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Abstract

I discuss the significance of the antiferromagnetic Heisenberg model (AFHM) in both
high-energy and condensed-matter physics, and proceed to describe an efficient cluster
algorithm used to simulate the AFHM. This is one of two algorithms with which my
collaborators and I were able to obtain numerical results that definitively confirm that
chiral perturbation theory, corrected for cutoff effects in the AFHM, leads to a correct
field-theoretical description of the low-temperature behavior of the spin correlation
length in various spin representations S. Using a finite-size-scaling technique, we
explored correlation lengths of up to 10° lattice spacings for spins S=1 and 5/2.
We show how the recent prediction of cutoff effects by P. Hasenfratz is approached
for moderate correlation lengths, and smoothly connects with other approaches to
modeling the AFHM at smaller correlation lengths.

I also simulate and discuss classical antiferromagnetic systems with simultaneous
SO(M) and SO(N) symmetries, which have been proposed as models for magnets
in external fields and for electronic and color superconductors. After detailing the
algorithms which were employed, I present results for the various observables which
confirm the existence of the expected ordered and disordered phases. I obtain a
preliminary phase diagram from these systems, from which the location of an expected
bicritical point may be estimated. This is a necessary first step in determining whether
the point exhibits a dynamically-generated enhanced symmetry, a possibility first
suggested by Wiese and Chandrasekharan but not fully resolved in three dimensions.
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Chapter 1

Introduction

From subatomic particles to neutron stars, from the freezing lows of superconductors
to the scorching highs of plasmas, the world around us is endowed with a rich collec-
tion of strongly-interacting systems. The high-energy physicist is still struggling to
understand the non-perturbative aspects of the theory know as quantum chromody-
namics (QCD), while the condensed matter physicist is still unraveling the mysteries
behind superconductivity. With few analytical tools available to tackle these prob-
lems, they have frequently turned to numerical simulation to gain insight into the
underlying physics. “Simulation,” however, is fraught with its own pitfalls and com-
plications, and practitioners often need to simplify their models so as to capture some
of the interesting features while making their analyses amenable to the computer.
This dissertation is motivated by QCD in two strong-coupling regimes: low en-
ergy and non-zero density. The low-energy regime describes ordinary matter: how
exactly are quarks held together to form larger subatomic particles like protons and
neutrons? The non-zero density regime describes some compact stars: are neutron
stars really a fundamentally different form of matter than we have here on earth?
The complexity of these two regimes continues to hinder direct numerical simulation.
Nevertheless, one can learn how to build better simulations, and at the same time
gain some physical insight, by studying toy models with similar features. In this
thesis, I focus on two related systems, the Heisenberg quantum and classical antifer-

romagnets, as condensed matter analogues of QCD at low energy and at non-zero



density, respectively. The analogy is not perfect, yet these two models have much to
teach us about building more sophisticated simulations in the future. Furthermore,
the two systems simulated herein are interesting in their own right: the former as
a description of superconducting substrates, and the latter as a mechanism behind

superconductivity.

1.1 QCD at Low Energy

Confinement

Quantum chromodynamics introduces the strong force into the standard model of
particle physics. It describes how the fundamental building blocks of matter, quarks,
interact with each other through the exchange of strong force carriers, gluons, in a
manner somewhat reminiscent of electrical particles interacting through the exchange
of photons in quantum electrodynamics (QED). The fundamental difference between
QCD and QED is that there is only one electric charge while there are three strong
charges (whimsically called colors). QCD is postulated to be invariant under a local
(“gauge”) symmetry that changes the color of any quark; this postulate gives rise
to the eight gluons, which themselves carry color charge. This contrasts with QED,
where a much smaller symmetry gives rise to the single, neutral photon.

The symmetry structure of QCD together with the existence of three colors and
six different quark flavors leads to “asymptotic freedom:” the interaction between
color charges is weak at high energies and strong at low energies. QCD also exhibits
confinement: isolated color-charged objects are not observed in nature because the
attractive potential between them grows linearly with distance. It takes high energies,
such as those momentarily produced at accelerators, to separate a color-neutral com-
posite into weakly-interacting color-carrying particles that can be analyzed through
perturbation theory. At low energies, quarks combine to form mesons and hadrons
(like the familiar proton and neutron), while gluons can combine to form color-neutral
glueballs.

Attempts to understand QCD numerically have often focused on putting the the-
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ory, formulated as a thermodynamic system of classical fields, in a lattice approx-
imation to the space-time continuum assumed in the standard model. The lattice
approach, first pioneered by Wilson[l], is useful in that it provides a natural way
to deal with the infinities present in the continuum field theory, and in that it is
non-perturbative and could, in principle, probe the low-energy dynamics of interest.
Unfortunately, to get back to the real world, finer and finer lattices must be taken so
as to approach the continuum again. In this limit, simulations suffer from “critical
slowing down:” it takes more and more computer time to simulate the physically
interesting events. Furthermore, because the classical fields are continuous variables
and because finer and finer lattices must be taken, obtaining precise numerical results

becomes computationally prohibitive.

D-Theory

Over the past few years, Wiese and collaborators have been investigating a novel
approach to lattice simulations: D-theory|(2, 3, 4, 5]. As in traditional lattice field
theories, the fields are assumed to live at points on a lattice rather than everywhere
in space-time. Now, however, the fields are no longer classical variables but become
instead quantum operators. The advantage of simulating such a quantum system is
that each lattice site can now take on one of a finite, rather than infinite, number
of values— a drastic reduction in the computations involved. The price one pays
is the introduction of an extra dimension not present in the original theory. One
can recover the physics of the classical fields, however, through the mechanism of
dimensional reduction: fields correlated over distances much longer than the length
G of the extra dimension can be averaged in blocks of size 3, obtaining the original
model. This mechanism is depicted in Fig 1-1, where the large correlation length
allows the fields in the (d + 1)-dimensional theory to be averaged into fields living in
d dimensions.

One advantage of the D-theory formulation, then, is that there are only a finite
number of possible states at each site. Another advantage is that D-theory allows the

use of “cluster algorithms,” thus potentially reducing or eliminating critical slowing
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d-dimensional ordinary lattice field theory

{(d+1)-dimensional D-theory /

—fc—

Figure 1-1: Dimensional reduction of a field theory. The fields living in (d + 1)-
dimensional space-time are correlated over distances much larger than the extent of
the extra dimension (£ > ). They can be averaged out to obtain the fields of a
d-dimensional theory.

down. These algorithms create clusters of spins over physically-correlated regions and
then flip them to generate new configurations of the system. The common simulation
problem of wastefully proposing and rejecting small changes is thus circumvented,
making much more efficient use of computer time. Furthermore, cluster algorithms
in turn often allow “improved estimators” to be constructed for various observables;
these are quantities which use cluster properties to arrive at measurements more
precise than those obtained by naively averaging only those configurations actually
created on the computer. Both cluster algorithms and improved estimators are used
in the simulations described in the first part of this thesis, and are explained in more

detail in Chapter 3.
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The antiferromagn.et as a toy model

While a D-theory formulation of QCD has already been devised, finding cluster al-
gorithms to simulate it has remained a challenge. In order to gain insight into what
such an algorithm may be, the focus has lain on simulating toy models in order to un-
derstand what works and what doesn’t in cluster algorithms. One such model is the
the 2-d O(3) model, which shares several features with QCD: asymptotic freedom, a
mass gap (7.e. the fields may be correlated over large but never infinite distances), and
topologically non-trivial field configurations such as instantons. When formulated as a
D-theory, the resulting quantum system is the Heisenberg antiferromagnet describing
interacting spins, which, at sufficiently low temperatures, anti-align with their near-
est neighbors to generate a “staggered magnetization.” Furthermore, the Heisenberg
model is interesting in its own right as a description of materials which, when doped
with impurities, become high-temperature superconductors; it has been the subject
of much theoretical analysis and simulation in the condensed matter community. In
simulating this system, my collaborators and I employed two recent improvements
in cluster algorithms: a technique to treat the extra dimension as continuous in our
simulations (as first described by Beard and Wiese in Ref. [6]), and a formulation that
extends the cluster algorithm to arbitrary values of the spin (an original formulation
not heretofore described by our group, although independently used by others[7]).
As described herein, the resulting simulations have enabled us to confirm theoretical
predictions in various temperature ranges, agree with experimental data, and probe
regimes where the correlation length becomes astronomical. All this while learning

how to craft a cluster algorithm for QCD!

1.2 QCD at Non-zero Density

Color Superconductivity

Low temperature is not the only regime in which QCD is strongly interacting. Since

quarks are fermionic particles, no two can be in the same energy state. Hence, at high
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densities, even if the temperature is low, some of the quarks must be quite energetic
(just like electrons in a superconductor) and be weakly coupled to one another through
the strong force. Just as in electronic superconductors, an arbitrarily weak attractive
interaction is enough to induce superconductivity. Unlike electronic superconductors,
where the attractive interaction between otherwise repulsive electrons is indirectly
generated by the vibrational degrees of freedom (“phonons”) of the atomic lattice,
so-called color superconductors arise from the direct attractive potential between the
quarks. The quarks are again highly correlated, not due to confinement now at these
high densities, but rather through color superconductivity to form non-color-neutral
states.

The color superconducting phase is also marked by a change in the chiral sym-
metry of the quarks. The simplified model of QCD with two massless flavors (rather
than the six found in nature) turns out to be invariant under separate global rotations
of left-handed and right-handed quarks, SU(2); ® SU(2)g. At low energies, such as
ordinary matter, this symmetry breaks spontaneously and the theory is invariant
only under simultaneous rotations of left- and right-handed quarks, the smaller sym-
metry group SU(2);—r. Thus, at low temperature and density, the quarks are in
color-neutral, chirally broken states, while at low temperatures and high densities,
the quarks are bound in a superconducting, chirally-symmetric condensate. At high
enough temperatures, the quarks are free and have chiral symmetry.

Numerical simulation of the color superconducting phase, which would appear
to be amenable due to the weak color coupling, remains problematic because of the
high densities involved. The density is driven by a chemical potential y in the the
system, which, unfortunately, introduces a “sign problem” in numerical simulations.
The crux of the sign problem is that quantities which are usually interpreted as
probabilities in formulating algorithms now become negative or even complex. While
significant breakthroughs have been made in solving the sign problem in simpler
systems [8, 9, 10, 11, 12, 13, 14|, these techniques have not yet been successfully
applied to QCD. Furthermore, there are more straightforward ways to gain qualitative

insight into the superconducting phase of QCD, as I now discuss.
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The antiferromagnet as a toy model

The three phases of two-color QCD are reminiscent of those of two other systems. The
first is an anisotropic antiferromagnet in a magnetic field B. At low temperatures,
a small field generates a staggered magnetization along B, while a large field causes
the staggered magnetization to flop onto the plane perpendicular to B. At high tem-
peratures, the spins are randomly oriented. The other system is a high-temperature
cuprate superconductor. There, the low temperature, low impurity density regime
is the so-called Néel phase in which a spontanecus staggered magnetization arises.
The low temperature, high density phase is the high-temperature superconductor.
Finally, the high-temperature regime describes the metallic phase of the cuprates.
These phase diagrams thus have a similar structure to that of QCD with two quark
flavors. The generic phase diagram for all three systems is pictured in Fig. 1-2.
Fueled by these analogies, one can investigate the symmetry properties of color
superconductors using models similar to those employed for the condensed matter
systems. One collects the degrees of freedom into a single “supervector” whose first
M components describe the SO(M) symmetry (e.g. chiral symmetry) and whose last
N components describe the SO(N) symmetry (e.g. the color condensate). These
vectors are then used to formulate a physical system that exhibits the relevant in-
teractions between the M and N components. It turns out that all three systems
involve rotational symmetries and can thus be represented as an antiferromagnet in
a magnetic field— the only features that change from one toy model to the other are
the values of M and N, that is, the number of components of the supervector. In the
case of the antiferromagnet in a magnetic field, it is known that at point “be” in the
phase diagram, the SO(M) and SO(N) symmetries are enhanced to an SO(M + N)
symmetry[15]. It is then natural to ask whether in the electronic and color super-
conductors a similar unification takes place. Chandrasekharan and Wiese studied
this problem analytically; their work in 4 — ¢ spatial dimensions suggests that the
electronic superconductor may display an enhanced symmetry but the color super-

conductor probably does not. It is not clear, however, whether this analysis remains
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valid when ¢ = 1.

Here, then, I aim to verify these claims numerically in three dimensions. Once
again, a Monte Carlo algorithm is used, albeit a classical one now, as the chemical
potential present in these models could again introduce a sign problem in the quantum
formulation. The results are then used to map the phase diagrams and to determine
the neighborhood in which the bicritical point with a possible enhanced symmetry

may be found.

1.3 Outline

This dissertation will describe the work and results obtained in analyzing the quan-
tum Heisenberg model and the classical SO(M) @ SO(N) model. In Chapter 2, [
describe the Heisenberg model in more detail and quote the theoretical predictions
developed by Hasenfratz and Niedermayer, among others. I then explain the simu-
lation algorithm in Chapter 3, and present an analysis of the results in Chapter 4.
Chapters 2 and 4 are largely based both on an upcoming paper coauthored with B.B.
Beard and P. Keller-Marxer[16], a draft version of which appears in Ref. [17]. The
results have already been made available in Ref. [18].

Chapter 5 will then switch gears to explain more fully the SO(M)®SO(N) model
and its relationship to QCD; this chapter is based on a paper I coauthored with U.-J.
Wiese, S. Chandrasekharan, and B. Schlittgen[19]. The simulation algorithms are
presented in some detail in Chapter 6, and the results are discussed in Chapter 7.

The last chapter includes conclusions and final comments.
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Figure 1-2: Conjectured phase diagram of ny = 2 QCD and analogous systems. For
QCD at non-zero density p, M = 4, N = 6: the SO(M) symmetry is chiral symmetry,
while the SO(N) symmetry is color symmetry. Analogously, for an antiferromagnet
in a magnetic field g (M =1, N = 2), the component of the staggered magnetization
along the direction of the field exhibits the SO(M) symmetry, while the perpendicular
components exhibit the SO(N) symmetry. For an electronic superconductor (M = 3,
N = 2), the staggered magnetization displays the SO(M) symmetry while the Cooper
pair condensate displays the SO(N) symmetry; the impurity concentration is driven

by .
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Chapter 2

The Heisenberg Antiferromagnet

The discovery of high-temperature superconductivity in lamellar copper-oxides has
revived interest in the two-dimensional quantum Heisenberg model. It was found|20]
that the magnetic properties of undoped insulators and precursors with Cu-O planes,
such as SrpCuQ0,Cly or Lay,CuQy, are well described by the spin S = 1/2 square-
lattice quantum Heisenberg antiferromagnet with isotropic nearest-neighbor coupling
(AFHM). There exist as well materials which are accurately described by the Heisen-
berg model in higher spin representations, such as KyNiFy (S=1) and RbsMnF, and
KFeF; (S=5/2). It is suspected that the quantum antiferromagnetic background
plays a role in the generation of high-T, superconductivity in the doped cuprates.

Theoretical and experimental interest[21] in the role of quantum fluctuations in
the AFHM also increased with the realization that the model can undergo a sequence
of crossovers[22, 23, 24, 25, 26], depending on temperature, spin coupling constant,
and spin magnitude. Furthermore, it was realized that the low-temperature physics of
the AFHM is dominated by magnon interactions which are described by the quantum
field theory of the O(3) non-linear o-model, which allows analytic calculations in the
framework of chiral perturbation theory. In fact, several analytic predictions[27, 28,
29, 30, 31] for the AFHM were derived from this quantum field theory, which, as
mentioned in the introduction, shares qualitative features with QCD.

The field-theoretical prediction for the AFHM spin correlation length £(7") agrees

rather well[32] with neutron scattering measurements on S = 1/2 antiferromagnets
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such as Sr,CuO;Cl, for the regime & < 200 lattice spacings a accessible in experiment.
In the past decade, efficient S = 1/2 quantum Monte Carlo (QMC) algorithms offered
“exact” AFHM data, unbiased by numerical approximations or structural details
of real materials. This made it possible to validate the predictions of field theory
accurately for the S = 1/2 AFHM over a broad range of correlation lengths[33]
£/a = 200 — 10°.

However, the agreement between the field-theoretical prediction, experimental
measurement, and QMC results seemed to be constrained to the quantum limit

= 1/2. Recent experimental measurements[34, 35, 36] on higher-spin antiferro-
magnets like La;NiOg (S = 1) and RbyMnF, (S = 5/2), as well as theoretical
calculations[26, 37] and an S = 1 simulation(7] showed large deviations from the
field-theoretical prediction for higher spins S > 1/2, with a strong dependence on
S. These results suggest a serious discrepancy even at very large correlation lengths.
This is highly unsatisfactory on theoretical grounds[38], as will be discussed later.
In a recent publication, Hasenfratz[38] argued that this discrepancy is due to cutoff
effects in the AFHM. He used spin-wave expansion to calculate the cutoff effects, and
showed a proper way to incorporate them into the field-theoretical prediction for the
correlation length.

In the course of this project, my collaborators and I[18] obtained QMC data for
the correlation length of the full range of spins S < 5/2 up to £/a ~ 10%, and also
some complementary data in the extreme range up to £/a ~ 10%0. To our knowledge,
the only QMC study available so far for a higher-spin AFHM was[7] for S = 1,
covering very moderate {/a < 25. We show that the discrepancy between AFHM
correlation length and field-theoretical prediction indeed persists at large correlation
lengths £/a >> 10°. On the other hand, our results definitively confirm that the
cutoff-corrected prediction describes the AFHM correlation length down to moderate

£(T) = O(100) lattice spacings for all spins.
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2.1 The Model

The Heisenberg model is formulated in terms of the interactions between quantum
spins S on adjacent sites of a 2-d square lattice with an even number L of sites along

each dimension and periodic boundary conditions:

H = J) S8, (2.1)

<xY>

SL,81] = ic7*Sis,,

Here, < zy > denotes nearest neighbor sites on the lattice, and the quantum spins
S, are all in an arbitrary spin S representation: S2 = §(§ + 1).
In the case of antiferromagnets, which we consider here, J > 0. Since the total

spin operator commutes with this Hamiltonian,

H,ZSZ] =0,

the system has a global SO(3) symmetry. As is often the case with quantum systems,
it is useful to consider the classical analogue of this system to obtain some insight
into how the quantum version behaves. The classical Hamiltonian has the same form,
but the S, are interpreted as classical unit vectors living on each site.

At low temperatures, the AFHM exhibits long range antiferromagnetic order. In
the classical version, each spin tends to anti-align with its neighbors. In the process, a
particular direction in space is singled out as the (staggered) magnetization direction:
the symmetry breaks from SO(3), rotations in three-dimensional space, to SO(2),
rotations in the plane. Similarly, the quantum system also exhibits spontaneous
symmetry breaking![6, 40, 41], a fact which has been verified experimentally[32, 42].

The partition function of the quantum system, eq. {2.1), can be formulated as a

L This is rigorously established only for § > 1 [39]. However, approximate analytical and numerical
results suggest that S = 1/2 is also in the broken phase [40].
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path integral in Euclidean time of an SO(3) classical model. According to Goldstone’s
theorem, two massless bosons (which in this case are called “magnons” or “spin-
waves”) are created by the SO(3)—SO(2) symmetry breaking, and are described
by fields that live in the coset space SO(3)/SO(2) = S2, the unit sphere. These
magnons arise from the low-energy collective excitations of the quantum spins around
the spontaneously-chosen magnetization direction.

The magnon dynamics can be described by chiral perturbation theory[43]. Chi-
ral perturbation theory (CPT) is a framework for constructing low-energy effective
theories; the name comes from its initial application to the study of pion decay.
The low-energy effective action is obtained by writing all possible interactions of the
magnons that respect the symmetries of the theory. The 52 magnons n are then unit
three-vectors n? = 1 in three dimensions, and to lowest order the effective theory

contains only two parameters, the spin stiffness p, and the spin-wave velocity c:
ps [° ) 1
Aeﬂf = E /dlg /d X Binain —+ 6‘2631’1 - 631’1 (22)
0

Here, the index 7 runs over the physical space-time dimensions 1 and 2 only, and not
along the extra dimension 3 whose extent § = 1/T is driven by the finite temperature
of the system. When thé correlation length £ of this 3-d theory is much greater than
this extra dimension, £ > 3, the system dimensionally reduces to two dimensions, as
remarked in the introduction (see Figure 1-1): to lowest order, one may drop the 5
derivatives in eq. (2.2), so that the leading part of the action becomes the 2-d O(3)

model,
1

S, = —
290

/d2:c dndmn, n*=1, (2.3)

with g = 1/8p,. However, the Mermin-Wagner-Coleman theorem[44, 45] rules out
interacting massless Goldstone bosons in two dimensions at non-zero temperatures.

The correlation length £ is thus finite and the magnons acquire a mass m oc £71(T).

21



2.2 Field-Theoretical Predictions

Chakravarty, Halperin, and Nelson[27] made this argument more precise by employing
renormalization group ideas. They performed a block spin renormalization group
transformation that mapped the 3-d continuum O{3) model, eq. (2.2), to the 2-d
lattice O(3) model, averaging the fields over space-time volumes of size 3 in the
extra dimension and ¢f in the physical dimensions. They thus predicted the leading

behavior of the AFHM correlation length,

§/a = Ceexp(2mps/T)

with C¢ an undetermined constant. Subsequently, Hasenfratz, Maggiore, and Nieder-

mayer[46, 47] calculated the exact mass gap of the O(3) model in eq. (2.3),

£= . (2.4)

Hasenfratz and Niedermayer[29] utilized this result, as well as the three-loop j-

function[48] to get the correlation length of the O(3) model:

_elolw) (2 UG
5_8u 27 p(g(u)) * [1+ & T O] (25)

where ¢g(u) is the running coupling for an arbitrary scale p, for example p = 7. To
exploit this result for the AFHM at low temperatures, the challenge is to find a proper
way to connect the coupling g(p) with the parameters of the AFHM, T and p,(J).
Hasenfratz and Niedermayer[30, 31, 28] computed free energies for the systems in
both eq. (2.2) and eq. (2.3) and thus found the connection between the coupling of
the O(3) model and the AFHM parameters to be[29]
1 s _ —3/4

T
mlpzwc:TﬂrﬂiE’ a=07= (2m)2” (2:6)

where g(u = p) is the renormalized coupling constant of the O(3) model at momentum
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p = T/e, and ¢ is the spin-wave velocity which takes the role of the speed of light
(which was set to unity in eq. (2.5)). Plugging this result into eq. (2.5), Hasenfratz
and Niedermayer arrived at what we call the CHy;Ny formula for the asymptotic,
low-temperature behavior of the correlation length:

e C 27 pg T 9
_¢ 1— . 9.
= 3o, e"p( T )[ i, T O ) (27)

The prefactor e/8 comes from the exact mass gap[46, 47] of the O(3) model,
eq. (2.4), while the O(T) correction requires the 3-loop S-function and the calculation
in chiral perturbation theory to get the mapping eq. (2.6). When £, becomes valid
for the AFHM, £(T) “scales asymptotically” with the 3-loop S-function of the O(3)
model.

Chiral perturbation theory is just one of the possible techniques to obtain the
mapping in eq. (2.6). Other possibilities would be to use simulation in both models,
or to work directly with the Hamilton operator eq. (2.1) using spin-wave expansion, for
example. Chiral perturbation theory also assumes that the higher derivative terms
in the effective action, eq. (2.2), give controllable, small corrections. These higher
order contributions enter eq. (2.7) on the four-loop level first[29, 30, 31] (included in
O(T?)), and depend on additional, unknown low-energy constants.

Furthermore, note that the dimensionless parameter of the expansion in eq. (2.7) is
t = T/2mps, and it is required that the energy scale set by T' is much smaller than the
leading non-magnon scale p;, that is, T < 2mp, (t < 1). If, in a comparison of CH,;N,
with data for £(7T") in the AFHM, the higher-derivative contributions in fact turn out
to be small compared to the leading O(T) correction, then it is reasonable to include
them in a naive quadratic term a#?, with o being a free fit parameter. Beard and
Wiese took this approach[6] in their S =1/2 QMC study, obtaining & = —0.75(5).

Finally, note that cutoff effects in the O(3) model are ~ £72, and are always
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neglected since we only consider £ >> a. The three conditions

t o< 1,
£ > a, and (2.8)
& > ¢/T

are necessary prerequisites on the way to CH5N,.

The parameters p, and ¢ first appearing in eq. (2.2) are not fixed by CPT. They
can be estimated, for instance, by fitting to QMC data[49, 41, 6, 50]. That, in fact, is
the approach we took here. Alternatively, one could use spin-wave theory[51, 52, 53].
Spin-wave expansion (SWE) is an expansion in 1/5 of interacting spin waves repre-
senting the Goldstone bosons of the broken symmetry. The lowest order reproduces
a system of classical spins, and subsequent terms introduce the quantum corrections.

The SWE predictions are[54, 53]:

ps = S%—0.11762825445 — 0.0102079873 — 0.00316(2) /S,

¢ = 2v25(1+0.157347421/(28) + 0.02152(2)/(25)?) 29

2.3 Cutoff Correction

As mentioned previously, various approaches|34, 35, 36, 26, 37, 7] to the S > 1/2
AFHM at small correlation lengths showed a serious discrepancy with CHaNg by as
much as -75% at moderate £/a < 200. Our results confirm that a serious deviation
persists at extremely large, macroscopic correlation lengths £ /a > 10°. At spin § =1,
for example, this means that one is forced to postulate in eq. (2.7) an O(T?) correction
that remains larger than the O(T) correction until £/a ~ 10°, and which becomes less
than one-half or one-tenth of the latter only at £/a ~ 10'2 or £ /a ~ 106! respectively.
For example, with[34] a = 4 Angstroems for LayNiQy, these three £ values correspond
to 0.4 mm, 400 m, and 10%® light years, respectively. Things become worse for S > 1.

This situation is highly unsatisfactory on theoretical grounds since the mapping of
the AFHM onto the d = 2 O(3) model is valid much earlier due to £(7") > ¢/T. In a

recent publication, Hasenfratz[38] argued that the serious discrepancy is due to cutoff
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effects in the AFHM (not the O(3) model). They arise from the fact that the typical
non-Goldstone boson scales like £, = ¢/ps ~ 1/S never become much larger than the
lattice spacing a even for small spins, as opposed to a critical system where £, goes to
infinity. Using the predictions of spin-wave expansion[51, 52, 53], we have £, = 10a
for S =1/2, ¢, = 2a for S =1, and §, = a for S = 5/2. Cutoff effects enter the
effective CPT description on the 4-loop level first[30, 31] and contribute to the O(T?)
correction in (2.7). Therefore, CH,N, becomes correct for any S at sufficiently low
temperatures {the “renormalized-classical scaling” regime[22, 23, 24, 25]) where the
leading effective theory in eq. (2.2) correctly describes the magnon physics. However,
for S > 1/2 this happens only at astronomically large correlation lengths.

The serious discrepancy at “reasonable” £ > ¢/T correlation lengths indicates a
shortcoming in the technique to connect the coupling of the O(3) model with the
AFHM parameters p,(J) and T using CPT for large spin. When large, the AFHM
cutoff effects can no longer be described with the effective approach of CPT: the
systematic derivative expansion breaks down.

Hasenfratz[38] used bilinear spin-wave expansion (SWE) to calculate the cutoff
effects. Since CPT is an exact low-energy expansion, if one replaces in any quan-
tity calculated by CPT the parameters p, and ¢ by their SWE expansion, then the
SWE expansion of this quantity is obtained. In particular, eq. (2.6) is an expan-
sion of 1/g(p) in powers of 1/S since p, ~ S? ¢ ~ S, and T/J = O(S). This
enabled Hasenfratz to incorporate the cutoff effects properly into the CPT mapping
eq. (2.6). His result[38] is that the cutoff effects lead to an exponential correction
factor: &usc = £asexp(—C(7)), where the parameter v = 2JS/T brings in the explicit
spin dependence.

In our analysis, we account for a minor refinement of the result by Hasenfratz:
we explicitly keep the quadratic term in eq. (2.7). It seems unreasonable to keep this
term since there are unknown corrections of the same ((7?) order. However, it turns
out from our data that this term is in fact a small but significant improvement at
intermediate correlation lengths for all spins, implying that the remaining, unknown

O(T?) correction is small in comparison. Note that this coefficient comes from the
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CPT mapping in eq. (2.6) alone, and has nothing to do with the cutoft effects in the
AFHM.

In conclusion, we retain the quadratic term (27/32)t% in eq. (2.7) to quote the
result by Hasenfratz, although this term is only a part of the O(T?) correction. The

resulting CH3N;B formula is

frse = o exp(l)exp(—C(v))

§27rp5 t
1 27, )
x [1- sttt w0 (T )} (2.10)
v = 2JS/T

In Ref. [38], C() is expressed as an integral of familiar spin-wave quantities over the
first Brillouin zone. Again, we note that C(y — o0) ~ 772, thus CH,N,, eq. (2.7),
is recovered for T — 0, and at low temperatures exp(—C(7)) merges into the O(7T7)

correction.
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Chapter 3

Monte Carlo Simulation

Strongly-coupled systems such as the AFHM are generally not amenable to either
exact analytic or perturbative calculations, although in a few instances some exact
results have been produced— for example, the Bethe ansatz solution for the one-
dimensional Heisenberg model and the existence of symmetry breaking in the higher-
spin 2-d AFHM.

In general, though, predictions as to the behavior of strongly-interacting systems
must rely on numerical simulation techniques. The field of Monte Carlo simulation is
a rich and varied one, allowing one to perform numerical “experiments” where exact
results are unavailable. In this chapter, I will discuss the main principles of numerical
simulations as they pertain to the AFHM. Indeed, the general principles, though not
the specific implementation details, will be the same as for the classical spin systems

discussed in the second half of this thesis.

3.1 Formulation for a Quantum System

In performing numerical simulations for a quantum-mechanical system described by
the Hamiltonian H, one is interested in the thermodynamic properties of the system
at a given temperature 7' = 1/4. These properties are determined by the partition

function Z = Tr [e‘ﬁm] and the ensemble average of an observable O,
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(@) = %’I‘r [0e=PH]. (3.1)

In a basis {|i;) }of energy eigenstates, the numerator in eq. (3.1) simplifies to

Z Oye P,
;

with a similar expression for Z, where O;; = (¢; |0)| ¢;). The number of states that
must be enumerated in order to explicitly compute the trace is exponential in the
size of the system, which is clearly impractical. Importance sampling, as described
below, turns out to be a clever method to obtain an excellent approximation to
eq. (3.1). First, though, the system must be reformulated in a manner more amenable
to computer simulation.

The exponential in the expression for the partition function Z is analogous to the
quantum time evolution operator e ™ in Euclidean time. Motivated by this analogy,
one can break up the Euclidean time extent 5 into V; time slices of “duration” e,
such that Nie = 1 as the limit of infinitesimal time slices is approached e—(. The

numerator in eq. (3.1) then takes the form

Nt
RIO] = fim T [0 *#]Y = tim [ (D)6 100 9w [] (Gt e 5] ), (32
t=1

where a complete set of states [¢/;) has been inserted at each time slice ¢, and the
path integral notation, as usual, means a summation over all possible values of the
{Is) 521. This summation reduces the problem to a classical one, since carrying
out the trace now means calculating the product in eq. (3.2) at every point in the
“confliguration space” {|¢t>}f; .- Note that the cyclicity of the trace implies periodic
boundary conditions in the Euclidean time direction.

If the Hamiltonian is a sum of non-commuting terms, as eq. (2.1) is, there is an
ambiguity in the evaluation of the individual transfer matrices <1/)t+€ |e*fH| d)t). This

ambiguity is resolved by the “Trotter decomposition,”[55, 56] which involves writing

the original Hamiltonian H as a sum of “sub-Hamiltonians” H;, each of which is
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Figure 3-1: A typical configuration of the lattice after the Trokki-Suzuki decompo-
sition. This example is an antiferromagnet in one spatial dimension z; ¢ denotes
Euclidean time. The Hamiltonian can be written as a sum of two interacting terms,
which, upon Trotterization, induce interactions on the shaded plaquettes. The situa-
tion for the two-dimensional systems discussed in the text are entirely analogous, but
harder to visualize.

comprised of mutually commuting terms. In the case of the 2-d AFHM, the sum

takes the form

H= ]H[even,i + ]H[even,i + Hodd,i + Hodd,ﬁ'

Here, “even” and “odd” refer to the staggered sites on the 3-d lattice (IV; copies of the
original 2-d lattice), and 1 and 2 denote that the corresponding Hamiltonian contains
the interactions in the corresponding (positive) coordinate direction.

It is conventional to visualize the action of each sub-Hamiltonian as a rectangular
“plaquette,” where one of the sides represents the two interacting spins at equal time
Sz and Sy, and the opposite side represents the same two spins at the next time
slice, S; 14 and Sy ;qe. This is illustrated in Fig. 3-1, where the checkerboard shading
pattern denotes that each of the sub-Hamiltonians acts in adjacent time slices.

The ensemble average in eq. (3.2) then takes the form

“

N
R[G)] = IVltlE)noo /[Dw]@n <1pt+e ‘e—ﬁe Zu=i.§ Z::|:=even.c)dd ]HI'E,M
=1
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= /[Dw]@l—_t[ H H (e [P For 4. (3-3)

t=1 r=even,odd ;= 5

This expression contains errors of order €2 which vanish as Ni—o00. The form of

eq. (3.3) is the product of transition matrices

W) (3.4)

Tr,,u,t = <wt+e leiﬂeHm'#

which govern the local interaction between a pair of (space-like) neighboring spins as
they propagate from time slice ¢ to ¢ 1 e. The path integral still signifies that we are
to sum over all possible values of the LN spins in the (d + 1)- dimensional system.

For the AFHM Hamiltonian, equation (2.1) yields the transfer matrix for each

plaquette of spins interacting between time slices ¢ and ¢ + 1:

Ty:,u,t = <'¢’t+e ’e_ﬁGHI’“| 7/)t>

0 1¢(1 eBJ
= exp (—16,8) 2( e )
o 4

0

0
(1—e®’) 0
0
1

L -

where, in the last step, the basis {|-++), [+—),|—+), |——)} was chosen. In order
to interpret the matrix elements as Boltzmann weights, a further change of basis
is necessary to make the quantities appearing in eq. (3.5) positive. This can be
accomplished by rotating every other spin in the lattice by & around the z axis. This

then leads to the modified transfer matrix

0
e = o (L) |0 H D BT 0f
rut — €XP 46 0 %(eeﬂ.] 1) %(EEBJ+1) 0 .
0 0 0 L]
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3.2 Importance Sampling

The thermodynamic averages thus reduce to sums over the configuration space formed
by all possible combinations of up and down spins in each time slice of the (d + 1)-
dimensional lattice. These sums are exponentially large in the spatial volume of
the system (since each combination of plaquette eigenstates is itself an eigenstate of
H, .., barring non-allowed configurations) as well as in the number Ny of time slices.
Importance sampling tackles the exponentially large number of states due to the
spatial size of the system: the continuous-time technique, described in Section 3.3,
eliminates the growth in the number of states due to e—0.

Importance sampling is based on the observation that, for quite general systems,
only a fraction of the permissible configurations [¢4] carry any substantial Boltzmann
weight; the contributions from other regions in configuration space are negligible. To
obtain good approximations to thermodynamic quantities, it suffices to sample only
these important configurations. Since it is not clear how to determine a priori which
states are relevant and whether their number is indeed manageable, importance sam-
pling generates configurations stochastically. It does not guarantee that for any finite
simulation all possible configurations are generated, but it does generate thermody-
namic averages that, in general, approach true values as the length of the simulation
increases.

Importance sampling relies on two principles:

e Ergodicity: Given one permissible configuration [¢] of the system (that is, one
with non-zero Boltzmann weight W (4]), it must be possible to reach any other
permissible configuration [¢'] in a finite number of steps. This assures that the

simulation can sample the whole configuration space.

¢ Detailed balance: The probability of going back and forth between configura-

tions [¢] and [¢'] must be proportional to the ratio of their Boltzmann weights:

p(91-18) _ Wig]
(9116 ~ Wi’

(3.7)
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This assures that each configuration generated, in the limit of a large run,

appears with a frequency proportional to its Boltzmann weight.

Monte Carlo simulations thus become a guided random walk which generate a
Markov chain of configurations, sampling the integrand of the partition function pref-
erentially in the region where it is most sharply peaked. Where various Monte Carlo

schemes differ is in the manner in which a new configuration [¢'

] is generated. Much
effort has been expended in finding the right algorithm for a given problem in order

to make the simulations eflicient.

3.3 Metropolis Algorithm

The standard way to implement Monte Carlo simulations is by using variations of the
algorithm first developed by Metropolis[57, 58]. Although these algorithms are often
inefficient, they provide a simple standard by which to judge cleverer schemes such
as the ones used here. Metropolis-type algorithms proceed by proposing (usually at
random) a local change in the configuration space [¢], and using a probabilistic rule
to accept or reject the suggestion depending on detailed balance. The probability
that the new configuration [¢'] is [¢] rather than [¢] is then given by

1 if W[g'] > W]
W(#'|/W|¢] otherwise

min (1,774 ) (38)

p([¢]-1¢]) =

This rule obviously satisfies detailed balance, eq. (3.7), but it may be quite inefficient.
In particular, in the neighborhood of critical phenomena, where vast expanses of the
system are correlated, small local changes may be rejected an overwhelming fraction
of the time, a phenomenon known as “critical slowing down.” Nevertheless, this
is a simple algorithm to implement when more clever schemes are not apparent.

Furthermore, it can be combined with other more efficient algorithms to help provide
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for ergodicity. This is in fact done in the simulations of SO(M) ® SO(N) models

discussed in the second part of this thesis.

3.4 The Quantum Cluster Algorithm

Cluster algorithms address critical slowing down by proposing large-scale changes that
are automatically accepted. Suppose one has a Hamiltonian (classical or quantum)
comprised of local interactions between sites on a lattice. One begins at a random
site, and applies cluster rules to group it with a neighboring site, using detailed
balance. One continues applying the cluster rule at each new site until the cluster
closes. The cluster can then be “flipped” at random (but without further regard to
detailed balance) to generate a new configuration.

There are two main variants of these algorithms. The multi-cluster version fills
the lattice with clusters, so that each site is in exactly one cluster. The clusters are
then flipped randomly to generate a new configuration. The single-cluster version
creates only one cluster and flips it with probability one. The latter is the version
that has been used for all the simulations in this thesis.

The first step in crafting the cluster algorithm is to choose the breakups, that is,
how to group lattice spins so that they may be updated simultaneously. It suffices
to consider breakups locally: if these satisfy detailed balance, so will the breakups of
the whole lattice. There are six non-zero elements in the transfer matrix, eq. (3.6),
hence six legal plaquette configurations. Because of up/down symmetry, however, it
suffices to consider just three plaquette patterns; the other three can be obtained by
switching up and down spins.

The three Boltzmann weights are shown in Table 3.1, together with the breakup
patterns that satisfy detailed balance. The rules may be summarized as follows: a
spin may be joined with its time-like replica only if they both have the same spin,
and with its space-like neighbor only if they have opposite spins. In the one situation

where both of these possibilities are allowed, a probability of joining the time-like

2

rather than the space-like spins is p = e (AT
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B weight ~ configuration break-ups

e—%eﬁj

Table 3.1: The non-trivial plaquette weights and breakups for the AFHM in discrete
time. Time (space) is in the vertical (horizontal) direction. Black (white) circles
denote spin up (down). The indicated breakups, where p = m{%, satisfy detailed
balance, eq. (3.7), and admit a continuous-time limit, as explained in Sec. 3.5.

These cluster rules lead to two corollaries. A time-like cluster segment always
includes spins that are of the same orientation (up or down), and the orientation
changes exactly when the the cluster jumps to a neighboring site. Thus, if sites z and

y are in the cluster, they must satisfy
(-1)l=vlsz . 82 =1, (3.9)

where (—1)1*7¥/ is the “stagger factor” that counts how many spatial links separate =
and y. As a result of these rules and the geometry of the Trotter-Suzuki decomposi-
tion, the cluster grows in opposite time directions every time it jumps to a neighboring

site; this is illustrated in Fig. 3-2.
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X
Before cluster flip After cluster flip

Figure 3-2: A typical cluster flip in the discrete-time algorithm, starting from the
configuration in Fig. 3-1. The dark (light) circles are spin up (down). The thick gray
line denotes a cluster which is then flipped. Note that adjacent spins in the cluster
are oppositely oriented exactly when they’re spatial neighbors, and that the cluster
reverses time direction at each of those jumps.

3.5 Generalization to Continuous Time

Beard and Wiese[6] noted that these cluster rules can be generalized to the time
continuum limit. The crucial observation is that the probability for continuation in
time (i.e., following a time line of constant spin) is of order 1, whereas the proba-
bility to jump (“decay”) to an available (i.e. oppositely-oriented) neighboring spin
is of order e¢. Considering the limit of a large number N;—o00 of time slices, the de-
cay probability per unit time becomes A = lim._,o(1 — P)/e = J/2. Whereas the
discrete-time algorithm alternates plaquettes that connect a given spin with each of
its neighbors, as ¢-—+0 each spin can interact with its neighbors simultaneously. Thus,
at any given instant in Euclidean time, there is a decay probability A for a cluster
to jump from its current spin to each of the available neighboring spins; this is the
continuum version of the probabilistic choice depicted in the third row of Table 3.1.
The total probability per unit time that the cluster will jump sites is proportional to
the number of available neighboring spins at any given instant. By construction, the

cluster rules are memory-less (i.e., the probability of a decay in a given “optional”
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plaquette is independent of what the cluster did before). In this continuous-time
version, then, the decays from a given spin during a finite period of time are given
by a Poisson distribution, and the length of time from any arbitrary instant to the
next decay at that spin is given by the first order interarrival time probability density
function for the Poisson distribution— the exponential function with decay constant
)\ = J/2 per available neighboring spin. Figure 3-3 shows an example of a cluster

flip in continuous time.

—_—

X X
Before cluster flip After cluster flip

Figure 3-3: A typical cluster flip in the continuous-time algorithm. The dark (light)
lines are spin up (down). The thick gray line denotes a cluster which is then flipped.
This is the continuous-time version of the example in Fig. 3-2.

There are two main advantages to the continuous-time formulation of the AFHM
simulations. The first is that there is no need to repcat the simulations at larger and
larger Trotter number in order to approach the time continuum limit. One works
directly in the continuum instead. The second advantage is that it is much more
efficient (if complicated) to store the continuous-time simulation on the computer
than the discrete-time. For the discrete-time formulation, one needs to keep track of
the state of the system at V' N; sites, as N;—o0. In the continuous-time formulation,
one only needs to store the V initial spin states, and the transition times at cach

site. This is a monumental savings in memory requirements— one does not store
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redundant information about spin states that are constant in time.

3.6 Higher Spin Code

The above algorithms, both for discrete and continuous time, may be generalized to
higher-spin representations S. A priori, it is not obvious how to do this: after all,
what does it mean to “flip” a spin whose third component vanishes? The fundamental
idea, however, is to couple together 25 spin-% “subspins” at each lattice site. The
resulting reducible representation will include the spin S representation. One then
includes a projector to make sure that only this irreducible representation is sampled,
rather than any of the others present in the tensor product.

Thus, the spin S; at site z becomes the sum of 28 spins—%. In terms of Pauli

matrices at each site,

1
Sz-Sy = §(Uz,1 +"'+U$725)

1
5 (oy1 + o+ 0y2s). (3.10)

The spin-S Hamiltonian then has a similar form as before,

H = J> S8,

<xY>
J
= 2 ot Houas]-[oya 4 ot o] (3.11)
<zy>
J
= Z [ Uz,l'ay,1+am,1'ay,2+---

-+ T2 Oy1 + Tz2 " Oy2 + ...

¥ ]

which is nothing other than a sum of spin-1/2 interactions. Thus, each of the “sub-
spins” or “layers” at each lattice site has the same basic S = 1/2 antiferromagnetic

interaction with every single subspin at each neighboring site (but not at its own site).
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Hence, upon Trotterization, the transfer matrices will have the same form as for the
S = 1/2 Hamiltonian and one may use the same cluster rules as for spin-1/2. Note
that since the subspins still interact between different lattice sites, the arguments
based on the stagger factor on the lattice are still valid: we can still rotate every
other site by 7 around the z axis to obtain a non-negative transfer matrix among the
subspins, and eq. (3.9) still holds for any pair of spins in the cluster. In essence, the
only difference caused by the introduction of the subspins is to make the topology of
the cluster more complicated, while the microscopic rules remain the same.

Since the spin-S Hamiltonian commutes with the spin-S projection operators
Ps(x) at each site z, one can insert a lattice projector Ps = [, Ps(x) at some fixed
time slice in the path integral to ensure that the coupling among the spin—% objects
does not take the system out of the spin-S sector. The complete partition function
can then be written as Z = Tr[e *HPg].

The projection operator P, at a single site  is a 2°° x 229 matrix. The transfer

matrix elements depend on the states of the 45 spins 1/2 involved:

(Si(t = 07)|PISi(t = 0%)) = [ [ Palen(2,07), ..., 025(x,07), 04(2,0%), ..., 025(2,0")]..

(3.12)
It turns out that the elements of the projection operator only depend on the total
spin S and the projection of spin onto the 3-axis, t.e. on M = Y .m;. In terms of

the I = 25 subspins, the state with highest projection can be written

l l

=)=

IS_E’ 2

Using the lowering operator repeatedly, we obtain, on the left,

[ l k! l {
= — M==)= [ = _ = _ —k
=9 2> \ (l—k)!}s M =3 >

38



and on the right,
(S_)k 41 o) = Zk‘!lp {1 =k Fhp1 o Fas))
P

where the sum is over every permutation P of kets with exactly & down spins. The
k! prefactor comes from all the possible sequences in which any particular set of k

spins can be lowered. It then follows that

! ! I— k)k!2
S:E,Affzi—k>= [%] ;|P{—1"'—k+k+1"'+25}>

whence the projector is given by

(Pimo- {—1" =k Frt1 - Fast [Ps| Proor {—1 - —% +o1 -~ +as}) =
(Ptzo— {—1 i —k +k+1"'+25}|5 = 1/2,M =l/2—k) .
<S=l/2,M = l/2— klpt:0+ {—1"‘—k +1\;+1"'+25}> =

(1= B)Ik!
l! ’
that is,
’ Sprmr
(MI[Pe| M) = =~ (3.13)
sot)

The projection-operator plaquettes in discrete time couple 2S5 subspins at time
t = 0~ at site x with 25 subspins at time ¢t = 0% at the same site z. Because of
the presence of dprasr in the projection operator, non-zero-weight configurations must
have the same number of “up” subspins at ¢ = 0~ and ¢ = 0%. Let Ny (= 25 — k) be
the number of “up” subspins at either time, and Np (= k) be the number of “down”
subspins. Since Ny + Np = 25 and (Ny — Np)/2 = M, we have Ny = S+ M and
Np=§S-M.

A simple flow rule that satisfies detailed balance is this: if the flow enters at an
“up” subspin at ¢ = 07, then it must exit at one of the Ny “up” subspins at ¢ = 0,

selected randomly with equal probabilities 1/Ny. Similarly, if the flow enters at a
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Figure 3-4: A typical mapping for a projection operator plaquette for an S = 5/2
system. Here three up subspins are depicted with solid circles, and two down subspins
by open circles. Flow rules combine like subspins with equal weight (1/Ny for up and
1/Np for down). This particular wiring has the same probability as each of the
312! = 12 similar wirings.

“down” subspin at ¢ = 0, then it must exit at one of the Np “down” subspins at
t = 07, selected randomly with equal probability 1/Np. By pairing “up” subspins
with “up” subspins and “down” with “down”, flipping a cluster always results in
another legal plaquette configuration. If a cluster visits the same projector plaquette
multiple times, say by returning to a second “up” site at ¢t = 0~, then we demand
the path be self-avoiding and the random pick must be among the remaining Ny — 1
“up” subspins at ¢ = 0. Note that we are thus able to preserve compatibility with the
rule that the cluster grows in opposite time directions at “up” and “down” sites. To
save a small amount of computational overhead, we can choose the “wiring” of the
plaquette all at once on the first visit by selecting at random from among the Ny!Np!
different ways of mapping “up” to “up” and “down” to “down”. Fig. 3-4 shows such
a wiring choice for an S = 5/2 projector with Ny = 3 and Np = 2.

To demonstrate detailed balance for these flow rules, we need to establish

W(lohp([6] = [#]) = W([¢T)p([¢] — [¢]), (3.14)
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where the [¢] are the various cases of 45-spin arrangements. Consider some ar-
rangement A with Ny “up” subspins. According to eq. (3.13), this arrangement has

Boltzmann weight
1 1 . IVU!N D!

By e

(where the last equality trivially follows from Ny + Np = 25). Assume the cluster

W(A) =

¢

enters at ¢ = 0~ on an “up” subspin. The probability of selecting a particular “up”

spin at ¢ = 0% is p(A — B) = 1/Ny. Flipping this loop will result in a particular

configuration B with one fewer “up” spin and one more “down” spin,
N{; =Ny —1,Np'=Np+1. (3.15)

This configuration will have weight

Ny'INp"
W(B) = ﬁ

The probability for the reverse transformation, given that the flow enters at the

appropriate “down” subspin at ¢t = 0, is p(B — A) = 1/Np'. Hence we need merely
NU!ND! L - NU’!JVD’! 1
(25)! Ny ) (25)! Np'

(Ny — DINp! = Ny/{(Np' = 1)!

verify

Cancellations give

But this is automatically true by virtue of the equalities in eq. (3.15). By this and
identical arguments for other cases we thus show that these rules satisfy detailed
balance.

In summary, then, the cluster rules for the higher spin AFHM are the same as for

the spin-1 model, with two modifications:

e The topology is more complicated, since all the spin-1/2 objects at one site

interact with all of their counterparts at neighboring sites.
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e The projector inserts an additional interaction, which for convenience we

implement at time t =07,

The continuous time generalization of the spin-1 /2 rules still applies, and the projec-
tor, which in the discrete-time case acts only during one time slice, now induces an
“instantaneous’ interaction at an arbitrary point in the time continuum (which we

choose to be t = 07).

3.7 Improved Estimators

Cluster algorithms often permit the use of improved estimators, expressions that
can yield thermodynamic averages with a smaller variance than naive measurements
would suggest. An improved estimator Oimpr 18 a weighed average of an observable O
over all the configurations [¢'] reachable from the current configuration [¢] by means

of cluster flips:

Oumnpe = »_ 2 ({¢][¢']) O[¢']. (3.16)
(¢']

In the case of a multi-cluster algorithm, where each of the n, clusters is flipped with

probability 1/2, this simplifies to

Opr = 27> Ol9]. (3.17)

[¢']
As an example of improved estimators[59], consider the staggered spin correlation
function (——1)"’”'1‘| <S§ . S;) between sites ¢ and y on the lattice, from which function
one can extract the correlation length £ used for the data analysis in Chapter 4. If

the two spins are in the same cluster, in any of the configurations [¢'], (SZ - .f’:’;j)impr
Sz Sz If the two spins are in different clusters, they give a contribution of —S53 - 57
if exactly one of two clusters is flipped, and +S5Z - SZ otherwise. In a multi-cluster
algorithm where each cluster is flipped with probability 1 /2, this directly leads to the

improved estimator
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Oimpr -

0

S; -8, if z and y in the same cluster

(3.18)
otherwise.

[Recall that the cluster rules in Table 3.1 lead to the stagger relation, eq. (3.9)] The

advantage of using an improved estimator is then obvious: suppose <S§ . SZ) < 1,

as in the exponential tail of a correlation function. Then the variance in the naive

estimator is <(S;" : Sj)2> - <5§

the improved estimator is

(S S5 = (55

2\ 2 z
Sy>impr = <SI

'5§>2 =1- <5§ . 5;>2 ~ 1, whereas the variance of

Sf'j)impr - <S; ' S§>i2mpr
(Sz-85), =(8i-S) <« 1.

Y >impr

Q

(3.19)
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Chapter 4

Results: Fits Compared with

Experiment and Theory

We have obtained simulation data for the full range of spins S < 5/2. The S =1/2
data were obtained by Beard and Wiese[6] using the quantum cluster algorithm, while
higher spin data were obtained using both the continuous-time, higher spin cluster
algorithm (“LATTHS”) described in the previous chapter and the “VLC” algorithm,
a higher-spin, discrete time loop cluster algorithm based on a method proposed by
Kawashima and Gubernatis[60, 61] and implemented by P. Keller-Marxer. Details of
the VLC algorithm may be found in [17, 62]. Results from these two independent
codes were cross-checked and agree for all spins within statistical errors, giving a high
degree of confidence to our calculations.

Figure 4-1 shows the QMC data for the full range of spins S < 5/2, plotted on a
“Memphis chart,” with £(¢) normalized by the leading (2-loop) term (e/8)(c/2mp;)-
exp(1/t) and plotted against the dimensionless CPT expansion parameter ¢ = T'/2m p,.
The QMC data[63] in the figure cover the ranges £/a ~ 3 up to a maximum &/a of
350,000 for S = 1/2; 160,000 for S = 1; 600,000 for S = 3/2; 190,000 for S = 2;
and 135,000 for S = 5/2. Additional data for extremely large £/a = 10° — 10% and
extremely small £/a = 0.1 — 3 are discussed in Sec. 4.2.2.

In Figure 4-1, the predictions CH3N,B, eq. (2.10), are the solid curves y =
exp(—C(M)[1 — t/2 + (27/32)#%], plotted for &/a > 3 which satisfies the validity
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Figure 4-1: Memphis chart for the AFHM. Correlation length QMC data
and theoretical predictions are normalized by the leading (2-loop) prediction
(e/8)(c/2mps) exp(1/t). Solid lines are the CH3N.B predictions, eq. (2.10). The
dashed line is the spin-independent “no cutoff effects” prediction CH,Ns, eq. (2.7).
Filled (open) symbols are from the LATTHS (VLC) algorithm. The QMC data
smoothly merge into CH3N,B at low temperatures.

criteria, eqs. 2.8. The “no cutoff effects” prediction CH,N,, eq. (2.7), is the dashed
line y = 1 —¢/2, and does not depend on spin. The regimes where the QMC data
approach the cutoff corrected prediction CH3;N,B are {/a = 10 for § = 1/2, and
&/a = O(100) for all § > 1/2.

Asymptotic scaling (with the 3-loop S-function of the 2-d O(3) model) sets in
when the next-to-leading O(T?) correction in eq. (2.7) becomes much smaller than
the O(T) correction t/2. As mentioned previously, the factor exp(—C(7)) for T — 0
merges with the O(T?) correction (due to C(y — oc) ~ v~2). Therefore, roughly
speaking, asymptotic scaling sets in at a temperature t5g where the vertical distance

between CH3N; and CH;3;N;B (in the Memphis chart) becomes much smaller than
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the vertical distance between CH,;N, and the line of unity. If “much smaller” is
taken to mean “by at least one order”, then this happens for S = 1/2 at £/a &~ 10°
(tas ~ 0.08). However, the deviations from CH;3N; are always rather small compared
to the 3-loop correction itself, even at £/a = 100 (tas & 0.18), for example.

The situation appears drastically different for S > 1/2. One can easily estimate
tas from CH3NoB. The O(T?) corrections for T' — 0 are still half of the leading-order
correction /2 at £/a = 10'% (t = 0.035) for S =1, or £/a ~ 10°? (¢ ~ 0.013) for S =
3/2; for a typical atomic scale a, these values are macroscopic lengths of meters and
light years. Asymptotic scaling would set in only at much larger correlation lengths.
But even the above ¢ values correspond to absolute temperatures much below the
Néel-temperatures T > 0 at which long-range order occurs in real antiferromagnets
due to small but nonzero couplings in the third direction. In consequence, real quasi-
two-dimensional S > 1/2 antiferromagnets like La,NiO4 (S = 1) are never in the
regime of renormalized classical scaling. On the other hand, our results definitively
confirm that chiral perturbation theory, corrected for cutoff effects, yields a correct
mapping of the AFHM onto the 2-d O(3) model, and that this description of the
AFHM correlation length holds down to moderate &/a = 100 — 500 for all spins. This

comes pretty close to the regime £/a < 100 accessible in experiments.

Low Energy parameters

To compare £(T) with the field-theoretical predictions, one has to choose values for
the spin stiffness p, and spin-wave velocity c¢. Because CHaNo, eq. (2.7), is an exact
result for T — 0, any candidates for the values of p; and ¢ are disqualified if they
preclude asymptotic scaling of (7" — 0). The S = 1/2 study in Ref. [33] showed that
the third-order spin-wave expansion (SW3) prediction for p, definitely is about 3%
too small, and precludes asymptotic scaling. On the other hand, SWE is an expansion
in powers of 1/5, and should become more accurate rapidly as spin increases. Indeed,
our data recover the SW3 results for p; and ¢ rapidly as the spin S increases. Here

are the results for various spins:

e For the S = 1/2 QMC data, the Memphis chart Fig. 4-1 uses p; = 0.1800(5)J
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and ¢ = 1.657(2)Ja from the QMC study in Ref. [33]. We find that fitting
the data to CH3N,B for S = 1/2 does not change these values. (The SW3
predictions[51, 52, 53] are p™* = 0.1746.J and ¢*** = 1.6680.Ja.) Ref. [33] fitted
to the “no cutoff effects” prediction CH,N,, and required an ot? correction with
a free fit parameter o = —0.75(5) to extend the range of validity from & /a ~ 10°
down to &/a = 100. In contrast, the cutoff-corrected prediction CH3;N,B has
no such ambiguity, and its agreement with QMC down to £/a = 10 (¢ = 0.3)
is striking. (This lower bound of agreement corresponds to 7'/J ~ 6 or an

absolute temperature ~ 600 K for SroCuQ,Cl,.)

For S =1, the QMC data in Fig. 4-1 smoothly merge into the CH3N,B predic-
tion for £/a > 50 (¢ < 0.17) where ¢/T > 3.3a. We find that pS"* = 0.869 and
c*¥? = 3.067 are nearly correct. Figure 4-1 uses our result from a two-parameter
fit, namely p,/pi™* = 1.005(3) and ¢/c>"* = 0.98(2). These ratios correspond to
ps = 0.8733(23)J and ¢ = 3.01(6)Ja. The fit includes all data with £/a > 100
(t < 0.15) in Figure 4-1, and has an excellent x2/d.o.f. = 1.085 with 58 degrees
of freedom (which corresponds to a confidence level P = 69.5%). The relative
deviations of these fit results from SW3 are small, namely 0.5(3)% for p, and
—2(2)% for c. However, this near overlap is deceptive, and in fact is seriously
significant due to the high correlation between the fit parameters: compared to
the two-parameter fit, SW3 values yield an unacceptable Ax? = +20.2. This

situation is described in Section 4.1 below.

For the S > 1 data, we could not identify any deviation from the SW3 values,
and these were used in Figure 4-1. Agreement of QMC with CH3;N,B with good
P < 80% starts at £/a > 200 (t < 0.17) for S = 3/2, £/a 2 400 (t < 0.1) for
S =2,and §/a Z 600 (t < 0.1) for 5/2. We could also perform a two-parameter
fit for S = 3/2 which is in agreement with the SW3 values. For S = 2 and 5/2,
however, we have not generated enough data points for stable two-parameter
fits to fix the lower bound of agreement with CH3N;B more accurately. (In

these fits, the correlation coefficient for p; and ¢ is r & —0.997.)
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The ranges of agreement and the corresponding x?/d.o.f. values are summarized

for all spins in Table 4.1.
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Significance of the Cutoff Correction

The agreement with CH3N»B in each case degrades above some temperature. This
is to be expected because CH3N,B leaves out higher-order terms from the CPT and
spin-wave expansions. In addition, as explained in the previous section, at high
temperatures the field-theoretical requirements, eqs.(2.8), are no longer satisfied. The
regimes where the residual discrepancies between S > 1/2 QMC and CH3N,B appear
is rather close to these limitations.

However, the calculation of the cutoff correction exp(—C(v)) by Hasenfratz[38]
was performed only in bilinear (first-order) spin-wave expansion. It is interesting
to ask whether the description in the regime of degradation could be improved by
higher-order corrections in the SWE calculation and in the CPT expansion. (The
latter will introduce new, unknown coupling parameters.)

From our § = 5/2 data we can make a statement about this question. In Figure 4-
2 we plot the ratio of £€/a to CH3N3B versus 1/logy(£/a) for S = 1/2, 1, 5/2, and
o0o. For § — oo, the AFHM becomes the standard lattice-regularized 2-d nearest-
neighbor O(3) model with bare coupling go = JS5?/T. The asymptotics of C() for
large spin and p, >»> T > ¢/a (“classical scaling regime”) follows from vy = 2JS/T ~
(¢/a){1+0O(1/8))/T, and is found[38] to be C(y — 0) ~ 7/2+1n8+ O(y). Plugging
this into the CH;N,B formula, eq. (2.10), yields the known[64, 65] result for the lattice
0(3) model,

1 exp(—n/2) e 1
E fclassical - —(A =1 €xp (%)

V32 8
X [1—%—!—%1&2—{-0(6/?0)] : (4.1)

where p, ~ JS% ~ puas. Thus, CH3N,B smoothly connects the regimes of classical
scaling and renormalized classical scaling (I' < ps). The fact that the correct pref-
actor exp(—m/2)/4/32 comes out of exp(—C/(7)) is a non-trivial check on the cutoff
calculation by Hasenfratz.

Equation (4.1) was used to normalize the S = co data. These are available from
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Figure 4-2: Ratio of correlation length & to CH3N;yB prediction vs. &, for § =
1/2,1,5/2,00. By S = 5/2 the residual deviation essentially reaches the classical
S = oo limit.

analytical calculations(66, 67] (£/a > 10°), Monte Carlo simulation[68, 69] (10 <
&/a < 10°), and series expansion[26] (¢/a < 10) for the O(3) model.

We find that by S = 5/2 the discrepancy between the QMC data and CH3N,B has
already essentially reached the classical limit 5 — co. This gives significance to the
assumption that a higher-order calculation of the cutoff effects would not significantly
contribute to an improvement. Furthermore, it shows that the reasons for the residual

discrepancy can be investigated in the O(3) model and are not unique to the quantum

AFHM.

4.1 Fit Details and Constrained Fit for S =1

The fit parameters p, and ¢ are strongly anticorrelated, with correlation coefficient

r = —0.977, and thus have large uncertainties with nearly degenerate confidence
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ellipses. The S = 1/2 QMC study by Beard and Wiese [33] combined the correlation
length data fit to the “no cutoff effects” prediction CHsNs, eq. (2.7), with a fit of
finite-volume magnetic susceptibilities[41, 6] to the predictions of CPT for the finite-
size and temperature effects in the AFHM[30, 31]. The specific appearance of p; and
¢ in the susceptibilities leads to a strong positive correlation in the fits, so that a
combination of both data fits yields a very high precision. This is much more efficient
than calculating a lot of correlation length data for a single fit.

For the present analysis, we have chosen a different approach which involves only
the correlation length. Rather than achieving a high fit precision, we merely want to
show that for S > 1 one can directly rely on the SW3 predictions[51, 52, 53] to see
a consistent connection between the QMC data and CH3N,B, that is, an agreement
with good confidence levels from the x?/d.o.f. values when using SW3 predictions.
This is indeed the case for S > 1 as our results in Table 4.1 show.

The S = 1 case remains somewhat subtle. The results of the free two-parameter
fit quoted above yield a near overlap with the SW3 results, namely p;/p3"* = 1.005(3)
and ¢/c** = 0.98(2). But this is deceptive since the SW3 values yield x?/60 = 1.39,
that is, a poor fit with P = 97.5%. Furthermore, SW3 values yield Ax? = +20.2
compared to the two-parameter fit, which is outside the 99.99% confidence region.
The situation is shown in Figure 4-3, where we plot the deviations Ap,/pi"* and
Ac/c®™* on the z- and y-axis, respectively, with Ap, = (p,—pi™*) and Ac = (c—c"?).
The result of the two-parameter fit (with one standard deviation error bars) is shown
together with its P=68.3% joint probability distribution confidence ellipse which has
Ax? = 4+2.30. (The SW3 result has Ax* = +20.2.)

Interestingly, the major axis of the nearly degenerate confidence ellipse is almost
orthogonal to the curves of constant ratio @ = p,/c?. In particular, the specific
curve ps/c® = 65%* intersects this confidence ellipse. In other words, this 68.3%
confidence region contains (ps,c) values which are consistent with § = 9°%°. We
are thus motivated to check how close to p"* and c¢®"° the corresponding single-
parameter-fit values could in fact be.

To do this, we set g—; = 637} = 0.09238 and performed a fit with the same set of
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Figure 4-3: Two- and one-parameter fits for S = 1. The 68.3% confidence ellipse of
the joint probability distribution of the free fit intersects the curve § = 5% The
result of 3rd order spin-wave expansion (SW3) has Ax? = +20 compared to fits.

5 =1 QMC data, but constrained it to the one-dimensional parameter subspace p, =
§5%*c?. As an upper bound for the error associated with the hypothesis §g-; = 5%,
we took from Ref. 33] the 4.4% deviation between 633 2 = 0.06277 and that study’s
result 851/ = 0.06556. This choice is conservative since SWE is an expansion in
powers of 1/S, and is expected to become more accurate as spin increases.

Upon refitting, we found p,/p$™ = 1.0024(27), ¢/c** = 1.001(21), and X%/59 =
1.083 (P = 69.2%). These ratios correspond to p; = 0.8711(24) and ¢ = 3.07(6).
(The difference between the one- and two-parameter fits would not be visible in the
Memphis chart, Fig. 4-1.) By definition, this point lies on the curve Ac/ctW =
(Aps/pE™® + 1)1/2 — 1 which goes through the origin Ac = Ap, = 0.

Note that this is a methodological issue. In principle, the results of the constrained
one-parameter and the free two-parameter fits cannot be distinguished statistically

since the former has x?/58 = 1.085 (P = 69.5%), while the latter has x%/59 =
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1.083 (P = 69.2%). The difference is only Ax? = 40.97 <« +2.30. Also note
that in the constrained fit the assumed (systematic) 4.4% uncertainty in #g—; is a
conservative upper bound. It does not influence the fit results for p, and ¢ but
completely dominates their errors. But the actual errors are supposed to be much
smaller, thus the result p,/pS"® = 1.0024(27) is not superior to the free fit result
1.005(3). However, the methodical significance of the constrained fit is that one can
use a result from SW3 for § = 1 too, namely the ratio %%, yielding a best fit result
(ps,c) very close to the SW3 results for the single parameters. This is not obvious,

and it is not possible for S = 1/2. The result reflects that nothing stands against the

SW3

5%, This can be pinned down

hypothesis that the true p, 1s indeed very close to p
only by using an independent fit result for # to break the strong anticorrelation of
the fit parameter in the correlation length fit; the finite-volume susceptibility data fit

to CPT predictions is a good method[62] to obtain an independent estimate for 6.

4.2 Finite-Size Scaling of the Correlation Length

The asymptotic field-theoretical prediction CH2Ny, eq. (2.7), refers to infinite vol-
ume. Even with very efficient Monte Carlo algorithms, however, lattices larger than
L/a = O(100) are computationally prohibitive. In order to extrapolate the finite-L
correlation length to infinite volume, we used finite-size scaling techniques on our raw
QMC data to obtain the results quoted above.

Finite-size scaling is based on the observation that £(L) of a system with periodic
boundary conditions and spatial size L x L is a universal function f¢ of £{(00)/L,

L) _ fe (5_(%0_)) . (4.2)

Similar finite-size scaling methods based on (4.2) where used by Kim[70] and Caracci-
olo et al.[68] to test asymptotic scaling of the correlation length with the bare coupling

constant in the 2-d nearest-neighbor lattice O(3) model. Caracciolo et al.[68] used
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the ansatz

B

The universal function Fy was determined by Caracciolo et al[68] numerically very

Y _p (40,

(4.3)

precisely from their O(3) model Monte Carlo data. Finite-volume (L) can then be
extrapolated to infinite volume by iteration of (4.3), causing an extrapolation error
of only a few percent even if £(o0) is 1000 times larger than the lattice size L. We
will use the mnemonic “CEFPS” to refer to this method.

As explained in Sec. 2.1, the d = 241 AFHM at low temperatures becomes the
d = 2 O(3) model due to dimensional reduction £ > ¢8. Both models are assumed
to be in the same universality class, and one may utilize the CEFPS technique for
AFHM finite-size scaling too. This was first done in Ref. [33] for the § = 1/2 case,
and we use exactly the same technique in the present paper. We emphasize that Fy
assumes universal behavior, that is scaling, not asymptotic scaling, and thus yields
&(L — oc) without bias.

We verified the validity of the O(3) model scaling (4.3) for the AFHM for all § <
5/2. Our results[63] are shown in Figure 4-4, where the ratio £(2L, T, S)/¢(L, T, S)
and CEFPS F; are plotted versus £(L)/L for a broad range of L/a > 10 and T/J
values. Even for lattice sizes as small as L/a =~ 10 we could not observe any scaling
violations on our level of precision, which is ~ 0.2% for £(L), including the auto-
correlation error induced by the Markov chain of the Monte-Carlo simulation (see

Sec. 4.3). Also shown in Figure 4-4 is the perturbative prediction[68]

In2 4In2+16Y\ [ In2 \?
PT __ _ -6
=2 ( 51100 )( ) +0(z7), (4.4)

A2 272

which is valid for z = ¢(L)/L > 1.

However, recovering the O(3) model scaling in the AFHM is not as straightforward
as Figure 4-4 implies. As mentioned, dimensional reduction is the key observation
for both the mapping of the AFHM onto the 2-d O(3) model and the application of
CEFPS scaling for the AFHM. In simulation practice one has the limitation £(L) =
O(L), and therefore encounters the situation £(L) = kecB where k¢ is a (1) or ©(10)
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Figure 4-4: Universal scaling in the AFHM. The time-averaged correlation length
(TACL) for 8 = 1 (open circles), 3/2 (squares), 2 (diamonds), and 5/2 (triangles)
for various lattice sizes 10 < L < 180 and temperatures (not distinguished) agrees
well with the universal scaling function (CEFPS, solid line) of the O(3) model, while
the equal-time correlation length (ETCL, solid circles, only § = 1 shown) has large
scaling violations. The figure contains 119 TACL points (94 from the discrete-time,
25 from the continuous-time algorithm).

number, even though £(co) > ¢/T is exponentially large. It seems unjustified to use
CEFPS scaling then. In fact, our results show that (L) > ¢4 (with £(00) > cB) is
not a controllable criterion which allows us to recover CEFPS scaling with a usual

correlation length definition based on the equal-time two-point correlator.

4.2.1 Time-averaged vs. equal-time correlation length

To obtain correlation lengths, it is conventional to use the spatial static structure

factor function S(q), which is nothing other than the Fourier transform of the equal-
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time two-point correlatoy C(r) = (SeS;) On the lattice, this function takes the form
S(a) = 3 expliar)Cpr),

at lattice Brillouin zope wave vector q. If the structure factor peak S(Q) occurs at

the vector Q of tota] ordering, the second-moment correlation length g

, L 5(Q) 27\?
Oy = %1/5\\@”%0)) —1+o(7;) , (4.5)

When the correlation function containg only one mode, ' (ry=4 cosh( “'”"&L 2) around

Q = 0, this second moment formula retyrng € exactly. This is the definition used by
Caracciolo et al.[71] for the 9-d O(3) model (where Q= (0,0)).

Definition eq. (4.5) is directly applicable for the quantum AFHM where Q =
(7, 7)/a, and 5(0) and S(Q) are the averages of the squared tota] uniform and stag-
gered magnetization operators, respectively. We use the names “equal-time correla.
tion function” (ETCF) and “equal-time correlatiop length” (ETCL) to refer to the
static quantities C(r) and EQ(L) defined according to (4.5) in the quantum mode].

Previous QMC studies by, for example, Makivi¢ and Ding[72] (§ = 1 /2), Kim and
Troyer[50] ($ = 1 /2), and Harada et g [7] (S=1) used a second-moment correlation
length defined similar to (4.5). These authors did not yge finite-size scaling but
instead increased the lattice size unti] 7, - 6£(L) to force finite-size effects into the
statistical error, Their §/a < 120 results are in excellent agreement with our ETCY,
results. For § — 1/2 and 1 one has ¢/T = 2J/T and ~ 3J/T, respectively. The
temperatures for £/a < 120 are T/J <1, thus ke <3 - 60. Thig may or may not be
a sufficient fulfillment of §> ¢/T for comparison with the field-theoretical prediction

€as = CH,N, and its SUCCessors.

L > 6&(L) lattices is not possible, and one has to obtain large €(o0) from small
(L)< € (00) using finite-size scaling. The iteration of the universal CEFpS scaling

function Fris extremely sensitive to small variations of §(L). Our results clearly show
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that finite-volume ETCL in the AFHM is not the length which scales according to
the universal function Fe. As a matter of fact, there occur large scaling violations
even though &(L = 00) > ¢/T and £(L) > ¢/T (¢/T < L).

Our solution to this problem is the observation that it is not the static structure
factor function S(q) but the magnetic susceptibility function x(q) which enables
universal correlation length scaling in the quantum model. We introduce the parallel
magnetic susceptibility function x/(q) = x{q)/3 as usually defined in the AFHM
from the Gibbs free energy G(T, ) and an external magnetic field A — 0 parallel to

the direction of quantization:

G(T, h)

T Ty {exp (—%(H _ M. (q)))} (4.6)
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x'(q) 02 G(T,h)

h=0

= /D 1/1;17<Mz (a, )M, (q, T)>— %<Mz (a) >2

e MM, (q) e~ ™8 (4.8)

Z exp(igr)S?Z, (4.9)

M, (CL T)
M. (q)

with SZ the third component of the spin operator, and H the AFHM Hamilton op-
erator, eq. (2.1). M = M,(Q) is the total staggered magnetization operator, and
x4 = x(Q) is the parallel staggered susceptibility. The zero-field average of the total
staggered magnetization is zero in finite volume due to the O(3) symmetry, and it
is zero in infinite volume due to the Mermin-Wagner-Coleman theorem[44, 45] which
rules out spontaneous ordering magnetization at 7' > 0 in two dimensions.
Therefore, after replacing S(q) in definition (4.5) by x"(q), we get what we call

the second-moment “time-averaged correlation length” (TACL):

) _ £ X (Q) _ 2m ’

L) = 4 \/x“(QJr(Z—L’f,O)) 1+(’)(L) (4.10)
T

w@ = [T (Mia0 @), (4.11)
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where M, (q, 7) is given by eq. (4.8).

As examples, some S = 1 ETCL ¢&(L) results are contained in Fig. 4-4. The
scaling violations are serious, they become larger for lower temperatures, and they
do not allow for finite size scaling at all. Note that the viclations become smaller
for larger lattice sizes (at fixed T') since £5’(L) can grow compared to the fixed ¢/7T
extent. However, this ‘improvement’ for larger I is not controllable. In contrast,
TACL (¢(L)) scales in excellent agreement with F; even for small lattices L = 10,
and for all temperatures involved in scaling to £/a = 20 — 10°. In our analysis,
we used various lattice sizes L = 10, 16, 20, 32, 40, 64, 128, and 180 to iterate

ST, L = o0) for a fixed temperature T. Within statistical errors, the data points
in such a multiplet are generally consistent.

In conclusion, our observation is that the static susceptibility function x{q) enables
universal second-moment correlation length scaling in the AFHM, while the equal-
time structure factor function S(q) does not. This agrees qualitatively with analytical
considerations[73, 74] which imply that S(q) in the AFHM cannot exhibit universal
scaling behavior. Note that our result shown in Fig. 4-4 is a non-trivial support of
the common assumption that the 2-d O(3) model and the AFHM are in the same
universality class.

We mention an intuitive argument for using the susceptibility function rather
than the static structure function in the definition of the second-moment correlation
length. Equation (4.11) can be easily translated back into the corresponding two-point
correlator, namely G(r,7) = (S(0,0)S(r,7)). The TACL second-moment definition,
eq. (4.10), is nothing else than the standard ETCL definition, eq. (4.5), but with
another two-point correlator which is averaged over the Euclidean-time direction (with
r fixed), namely C(r) =T fol/TdT G(r,7) instead of the equal-time C(r). This is the
origin of the term “time-averaged.” Even for infinite volume, the equal-time two-
point correlator C'(r) contains higher “mass” modes in the Euclidean-time direction.
However, after dimensional reduction, these modes are exponentially suppressed in
infinite volume since £(00) is exponentially large compared to the Euclidean- “time”

extent of the slab, £ > ¢f.
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In finite and small volumes at all temperatures, however, we have (L) ~ ¢/T,
and the higher-mass modes give significant contributions not much above the lowest
mass mode. In fact, it turns out that strictly £2(L) > €5’ (L). In a finite-size scaling
of £2(L), these higher-mass modes are scaled too, though we know that they cannot
play a role in infinite volume. It is therefore reasonable to “wipe” them out of the
correlation function before going into finite size scaling with £(L). Since the system
1s periodic in the Euclidean-time direction, a perfect way to keep only the zero mode
of C(r) = G(r,0) is to average over this direction, thus using C(r) rather than C(r).
This is exactly the same as the replacement of S{q) by x(q) in the ETCL definition
eq. (4.5).

We naturally identify £®(oo) with the physical length scale £, (the inverse mass
gap), which enables us to compare our QMC results directly with the field-theoretical
prediction CH,N, and its successors. However, this identification is not at all obvi-
ous. We merely point out that several results exist for the ratio of both lengths in
the 2-d O(N) model. The large-N expansion[75, 76, 77, 68] gives &.,,/£® ~ 1.0032.
An analytical calculation[78] for the AFHM at low temperatures predicts 1.0035.
Recently([79], the ratio for the O(3) model was calculated numerically very pre-
cisely, £.,/6® = 1.000826(1). All these results are fully close enough to unity to
be completely irrelevant for the purpose of comparing our QMC data with the field-

theoretical predictions derived from the O(3) model.

4.2.2 Extreme correlation lengths

We have also obtained data for extremely large and extremely small correlation
lengths in order to clarify the distinction between TACL and CEFPS further.

In eq. (4.4) we have quoted the perturbative prediction Fg™ for the scaling of
£(L). Although this result is valid for z = £(L)/L > 1, it is extremely close to the
CEFPS function F; already for z = O(1). For z > 0.8, the discrepancy between both
is smaller than 0.1%, and becomes smaller than 0.04% for z > 0.9. Therefore, we
used Ff* to continue the CEFPS prediction to values x < 2.5, and calculated £/a up

to extreme values on the order of 10% — this corresponds to 10** meters for “real”
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materials. We did not include these extreme data into the fits discussed above (which
used £/a < 10%). The results are shown in Figure 4-5, where we plot QMC £(o0) /a
and CH3N,B versus T'/J, using the values for spin stiffness p, and spin-wave velocity
¢ obtained in our fit for § — 1, and the predictions of third-order spin-wave theory
for S > 1. The lattice sizes for the QMC measurements of E(L) were L/a = 16 — 39.
The excellent agreement up to such extreme ¢ (co) is astonishing, and gives further
reliability to our approach of using TACL for scaling. We point out that a systematic
study of the agreement between QMC and F¢T could enable determination of ps and

¢ with a much higher accuracy than we achieved for §/a ~ 10° with CEFPS scaling

alone.
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Figure 4-5: Finite-size scaling to extreme valyes. The &/a > 105 results are from
continuation of CEFPS with the perturbative prediction eq. (4.4) for 1 < (L)L <
2.5 with L/a = 16, 32 for S > I, and L = 16, 20, 32 for S = 1. The CH;3N,B
predictions (solid lines) use SW3 values ps and ¢ for § > 1, and the fit result from
£/a < 10° for § = 1. Open (filled) symbols are from the discrete (continuous)
Euclidean-time algorithm. Good agreement with CH3N,B at these extreme values
implies reliability for the usage of TACL.
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For very small correlation lengths £/a ~ 0.1 — 2, we compared our TACL and
ETCL with high-temperature series expansion[26] (HTE). This, too, is a second-
moment result, and it provides both ETCL and TACL through the series expansion
results for S(q) and x(q). Figure 4-6 shows the results for S =1 with 1 <7T/J < 4
and 10 < ¢/a < 0.5. (Note that we used L > 10&(L), thus these £(L) are infinite-
volume results within the statistical error.) The agreement between HTE and QMC
results is excellent for both TACL and ETCL with T'/J 2 2 (£/a < 2). Note that
¢/T == 3a for S = 1, which means that £/a < ¢/T in this regime of Fig. 4-6, thus
ETCL and TACL cannot be equal even in infinite volume. For only slightly smaller
temperatures in Fig. 4-6, however, they get close (in infinite volume) due to £/a >

c/T.

TACL (This work) HTE-TACL
1.01 % / \
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Figure 4-6: Equal-time (ETCL) and time-averaged (TACL) correlation lengths for
S =1 at £/a < 10, compared with high-temperature series expansion[26] (HTE).
The agreement of QMC-TACL (filled symbols) and QMC-ETCL (open symbols) with
HTE-TACL (dashed line) and HTE-ETCL (dotted line), respectively, is excellent for
T/J > 2 (£/a < 2). Circles (filled squares) are from the discrete (continuous) time
algorithm. Open squares are the QMC-ETCL data from Ref. [7]. HTE-ETCL is
plotted for various Padé approximants.
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4.3 Autocorrelation Errors and Times

The QMC results in this work are from simulation runs with measurement on 10° suc-
cessive loop-cluster updates (“configurations”), after discarding 10 transient states
for thermalization. The lattice sizes were L/a < 180.

All our QMC results have true errors; that is, they include the autocorrelation
error induced by the finite Markov chain of the Monte-Carlo simulation. The inte-
grated autocorrelation times for the observables were determined for both algorithms
to be 7.4 ~ 1.18(5) measurements, where A stands for £g(L), &7(L), S(q), and y(q).
(74 = 1 means no autocorrelation.) The 74 turned out to be essentially independent
of temperature, lattice size, and spin magnitude.

The VLC data include the individual autocorrelation errors for each data point,
while the LATTHS data use an overall estimate 7. = 1.15, by which the naive variance

2 we = (A% —(A)? is increased, and the true error is calculated as Grrye = +/Tac Tnajve-

o}

We use the standard techniques and definitions of time-series analysis[80, 81, 82,
83, 84, 85, 86] to estimate the true variance Var[Ay| of the unbiased average Ay
and the integrated autocorrelation time 7.4 of the observable 4 from a sequence of N
successive measurements A,, n =0,1,..., N — 1. A Monte Carlo simulation of our

type is (after equilibration) an ergodic, irreducible, homogeneous Markov chain, that

is, a covariance-stationary stochastic process with

) 1 N-1 o
Var[Ayx] = N [7,4(0) +2 ; (1 — ﬁ) 'yA(n)} (4.12)
where v4(n) = (4oA,) — (A)? is the autocovariance function of the observable.

Introducing the autocorrelation function p4(n) = va(n)/v4(0), we have

man =N~ o =142 n\; (1= %) paln) . (4.13)

TA,N 18 the correct statistical measure of the autocorrelation error in the finite time-

series. (Note that pa(n) > 0 in a stationary ergodic Markov chain[86].) For N — oo,
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the Cesaro sum in eq. (4.13) reduces to a normal sum, and 74 y becomes the exact
integrated autocorrelation time, 74 = limy 00 74 n. For finite N >> 1 (and N > 74),
one has the good approximation 74 = 74 5 + O(1/N).

We have used these formulas together with the well-known “blocking” method[87]
to cross-check our estimates for Var[Ay] to calculate the true variances and autocor-
relation times in our QMC simulation with a precision (“error of error”) better than
2%. Both of our algorithms eliminate critical slowing down, and have 74 < 2 for all
single loop-cluster improved estimators, independent of temperature, lattice size, and

spin magnitude.

4.4 Comparison with Other Approaches

Figure 4-7 compares the S = 1 and 5/2 QMC £/a data from Figure 4-1 with exper-
imental measurements, high-temperature series expansion|[26] (HTE), and the semi-
classical “pure-quantum self-consistent harmonic approximation” (PQSCHA)[37]. The
experimental data is from neutron scattering[34, 36] on LaoNiOy (S =1, £/a = 2—-30)
and RbyMnF, (§ =5/2, £/a = 2 — 100).

For both spins there exist intermediate regimes between moderate £/a ~ 100,
where CH3N,B starts to deviate, and £/a ~ 10 where HTE starts to fail. These
regimes are 4 < &/a < 100 (0.10 £ ¢ £ 0.15) for S = 1, and 12 £ &/a < 500
(0.10 £t £ 0.15) for S = 5/2. Most of the experimental data fall into these “gaps”.
At least for large spin S = 5/2, this intermediate regime is correctly described by
PQSCHA. (For S = 1, PQSCHA is less satisfying but still catches the correct order.)
The diverse approaches collectively describe the S > 1/2 correlation length from
extremely small to extremely large values. Our QMC data connects the regimes
where the diverse approaches are valid. They are seen to be complementary, and are

thereby reconciled.
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Figure 4-7: Memphis chart for S =1 and 5/2. The QMC data (open circles) connect
the regimes where the various methods apply: CH3N;B (solid line); PQSCHA (dashed
line); high-temperature expansion (dotted line); and experiment (solid circles).
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Chapter 5

Unified Models for

Superconductors

Understanding QCD at non-zero baryon chemical potential u is very important in the
context of both heavy ion and neutron star physics. While asymptotically large values
of p are accessible in perturbative QCD calculations, such values are not realized in
actual physical systems. Investigations of the phenomenologically relevant regime
at intermediate p require the use of nonperturbative methods. Unfortunately, first-
principles lattice calculations in this regime are presently prevented by the notorious
complex action problem. Conjectures for the QCD phase diagram at non-zero u are
thus based on model calculations. These calculations reveal interesting phenomena
such as color superconductivity [88, 89, 90] but one cannot expect the results to be
quantitatively correct.

While it is very important to develop quantitative methods to understand QCD
at non-zero u, the purpose of this project is to gain further insight through analo-
gies with related condensed matter systems. In particular, the phase diagram of
high-temperature cuprate superconductors is qualitatively similar to the one conjec-
tured for two flavor QCD. The ordinary hadronic phase of QCD at small g in which
the chiral SO(4) = SU(2)p ® SU(2)g symmetry is spontaneously broken down to
SO(3) = SU(2)—g corresponds to the antiferromagnetic Néel phase of the undoped

cuprates in which the SQ(3), spin rotational symmetry is broken down to SO(2), due
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to the spontaneous generation of a staggered magnetization. The high-temperature
superconducting phase of the doped cuprates with spontaneous U(1).,, breaking cor-
responds to the color superconducting phase of two flavor QCD in which the SU(3),
gauge symmetry is expected to break down to SU(2).. Finally, the quark-gluon

plasma corresponds to the high-temperature metallic phase of the cuprates.

5.1 Background: The Antiferromagnet and High-
Temperature Superconductors

QCD in the color superconducting phase is a genuine high-temperature supercon-
ductor. The mechanism that leads to quark Cooper pair binding is direct one-gluon
exchange in the attractive color anti-triplet channel. This is in contrast to ordinary
(low-temperature) superconductors in which the direct electron-electron Coulomb
interaction (mediated by one-photon exchange) is repulsive. Ordinary superconduc-
tivity is due to an indirect phonon-mediated attraction which occurs at rather low
energies and thus gives rise to small transition temperatures. The mechanism that
leads to high-temperature superconductivity in the cuprates is presently not under-
stood, but is expected to be due to processes that happen at a rather high energy
scale unrelated to phonon exchange. Both in the cuprates and in QCD the phase
transition that separates the phases of broken global and local symmetries is driven
by a chemical potential (for electrons and quarks, respectively).

Furthermore, the solution of microscopic models for the cuprates (such as the
Hubbard model) is prevented by a severe sign problem. Still, there are interesting
attempts to understand superconductivity in the cuprates in analogy to simpler con-
densed matter systems. In particular, Zhang has conjectured that a transition that
separates the antiferromagnetic Néel phase from the high-temperature superconduct-
ing phase is analogous to the spin flop transition of the staggered magnetization in a
3-d anisotropic antiferromagnet [15]. This transition is driven by an external uniform

magnetic field B which plays the role of a chemical potential. Due to the anisotropy,
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such an antiferromagnet has only a Z ® SO(2), (not the fu]] 50(3),) spin rotational
symmetry. At small B, the staggered magnetization n = (1, n2,m3) points along the
easy 3-axis, while at large B it flops into the 12-plane. The spin flop transition is

illustrated in Fig. 5-1. The flop transition is a first order phase transition Jine that

1

1

| easy 3-axig
i

1

1

12-plane

Figure 5-1: The spin flop transition of an anisotropic antiferromagnet in a magnetic
field B. For B < B, the staggered magnetization vector n points along the easy
3-axis, and for B > B, it flops into the 12-plane.

point the Z, ® SO(2), Symmetry is dynamically enhanced to SO(3), [91].

Zhang has argued that 4 similar type of Symmetry unification may occur for high-
temperature superconductors [15]. He combined the 3-component staggered mag-
netization and the 2-component Cooper pair condensate to an SO(5) “superspin”
vector n = (ny, ny, 73,M4,15). In the SO(5) theory the transition between the antj-
ferromagnetic Néel phase and the high-temperature Superconducting phase is a first
order superspin flop transition. At small doping (small 1) the Superspin lies in the
S0(3),/S0(2), = 52 easy sphere describing the staggered magnetization vector. At
larger y the superspin flops into the {7 (Den = S? plane now describing the Cooper
pair condensate, The superspin flop transition is expected to end in a bicritical point
from which two second order lines emerge — one in the 3-d Heisenberg and one in
the 3-d XY universality class. Zbang has argued that the bicritical point has a dy-

namically enhanced S0(5) Symmetry although the microscopic Hamiltonian js only
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SO(3); ® U(1)em invariant. The expected phase diagram of an SO(N) ® SO(M)
invariant theory with potential dynamical symmetry enhancement to SO(N + M) is
shown in Fig. 5-2. For the cuprates N = 2 and M = 3, while for anisotropic anti-
ferromagnets N = 2 and M = 1. As we will see next, for QCD N = 6 and M = 4.

=~ SO(N) x SO(M)

~
“a Symmetric Phase

SO(N) x SOM) ¥
Ay
SON)XSO(M-1) V==~ =o_
1 ,’ .
‘1 somN) x soM
(yer The) P ( )f M)

SO(N+M) SO(N-1) x SO(M)

Figure 3-2: Expected phase diagram of an SO(N) ® SO(M) invariant theory with
potential dynamical symmetry enhancement to SO(N + M). The first order flop
transition (solid) line ends in a bicritical point (T}, t.). Two second order (dashed)
lines emerge vertically from this point.

5.2 Unifying Color Superconductivity and Chiral
Symmetry Breaking

Recently, Chandrasekharan and Wiese[92] have generalized the SO(5) unified theory
of high-temperature superconductivity and antiferromagnetism to an SO(10) unified
description of color superconductivity and chiral symmetry breaking in QCD. Al-
though the unifying group is the same as in a grand unified theory, the unification
scale would now be around 10 MeV. They considered left and right-handed quark
fields W and WL® with two flavors f = 1,2 and three colors ¢ = 1,2,3. The chiral
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symmetry breaking order parameter

(T0)s = Fiewy (5.1)

C

is a color singlet, SU(2);, and SU(2)g doublet, with baryon number zero. The color

symmetry breaking order parameter

(D) = > erpbanc(T1%) CUIY, (5.2)
f.g,0,b

on the other hand, is a color anti-triplet, SU(2);, ® SU(2)x singlet, with baryon
number 2/3. Similarly, (¥¥)¢ is a color triplet, SU(2);, ® SU(2)g singlet, with baryon
number —2/3. The group SO(10) contains SU(3). ® SU(2), @ SU(2)p ®U(1)p as a

subgroup. The 10-dimensional vector representation of SO(10) decomposes into
{10} = {1>2a2}0${3)1:1}2/3@{3)171}—2/3> (53)

and thus naturally combines the order parameters for chiral symmetry breaking and

color superconductivity to a 10-component “supervector” n = (n',n?, ..., n'%) with

n® = (VW) + (D),
netd = 4[(TW)° — (VW) ¢ € {1,2,3},
n’ = (TW)! + (TW)*,

n = (T + (T9)?),

_I_

n® = (PT)? — (T0)™,
n'® = —[(TP)H — (TF)?2). (5.4)

In the chirally broken phase at small p the 4-component vector (n”, n® n® n!?)

devel-
ops an expectation value, thus breaking SU(2),®SU(2) g spontaneously to SU(2)=g-
The corresponding Goldstone pions are described by fields in the easy 3-sphere SU(2),®

SU(2)r/SU(2);—r = S* In the color superconducting phase at larger u, on the
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other hand, the 6-component vector (nt,n?, .. n®) gets an expectation value and the
supervector flops into the 5-sphere SU(3)./SU(2), = S5 that describes the quark
Cooper pair condensate. In this case, one would expect that the first order super-
vector flop line ends at a bicritical point with dynamical symmetry enhancement to
SO(10). However, a renormalization group flow analysis shows that both the SO(5)
and SO(10) fixed point are unstable, at least in (4 — ¢) dimensions [92]. The purpose
of this project is to simulate these systems in three dimensions in order to map out
their phase diagram. This is a necessary first step in investigating the detailed nature
of the phase transitions to see whether the perturbative results obtained in (4—¢)

dimensions hold when ¢ = 1.

Figure 5-3: Flop transition in an anisotropic antiferromagnet. The two wings corre-
spond to the square of the staggered magnetization n3 along the 3-axis and ny + ni
in the 12-plane.

To illustrate the dynamics of the flop transition, we now construct a unified low-
energy eflective Lagrangian for the Goldstone modes described by a P (= N+ M )-
component unit, vector n. In the absence of SO(N + M) symmetry breaking terms

(other than the chemical potential), the low-energy effective action takes the form
1/T F2
S[n] = / dt/ds.’E 7[81‘71081'7’&&
0
1
+ 5 (0on® + AT nP) (e + AZ 0], (5.5)
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The chemical potential u couples as an imaginary non-Abelian constant vector po-

tential
Agﬁ _ i)u Z (6a,c6c+N/2,ﬁ _ 5a,c+N/25c,,B) (56)

c=1,..,N/2
in the Euclidean time direction. To account for explicit SO(N + M) breaking to
SO(N)® SO(M) we add a potential term —Vy[(n¥™1)2 + . + (nV+¥)?] 10 the action
that favors the easy (M —1)-sphere. In the case of QCD this leads to chiral symmetry
breaking. The total potential for constant fields n then takes the form

V(n) = *%uz[(n1)2+---+(”N)2]
M ok (VP 57

For pp < p, = W, it is energetically favorable for the supervector to lie in the
ecasy (M — 1)-sphere. For y > (i, on the other hand, the supervector n flops into the
(N — 1}-sphere. In QCD, this induces a first order phase transition from the chirally
broken to the color superconducting phase.

It is interesting to ask if the supervector can play a dynamical role in the real
world. In particular, with the strange quark present, a new color superconducting
phase with color-flavor locking arises [93]. This phase may be analytically connected
to the ordinary hadronic phase [94, 95]. Then there would be no supervector flop
transition. However, when the strange quark is sufficiently heavy, a flop transition

may exist.

5.3 The Model

In order to explore the phase diagrams (that is, the symmetry-breaking patterns) of
all three models— the antiferromagnet, the high-7, superconductor, and the color
superconductor, we employed a simple classical Hamiltonian containing the relevant
symmetries. While such a generic Hamiltonian may be written “from scratch,” it can

also be obtained from the effective action, eq. (5.5). Near the critical points, which
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form the region of interest to us, the correlation length becomes large (&€ > 1/T)
and the system dimensionally reduces. The fields are then essentially constant in the
Buclidean time direction, so the time derivatives 8yn® vanish. The spatial derivatives

are replaced by their lattice approximations

@ _ pa & po 9
o @) () (ML) 22,

a a

so that the kinetic term becomes the nearest-neighbor interaction on the lattice (a
is the lattice spacing, as always). Generalizing the coeficient of the kinetic term to

differ for the first M and the last IV components, one arrives at the Hamiltonian for

the SO(M) ® SO(N) model,

BH = B { Y gm0 -0l 4 gun™ . n(M]

<zy>

o
T

which can be recast in terms of three independent parameters (8', ¢/, i) as

BH = ﬁ’{—— Z [nm-ny+(g'—1)ngN>-n§N)]

<TY>

"y 1ngM>|2} - (5.8)

Note that for ¢’ # 1, the Hamiltonian is explicitly not SO(M + N)-symmetric for
any combination of 8" and 1. An SO(M + N) symmetry, if present, must necessarily

be generated dynamically.
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Chapter 6

Simulating the SO(M) ® SO(N)
Model

To perform the numerical simulations, we used a combination of three algorithms
which jointly provide for ergodicity and detailed balance. The Wolff algorithm is a
classical cluster algorithm that efficiently rotates the spin vectors in R+ but does
not alter the relative length of the two sub-radii. The modified microcanonical
overrelaxation algorithm can sample different distributions of the sub-radii, but it
does not quite satisfy ergodicity. Thus, we also employ a Metropolis step to assure

that we sample the entire radius distribution.

6.1 Wolff Algorithm

The Wolff algorithm is a cluster algorithm; as in the quantum AFHM, it proceeds by
creating bonds between lattice sites to form a cluster, and then updating the entire

cluster at once. To understand the Wolff algorithm, consider first the Ising model,

ﬁHISing =-p Z SzSy, (61)

<ETY>

where the s, = +1 are Ising spins. The rule for creating a bond on a link between

two neighboring spins is then the following:
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e Parallel spins: The weight of this configuration is e®. Create a bond between

these two spins with probability 1 — e~24

e Antiparallel spins: The weight of this configuration is e #. Never create a

bond between these two spins.

This rule then satisfies detailed balance locally, since

W(C) - p(C=C) = W() - p(C'=C)

e . e %

= e* . 1

How does the Wolff algorithm generalize to multi-component spin systems? For

the moment, let us consider only an SO(M) model such as

BHyv=—-fY n,-n, (6.2)

<zy>

n, € R n2 =1

The algorithm proceeds by choosing a unit vector w in RM . This vector specifies

the plane about which we will “flip” the spins in the cluster (this would the analogue

of the horizontal plane in the Ising model). Then the interaction between the spins

at = and at y can be written as

ﬂ Z n.n, =

<xy>

Sy =
Nz =

n; =

:BEﬂ' =

—f gy -0y + 0,1 -0y, ],

_6effszsy _IBHEL ) nyJ_ (63)
S —’

Ising
sgn(n, - w)

(ng - w)w,
n; — N,

(Blngy| )

This decomposition maps the “parallel” part of the problem onto the Ising formu-

lation. The variables s, and s, in eq. (6.3) are Ising spins now, just as in eq. (6.1), with
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coupling Beg. The breakup probability when the two signs are alike is then 1 — =%t
Flipping a cluster once again means reversing the sign of these Ising variables, which

involves taking s, to —s,. In terms of the full vector,

n,—n. =n, —2(w-n,)w

It should be clear that as long as we choose w randomly in S™~!, these rules will
satisfy ergodicity and detailed balance. Note that the “perpendicular” part of the

action is not affected. This rule is illustrated in Fig. 6-1.

(Wenw

________....____..__.>

Figure 6-1: Spin update under the Wolff algorithm. The spin n is reflected upon the
plane normal to the Wolff vector w.

For our full model, eq. (5.8), we apply the Wolff algorithm to the R¥ and R¥
parts of the Hamiltonian separately. At each simulation step on the lattice, then, we
are again updating the components of the spin parallel to the chosen Wolff vector

w. The probability to create a bond involves Sog, and that is where detailed balance
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is invoked. The “perpendicular” part of the action in both the R and R" spaces,
as well as the the chemical potential term, are unchanged, and hence need not be
considered. Note, however, that the chemical potential term is irrelevant precisely
because the length of the radii in the two subspaces is unchanged. The Wolff algorithm
thus provides for ergodicity with respect to SO(M) and SO(N) rotations, but not
with respect to shifting the radii from one subspace to another (i.e. SO(M + N)

rotations). That is why further algorithms are needed to assure complete ergodicity.

6.2 Modified Microcanonical Overrelaxation

Microcanonical overrelaxation[96, 97] algorithms generate new configurations while
maintaining the value of the action. In the present context, a modified version is used
to shift the relative radii among the two subspaces. In a pure SO(P) model, such an
algorithm generates a new configuration with the same action, and hence requires no
probabilistic choice. This also holds true for the SO(M) ® SO(N) model at p = 0.
A non-zero chemical potential, however, requires an additional Monte Carlo step to
ensure that detailed balance is obeyed (that is why this is a “modified” overrelaxation
algorithm). Furthermore, this algorithm does not quite satisfy ergodicity.

The idea behind microcanonical overrelaxation is simple: it reflects each spin
around the sum of its nearest neighbors. At each lattice update step, the algorithm

visits each site 7 in turn and computes the vector sum ¢, of the nearest neighbors:

P Zginz (6.4)

<Y>=z
1 if1<i< M
g fM<i<P

g =

where the notation < y >, denotes all the nearest neighbor sites y of z. The update

consists of reflecting n, about o,

n,—n, = 2 (0, - n,) o, — ng. (6.5)
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It is straightforward to verify that this transformation preserves the norm of n,, as
well as the nearest neighbor dot-product o, - n,. This latter dot product comprises

the u = 0 part of the SO(M) ® SO(N) Hamiltonian,

E Og " g,
z

so that any change in the Boltzmann weight due to this algorithm must necessarily

appear in the g/ > |n($M)|2 term. To enforce detailed balance with non-vanishing ',
the simulations then apply a Metropolis decision, eq. (3.8), to the chemical potential

part of the Hamiltonian alone.

.

Dy

Figure 6-2: The modified microcanonical overrelaxation algorithm. The lattice spin
n, is reflected about the sum o, of its nearest neighbors.

While this algorithm promises to be relatively efficient (in that we may expect large
acceptance rate for small enough ¢, and indeed, total acceptance when ' = 0), it does
not satisfy ergodicity. For example, if all the spins in the lattice are oriented entirely
in one subspace and not the other, no sequence of microcanonical overrelaxation steps

will take any spin into the other subspace (and conversely, if the spins have non-zero
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projections onto both subspaces, the lattice cannot reach a configuration where only
one subspace is occupied). Clearly, yet a third algorithm is needed to ensure that all

configurations are reachable.

6.3 Radius Metropolis

The most obvious way to ensure that we indeed sample all the possible unit vectors in
RM+N | where the superspin lives, is to choose a randomly oriented point in SM+¥~1
and then accept or reject using the usual Metropolis criterion. This mechanism would
indeed update both the angle and the radius of the subspins. Combined with the
preceding two algorithms, it would ensure ergodicity, but that need not mean that
it would be easy to implement favorable large-scale changes in the lattice. Indeed,
as was argued previously, it could potentially be inefficient in the neighborhood of
critical phenomena.

Since we already have an efficient algorithm that updates the angles in RM and
RY separately, and a presumably-efficient algorithm that updates both the angles
and (in most cases) the radii, we decided to use a different algorithm that merely
reweighs the radius lengths in the two subspaces but does not change the angle of the
spins in each of the two subspaces. Part of the rationale for doing this is to isolate
the radial and angular contributions to the various parts of the actions, rather than
having changes to both occur at the same time. Qualitatively, it seems more likely
that a configuration be accepted in which the angle between the spins in R, say,
is kept the same though the length changes, than one in which a, say, ferromagnetic
spin-spin coupling becomes antiferromagnetic because both angle and length were
changed.

To derive the distribution of radius lengths in the two subspaces, one evaluates

the integral
/(dPT)(S(T - R)=R! /de_1 = RP'Qp_,.

Considering r in the expression on the left as being given by r = (a,b), a € RM,
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b € RV, one obtains

/ (dPr)(r — R) = / (d™a)(dB)s(r — R)

- (fe) ([

- / aM=1dg / bN—ldba(b VR = a2) __R
0 0 (R? — a?)

= ( / dQMl) ( / dQN_l) /0 M lar (2 —a?)

where, in the second step, the expression at the end is the Jacobian factor arising
from the change of arguments in the delta function. In this derivation, a = |a] is
the radius in RM | whose distribution we wish to obtain. Setting R = 1, the integral

becomes

/dQM+N_1 = (/dQM_l) (/dQN_l) AlaM—lda(1—a2)%‘1.

SMEN—L SM=1 SN-L (radius distribution)

The last integrand, the beta integrand, is the desired radius distribution function.
Once normalized to unity, it can be used as the probability density function (PDF)
from which the radius vectors may be drawn. Expressed in terms of the squared RM

radius a?, this PDF becomes

d(a?), (6.6)

(@)% (1 - )3

Fyn(a®)d(a®) = 5 (2, 1)

where 8(m,n) = Fr((m%ig is the beta function. Obviously, the distribution of 4% in RY
has a completely analogous form. The distribution for the three systems of interest
are shown in Fig. 6-3.

To implement this algorithm, the simulation generates a beta variate from the

distribution in eq. (6.6), using the efficient scheme set forth in Ref. [98].
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Figure 6-3: The subspace distribution in R™ of a unit vector uniformly distributed in
RM+N | eq. (6.6). The top, middle, and bottom plots are for (M, N) = (1,2), (2, 3),
and (4, 6), respectively.
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Chapter 7

The Phase Diagram for the
SO(M) ® SO(N) Model

The algorithms described in the previous chapter were combined to simulate three
systems, SO(2) ® Z5, SO(2) ® SO(3), and S0(4) ® SO(6). By studying a few order
parameters, I was able to map the (finite size) phase diagrams for the three systems,
and from there obtain estimates for the location of the bicritical points (Table 7).

I discuss below the order parameters and how they were used to obtain the phase

diagrams.
| (M, N) | Lattice size L2 | est. A | est. ! N
(1,2) 20° (3.8,4.0) (-8.8,-8.4)
(2,3) 20° (0.700,0.725) (-7.4,-7.2)
(4,6) | 10° (1.40,1.45) | (-7.0,-6.4)

Table 7.1: Estimates for the location of the bicritical points in the three SO(M) @
SO(N) systems. These estimates were obtained from the phase diagrams discussed
in the text.

7.1 Order Parameters

In order to distinguish among the various phases, T looked at a few observables that

highlight the various symmetries of the systems of size L¢ (d = 3 in all these simula-
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tions).

The mean lengths in each subspace should be a good measure of the flop tran-
sition between RM and RY. Across the first order line, one of the lengths should
increase suddenly at the expense of the other, while a smooth crossover should exist

in the disordered phase. These quantities are defined by (K = M or N)

1 2
R = <E > (nt) > (7.1)
T
Since each of the spins has unit length, the mean lengths satisfy
Ry + Ry =1 (7.2)

The susceptibilities are a signal of the SO(M) or SO(N) ordering that takes
place on either side of the first order line. Because the flop transition is accompa-
nied by SO(K) ordering, each of the two ordered phases will exhibit an accompanying
(staggered) magnetization; since the system is radially symmetric in these phases, the
squares of the magnetizations (the susceptibilities) provide non-trivial thermal aver-

ages. In the disordered phase, the magnetizations should vanish. The susceptibilities

I

T

are defined by

The mean dot product is another measure of the ordering of the symmetric
phases. In the disordered phase, the random orientation of the vectors should produce
a vanishing mean dot product, whereas in the ordered phases the dot product should

be non-trivial. The mean dot products are

1
DK = <m Z n:(cK) 'IIE(IK)> (74)

<zTY>

The internal energy is particularly useful for observing two coexisting phases at
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the first-order phase transition. The two phases have different internal energies, but
it is the tug between the energy and the entropy factors that causes the system to
jump discontinuously between the two phases. The internal energy, of course, is just

the thermal average of the Hamiltonian and can be written

B - <%H> (7.5)
= <d (gMDM + gNDN) + [LR%/[> . (76)

The Binder cumulants are moments of the internal energy which approach non-
trivial (but L-dependent) values in the neighborhood of phase transitions[99, 100].

The fourth- and sixth-order cumulants are given by

By = 1-(HY/(3(H*?) (7.7)
By = 1-(H")/ (2(H%?) + (H")/ (30(H*)*) . (7.8)
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7.2 Results for the SO(2) ® Z, System

I simulated the SO(2) ® Z3 system (corresponding to M = 1, N = 2) on a three-
dimensional lattice of length L = 20 with an asymmetry parameter ¢’ = 3. I alter-
nated the three algorithms described in the previous chapter, and measured every
fourth iteration to obtain a total of 10° measurements. In the following pages, I
show (&, 1') plots of the order parameters, as well as the second moments of these
quantities (except for B, and Bg). The second moments are of particular significance
as they show a sharp signal near a first or second phase transition, since the spread
of sampled values is higher there than well within a given phase. Strictly speaking,
of course, the phase transitions occur only in the thermodynamic limit L—o0; what
one observes in computer simulations are just the finite-size cross-over regions which
correspond to the infinite-volume transitions. As L increases, the cross-over regions
become narrower, and finer (4', ') meshes are required in order to sample enough
cross-over points to make the second-moment signals actually visible.

The mean lengths, R2, and R%, are shown in Fig. 7-1. The flop transitions onto
RM and RY are clearly visible; much harder to see is the disordered phase, which
appears as leaf with a slightly different slope. In the second moment plot, however,
one sees not only the ridge corresponding to the flop transition, but also two ridges
corresponding to the presumed second-order transitions in Fig. 5-2. This ridge does
not appear in simulations on a smaller lattice with L = 10.

The susceptibilities (Figs. 7-2 and 7-3) and the dot products (Figs. 7-4 and 7-
5) also show clearly each of the ordered phases. The Dy second moment plot shows
only the slightest hint of a secondary ridge marking the disordered phase. The Binder
cumulants (Fig. 7-6), on the other hand, show a very clear (albeit small, 1 part in
10°) signal for the cross-overs corresponding to the presumed first- and second-order
phase transitions.

The cross-over regions seen in each of those plots actually fall on top of each other.
[t is then possible to generate a rough phase diagram by mapping the ridges of B, and

Bg and of the second moments of R%, xx and Dg. This leads to the finite-volume
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-12 025 0.3

Figure 7-1: Mean lengths R%, (top) and R% (middle), and their second moment
(bottom) for the SO(2) @ Z, system at ¢' = 3. Note that due to eq.7.2, the second
moments of 1%, and R% are numerically identical.
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0.45

0.25

-12

Figure 7-2: Susceptibility in R (top) and its second moment (bottom) for the
S0(2) ® Z, system at ¢’ = 3. Note the clear distinction between the ordered and

disordered phases.
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Figure 7-3: Susceptibility in RY (top) and its second moment (bottom) for the
S0(2) ® Zy system at ¢ = 3. Here, too, the ordered and disordered phases are
clearly visible.
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Figure 7-4: The mean dot product Dys (top) and its second moment (bottom) for

the SO(2) ® Z, system at ¢’ = 3.
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, -12 .25

Figure 7-5: The mean dot product Dy (top) and its second moment (bottom) for the
SO(2) ® Z, system at ¢' = 3. A small secondary ridge coinciding with the SO(M)
ordering is visible here.
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B/

Figure 7-6: The Binder cumulants B and Bg for the SO(2) ® Z, system at ¢’ = 3
show a small but distinct signal at the phase boundaries. Note that both quantities
appear to behave in the same fashion.
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phase diagram depicted in Fig. 7-7. From this diagram, one can

estimate that the

0.6 T T T T 1 P
x Ry
[m xM
o X
0.55 ow o [V gM
o & - N
o 8 . . Lo N -
0.5+ - . ,’ . . . PR ' - ' . —
. 9 ' . e Lo
. . w ﬂ . . . . . . .
0.45+— P 7] b - ) . PN PN —_
0.4+ - . - & - - —
. . v .
W ‘
03+ - #e .
0.25 1 | 1 | | ! 1
-4 -5 -8 -7 -3 -9 =10 -11 -12
MI

Figure 7-7: Phase diagram for the SO(2) ® Z; system. The symbols denote the local
extrema of the corresponding quantities, as explained in the text. The dots in the
background of the figure are the points at which the simulation was run

expected bicritical point lies in the range 3, € (3.8,4.0) and !, € (—8.8,—8.4).

To refine this estimate for the bicritical point, it turns out that a much finer

mesh in {f', ') is needed. The crux of the problem is that the cross-over region

has become so narrow already at L = 20 that the (8, 4') mesh shown in the plots

above (and even a tenfold refinement thereof) is not enough to sample the (finite-size)

coexistence region. If one can sample this region reliably, then analytical methods

such as Ferrenberg and Swendsen’s histogram reweighing technique[101, 102| can be
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applied to determine with some accuracy the infinite-volume transition lines. An
ideal run for which this method would work is shown in Fig. 7-8, where the tunneling
back and forth between the two phases can be clearly seen. The histograms for the
various observables, shown in Fig. 7-9, display the characteristic bimodal distribution
associated with first order transitions. Unfortunately, not all runs along the estimated
phase boundaries in Fig. 7-7 show this behavior. Quite frequently, the time series
displays a long-lived metastable state decaying to another state, with no tunneling
back even in an extended run: the histograms obtained in such a simulation are

inherently unreliable.

93



f:j III”1Iullllmhll||||||||||||||||n|||'1ul||||I|||||u|||||||lm‘"ml'l|‘|"N“||||||||||||"||‘||||||||||"||WI|||n|||‘“'||mh||m |||u||m|Jlulmrw IF|||i||||||||||mJHIM.ﬂ||||||||||1|mn||h|||||lJ’mluhlllN|mn|||||rul{
AT,
5"? [ L R 0
; IhII!|I||ﬂ|||II‘l}ll||||l||||[|||||||u|||||||||||"|||||||||| lh ‘I”Wl‘ "I'llll! ||||ill|||" E ‘“||||I||||||||MM’WIMI}HI"HMW}W&
a ll'l||||||llnu||ullllhhIllnlulI1|||||||I||u||In|||ur““Im'lwim|I||“|||m|u|m||l||||m||“‘||"L|Inlln|ummJ'IluJ“LlII"ﬂI|Iiul|u|llmmlhﬁﬂmuIn|||ll'uhlﬂ“ﬂnmhll]m#

. ,h.F'W”'"'""' ||||||1||||w|||||||||||||||||||||||i“m‘||L|M"|||||||||‘|m‘|l||||;m"k’|||||||‘ ‘||I|’||||||||||[|I||||>H’IHI| ||'I|||1|1|||| mm ||I|l|l|[||ll rllil| “I|lilll\l||’“|||

T

-4
0 0.5 1 1.5 2 25 3 3.5 4
iteration X 105

Figure 7-8: Time-series history near the first-order transition line for an SO(2) ® Z,
system at 3’ = 0.42 and p' = —8.2. This point shows the tunneling back and forth
between states that is typical of the first-order transition. Unfortunately, most of the
runs did not exhibit this ideal behavior, agsilexplained in the text.
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Figure 7-9: Bi-modal distributions near the first-order transition line. This distribu-

tion corresponds to the time series depicted in Fig.7-8, and can be used to interpolate
the location of the (finite-size) first order line
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7.3 Results for the SO(2) ® SO(3) System

For the SO(2) ® SO(3) system (M = 2, N = 3), I also ran simulations on a 20°
lattice with 10° measurements at ¢’ = 3. The (3, /) mesh was finer here than in
the SO(2) ® Z, system, and the various phases are once again clearly visible. The
second-moment signals show up quite distinctly in the plots for Ry, » (Fig. 7-11)
and yunv (Figs. 7-12 and 7-13). An interesting fe&ture here is the existence of a
single point which dominates the second moment plots by an order of magnitude at
(3" = 0.8, ' = —7.0). This point also shows up as a large spike in the plots of By
and Bg, Fig. 7-14. By mapping the ridges in the observables, one obtains the general
phase diagram once again, as shown in Fig. 7-10. The bicritical point appears to lie

in the region 8. € (0.700,0.725) and p, € (—7.4,—-7.2).
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Figure 7-10: Phase diagram for SO(2) ® SO(3) system at g’ = 3.
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Figure 7-11: Mean lengths R3, (top) and R% (middle), and their second moment
(bottom) for SO(2) ® SO(3) system at g’ = 3.
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Figure 7-12: Susceptibility in R¥ (top) and its second moment (bottom) for SO(2) ®
SO(3) system at ¢’ = 3. The plot for Dy, has a similar structure.
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Figure 7-13: Susceptibility in RY (top) and its second moment (bottom) for SO(2) @
SO(3) system at ¢’ = 3. The plot for Dy has a similar structure.
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Figure 7-14: The Binder cumulants By and B for SO(2) @ SO(3) system at g’ = 3
also show a distinct signal at the phase transitions.
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7.4 Results for the SO(4) ® SO(6) System

I ran simulations of the SO(4) ® SO(6) system (M = 4, N = 6) on a 10° lattice this
time, but again with 10° measurements at ¢’ = 3. While the R%, y plots (Figs. 7-
16) look much the same as for the previous two systems, the second moment plots
of Xy (Figs. 7-17 and 7-18) display a characteristic “soufl¢” shape— indicating
that there are more fluctuations about the mean in the ordered phase than in the
disordered phase. The plots for Dy, y once again have the same structure as those
for the susceptibilities. Interestingly, the plots of By and Bg (Fig. 7-19) do not show
any significant structure except for a strange, pronounced dip at (5’ = 0.5, ' = 5).
The data suggest the phase diagram depicted in Fig. 7-15, from which a reasonable
estimate for the L = 10 bicritical point is 8, € (1.40,1.45) and p, € (—7.0, —6.4).
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Figure 7-15: Phase diagram for SO(4) ® SO(6) system at g’ = 3.
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Figure 7-16: Mean lengths R2, (top) and R% (middle), and their second moment
(bottom) for SO(4) ® SO(6) system at g’ = 3.
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Figure 7-17: Susceptibility in RY (top) and its second moment (bottom) for SO(4) ®
S0(6) system at ¢’ = 3. The plot for Dy, has a similar structure.
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Figure 7-18: Susceptibility in RY (top) and its second moment (bottom) for SO(4) ®
SO(6) system at g’ = 3. The plot for Dy has a similar structure.
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Figure 7-19: The Binder cumulants By and Bg for SO(4) ® SO(6) system at ¢’ = 3,
interestingly enough, do not show a clear signal at the phase transitions but instead
have an unexplained dip at one corner of the (5, u’) plane.
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Chapter 8

Conclusion

In this dissertation, I have analyzed two strongly-coupled systems, the quantum
Heisenberg antiferromagnet and the superspin magnet. Although the present work
has provided significant insight into the nature of these two systems, much remains
to be learned. The devil, as they say, is in the details.

In studying the antiferromagnetic Heisenberg model, we have confirmed numeri-
cally that the large spin-dependent discrepancies between the spin S > 1/2 correlation
length £ of the AFHIM and its low-temperature description by the quantum field the-
ory of the d = 2 O(3) model are well explained by Hasenfratz’s correction for cutoff
effects in the spin model. With data fits of our quantum Monte Carlo results for spins
8 =1-5/2and £/a < 10°, we found that the predictions of third-order spin-wave
expansion for the spin stiffness and spin-wave velocity are nearly correct for S = 1,
and for S > 1 are fully sufficient for the field-theoretical predictions to describe the
correlation lengths from &/a ~ 100 up to £/a ~ 10°.

We recovered scaling of the correlation length £(L) in the AFHOM according to
the universal scaling function of the O(3) model. This enabled us to achieve large
infinite-volume correlation lengths from small finite-volume simulation data £(L) with
L = 10 — 180 using a finite-size scaling technique for the O(3) model. Furthermore,
this is a non-trivial support of the common assumption that the AFHM and the
O(3) model are in the same universality class. However, we showed that it is not the

equal-time structure factor function S(q) but the magnetic suscepiibility function
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x(q) which enables universal scaling of the correlation length in the AFHM. This
“time-averaged” correlation length is consistent with the O(3) model scaling function,
and the field-theoretical prediction up to extreme {/a ~ 10%, and also with high-
temperature series expansion for small £/a = 0.5 - 10.

Our QMC data connects consistently the regime of large and moderate correlation
lengths, where the cutoff-corrected field-theoretical prediction applies, with the regime
of small correlation lengths where high-temperature and semi-classical results apply.
The diverse approaches are thereby reconciled. Furthermore, we showed that the
remaining residual ~10% discrepancy between the field-theoretical prediction and &
in the regime £/a < 200 of neutron scattering experiments has essentially reached the
classical S — oo limit at S = 5/2.

It would be interesting to continue the analysis of the AFHM by refining these
fits. For example, one may continue the approach first used by Beard and Wiese for
S = 1/2 and use susceptibility data to break the strong positive correlation between
ps and c. So, too, would it be interesting to measure the spatial susceptibility to
obtain values for the low-energy parameters, and see how well they compare with the
results obtained here.

Ultimately, of course, I come back to the original motivation. D-theory and cluster
algorithms, which proved so useful for the antiferromagnet, promise to help us unravel
the secrets of low-energy QCD. With the algorithmic know-how gained in the present
project, I hope that my collaborators and I will, at some point, be able to successfully
apply these ideas to gauge theories. We have made a valiant attempt to tackle the
U(1) model, and yet we were stymied by an inefficiency that made the code, in
practice if not in theory, not ergodic. We are still considering this problem, and hope
to untangle it soon. Indeed, we are tantalized by having a D-theory formulation of
QCD but not an efficient algorithm to implement it.

The simulations of the three related SO(M)®& SO(N) systems reveal the existence
of three phases, as expected. I was able to verify the existence of a flop transition,
in which the spins jump discontinuously from RM™ to R, and to observed the more

gradual (and, we expect, second-order) transitions from these ordered phases to the
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disordered phase. It was gratifying to note that the various order parameters all
agreed as to the location of the transition lines, leading to coherent, if somewhat
coarse, finite-size phase diagrams.

From this phase diagram it is possible to estimate where the possible SO(M + N)
enhanced symmetry point lies; ultimately, one is interested in exploring whether Wiese
and Chandrasekharan’s arguments in (4 —¢) dimensions hold in our 3-d world. There
are several analytic techniques which may be used to extract answers from the Monte
Carlo simulations. For example, Ferrenberg and Swendsen’s histogram reweighing
approach[101, 102| interpolates in the (5', ') plane between the points where the
simulations were actually run. To capture the correct physics of the phase transitions,
however, the data files that are used as inputs to the reweighing calculation must
sample both phases. As remarked above, though, quite often in my simulations there
was no evidence that the system had settled comfortably in a crossover region—
rather, there was a long lived transient state which would lead to incorrect predictions
for the exact location of the transitions lines.

The next step, then, would be to simulate in a finer mesh so as to accurately
capture the physics at the crossover regions. One could then obtain quite precise
estimates for the transition lines, and start exploring the region of their intersection
for enhanced symmetry. This latter could be handled, by, for example, Kolmogorov-
Smirnov statistics[103] to see whether the distribution of a long-range observable (such
as the susceptibility) in one of the subspaces follows the beta distribution F; y(a?) as
one would expect if an RY*+Y symmetry were generated dynamically. It is reasonable
to expect that such an approach would finally answer whether this elegant model ac-

curately reflects essential aspects of the fascinating physics of color superconductivity.
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algorithm
cluster, 11, 33
continuous time, 35
higher spin, 37
improved estimators, 12, 42
Metropolis, 32
modified microcanonical overrelax-
ation, 77
radius metropolis, 79

Wolff, 74

beta distribution, 80

Binder cumulants, 84

CH;N, formula, 23
CH;3N,B formula, 26
chiral perturbation theory, 21
chiral symmetry, 14
correlation length
equal-time, 57
reconciles various regimes, 64
second-moment definition of, 57
time-averaged, 58

CPT, see chiral perturbation theory
dimensional reduction, 11

finite-size scaling, 54

119

Heisenberg model
3-d O(3) effective theory for, 21
cutoff effects in, 23, 25, 50
dimensionally reduced 2-d O(3) ef-
fective theory for, 21
motivation for, 13, 18
quantum Hamiltonian for, 20
high-temperature expansion, 62
histogram reweighing technique, 92

HTE, see high-temperature expansion

importance sampling, 31

internal energy, 83
Kolmogorov-Smirnov statistics, 108

mean dot product, 83
mean lengths, 83
“Memphis chart”, 44

Mermin-Wagner-Coleman theorem, 21

O(3) model
correlation length of, 22, see CH,N,
formula

exact mass gap of, 22

plaquette, 29



pure-quantum self-consistent harmonic

approximation (PQCSHA}, 64

quantum chromodynamics (QCD), 9, 10
simulation
D-theory, 11
Wilson'’s approach, 11
quantum electrodynamics (QED), 10

reconciliation of various regimes, 64

second moments of order parameters,
85
sign problem, 14
SO(M) @ SO(N)
“supervector”, 15, 68
effective Lagrangian for, 71
expected phase diagram, 15, 68
model Hamiltonian for, 73
renormalization group analysis, 71
spin-wave expansion (SWE), 24
superconductivity
color, 14
electronic, 9, 14, 68
susceptibilities, 83

SWE, see spin-wave expansion

transfer matrix, 28

Trotter-Suzuki decomposition, 28
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