ΓG. In our derivation
we show that these maps have to be group-homomorphism. The set of representations, however,
is associated with fusion rules, which generally form a semi-group (fusion with a non-Abelian
representation is non-reversible, the Abelian representations form a subgroup). Thus the image of
our maps lies within the Abelian representations only. The dual magnetic flux around a primal
site can thus only act as an effective Abelian primal charge. The infinite mass limit then effectively
projects the theory to a generalized toric code with gauge group Gab, because the non-Abelian flux
states are not protected by any symmetry.

Despite its obvious limitations, our theory is well-defined and incorporates the fundamental
features we have encountered studying the compact U(1) doubled gauge theories with Chern-
Simons term. We can construct a self-consistent, mutually non-commutative operator-algebra on
crossing links of the primal and dual lattice. The non-commuting transformation operators of the
two crossing links generate a symmetry of the electric Hamiltonian and thus lead to degenerate
eigenstates. The magnetic fluxes on plaquettes mimic electric charges on their dual site. This
generates the Abelian anyonic statistics that can be observed by braiding primal and dual charges.
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