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Abstract

In this bachelor thesis we investigate the energy spectrum of the quasi-free electrons in graphene.
This is done in two ways; by diagonalizing the Hamiltonian of the Hubbard model, but also by
deriving an effective low-energy field theory. If only low-energy excitations are considered, one
can see that these electrons obey a linear dispersion relation. At the end of this thesis, when we
calculate the energy of the electrons in an external magnetic field, we find that the magnetic field
quantizes the energy values.
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1 Introduction
Carbon is a very interesting and significant element for mankind; it is fundamental to the existence
of life on Earth. A whole branch of chemistry, organic chemistry, is dedicated to it. The carbon
atom has four valence electrons which can bind to an electron of another atom. As was pointed
out by A. Geim [1], its flexible bonds cause it to occur in many differently structured forms and
the dimensions of these forms result in a lot of different properties.

Graphite is one of these various carbon compounds. It consists of many layers, stacked upon each
other, bound by the weak van der Waals force. Each layer is made of carbon atoms arranged on
a honeycomb lattice which is illustrated in figure 1. Graphite has been known for a long time,
especially since the invention of the pencil in 1564. But a lot of time passed, until graphene, a
single atomic layer of graphite, was isolated by K. Novoselov in 2004. One of the reasons it had
taken so long, was according to A. Geim [2], the fact that no scientist expected graphene to exist.
So, there was great astonishment in the scientific community when K. Novoselov accomplished the
isolation of a single layer by a simple scotch-tape technique. Because it can be attained so easily,
graphene experienced a break-through in condensed matter physics in the last 6 years. Since 2005,
when A. Geim and K. Novoselov published their work, thousands of papers have been written on
graphene and it seems to be very promising in many applications of technology, for example, in
computer electronics or in ultrahigh-frequency transistors. Therefore, in 2010, A. Geim and K.
Novoselov were awarded the Nobel Prize in physics.

Figure 1: Graphite consisting of single atomic layers called graphene. [3]

The ”graphene boom” is not only due to its prospects, but also to its amazing properties. As A.
Geim stated in [1], it is the thinnest and strongest material; its breaking strength is about 40Nm .
It is impermeable to gases, it shrinks with increasing temperature, it can be stretched by 20% and
it has a thermal conductivity of about 5000 W

mK at room-temperature. It has a high pliability, but
also a high brittleness and there are many more astonishing properties. Its chemistry is yet to be
explored although it has very interesting chemical features, consisting only of two surfaces.

On the other hand, there is an intense research going on about the electronic properties of graphene,
as is described in [1]. Since it is a single atomic layer, it is very sensitive to the proximity of other
materials, for example, attaching a superconducting material results in a supercurrent flow. The
electrons in graphene can propagate up to a few micrometers without scattering. Their dispersion
relation, which is calculated in this thesis, is linear, therefore the same as for ultrarelativistic
particles. This means that the electrons in the honeycomb lattice behave like massless particles,
the fastest ones moving with a Fermi velocity vF , being a fraction of the speed of light. Such
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particles are called Dirac fermions. Applying a magnetic field perpendicular to the graphene layer
causes a quantization of the energy spectrum; the Landau levels, which are also a subject of this
thesis. The anomalous half-integer quantum Hall effect is a result of these discrete energy levels.
The fact that it can be observed in graphene at room temperature is remarkable.

This thesis is also about the electronic properties of graphene. The energy spectrum of the electrons
is calculated in two different ways. At the end of the thesis the Landau-levels are computed but
the half-integer quantum Hall effect is not discussed. For further information one can read [2].
The thesis is structured in the following way: in section 2, the honeycomb lattice is discussed,
the reciprocal lattice is introduced, some properties of the first Brillouin zone are pointed out and
the Fourier transformation on the lattice, which is a integration over the first Brillouin zone, is
derived. In section 3, the Hubbard model is introduced. This model allows us to compute the
energy dispersion relation of the electrons. The energy is computed for electrons which can hop
from a lattice point to its nearest neighbours, but also for ones which move to next-to-nearest
neighbours. Considering only low energies, the spectra have the form of Dirac cones. These low-
energy electrons obey a linear dispersion relation like massless particles and they propagate with
a Fermi velocity vF = a

√
3t

2~ ≈ 9 · 105ms . An effective low-energy field theory for these electrons is
derived in section 4. It results in a 2 + 1 dimensional Dirac equation for particles with zero mass.
In section 5, the energy of the electrons in a magnetic field is computed in both the Hubbard model
and the effective theory. One will notice that the energy is quantized in the discrete Landau-levels.
Finally, in section 6, my conclusions are presented.
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2 Honeycomb Lattice
Graphene is made of carbon atoms, which are arranged on a honeycomb lattice. This structure
is a result of the bonds between the atoms. Carbon has in total six electrons, four of them being
valence electrons. In the groundstate, two electrons are in the 2s-orbitals and the other two in
the 2p-orbitals. When one of the electrons in the 2s-orbital gets excited to the 2p-orbital, the
remaining s-orbital and two of the p-orbitals mix to form the sp2-hybrid orbital. This linear
combination is called sp2 hybridization [2]. Two sp2-hybridized electrons of two different atoms
create a σ-bond, which is a single covalent bond. All carbon atoms in graphene are bound to
each other by three σ-bonds. They enclose an angle of 120◦. Therefore these bonds cause the
trigonal planar structure of graphene and also its robustness. The distance of two carbon atoms d
is equal to 1.42 Å [2]. The sp2-hybridized electrons cannot propagate in the lattice. The remaining
p-orbital is perpendicular to the plane. Two overlapping p-orbitals results in a π-orbital, which
is also called a π-band because the electrons are delocalized in it. They can move around, thus
being the cause of the conducting properties of graphene.

2.1 Spatial lattice
The (spatial) honeycomb lattice of graphene is shown in figure 2. It is a non-Bravais bipartite lat-
tice, which means that it consists of two interpenetrating sublattices (black and blank points), each
of them forming a triangular Bravais lattice. A Bravais lattice is a, in our case, two-dimensional,
infinite arrangement of points which is generated by a set of discrete translations [4]. To perform
the discrete translation operation, two primitive vectors ~a1 and ~a2 are needed

~a1 =

(
1
0

)
a, ~a2 =

( 1
2√
3
2

)
a. (1)

Here, a denotes the distance between two neighbouring points of the same sublattice, and is related
to the distance d of two carbon atoms by a =

√
3d = 2.46 Å. The origin of the coordinate system

is placed in the center of a hexagon. Therefore, to describe the blank and black points, two
translation vectors ~v1 and ~v2 are used

~v1 =

(
0
1

)
a√
3

= −1

3
~a1 +

2

3
~a2, ~v2 =

(
0
−1

)
a√
3

=
1

3
~a1 −

2

3
~a2. (2)

All the black points ~x• are defined by

~x• = n1~a1 + n2~a2 + ~v1, n1, n2 ∈ Z, (3)

and the blank ones ~x◦ by

~x◦ = n1~a1 + n2~a2 + ~v2, n1, n2 ∈ Z. (4)

2.2 Symmetries of the Lattice
In this subsection, the symmetries of the honeycomb lattice are discussed. One should pay atten-
tion to whether it is a symmetry of the honeycomb lattice, but also of each sublattice, or whether
it is only a symmetry of the honeycomb lattice. The former means that each sublattice is invariant
under the symmetry transformation and the latter results in a transposition of the two sublattices.

2.2.1 Translation Symmetry

Since each of the two sublattices is a Bravais lattice, it is invariant under a translation of the two
primitive vectors ~a1 and ~a2.
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Figure 2: Honeycomb lattice with the primitive vectors ~a1 and ~a2.

2.2.2 Rotation Symmetry

A hexagon is invariant under a rotation of 60◦. Thus the honeycomb lattice is too, but this
rotation causes the two sublattice to interchange. Only a rotation by 120◦ is a symmetry of each
sublattice.

2.2.3 Reflection Symmetry

The honeycomb lattice has six reflection axes. Three of them are parallel to the edges of a
hexagon, and a reflection about these axes maps each sublattice onto itself. The other three axes
are perpendicular to the edges of the hexagon, and they cause the sublattices to be mirrored onto
each other.

2.3 Reciprocal Lattice

The reciprocal honeycomb lattice, which is illustrated in figure 3, is the set of all vectors ~k which
obey the Laue condition [4]

exp(i~k · ~x) = 1, (5)

which is equal to
~k · ~x = 2πN, N ∈ Z. (6)

The reciprocal lattice is rotated by 30◦ in respect to the spatial lattice. Its primitive vectors ~b1
and ~b2 can be derived from

~ai ·~bj = δij , (7)

~b1 =

(√
3
2
− 1

2

)
b =

(√
3
2
− 1

2

)
4π√
3a
, ~b2 =

(
0
1

)
b =

(
0
1

)
4π√
3a
. (8)

A vector in the reciprocal space can now be written as

~k = k1~b1 + k2~k2, k1, k2 ∈ Z. (9)

It is interesting to notice, that two electrons with the same spin can occupy the same site in the
reciprocal lattice, when they each belong to a different sublattice [5]. Hence the indices ◦, • are
two additional quantum numbers.
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~b2
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Figure 3: Reciprocal honeycomb lattice with the primitive vectors ~b1 and ~b2.

2.3.1 The First Brillouin Zone

The first Brillouin zone is a primitive cell in the reciprocal lattice. All the reciprocal vectors can be
reduced to one lying in the first Brillouin zone, by a combination of the primitive vectors. The first
Brillouin zone of a hexagonal lattice has a hexagonal form. To perform a Fourier transformation,
we will need to integrate over the area of the first Brillouin zone, which is equal to 8π2

√
3a2

= 7.53Å2.
Integrating along the primitive vectors from − 1

2 to 1
2 , creates a parallelogram. The area of the

parallelogram is the same as the one of the first Brillouin zone, which is shown in figure 4. The
six corners of the first Brillouin zone have the following coordinates:(

4π
3a
0

)
,

(
− 4π

3a
0

)
,

( 2π
3a
2π√
3a

)
,

(
− 4π

3a
2π√
3a

)
,

( 4π
3a
− 2π√

3a

)
and

(
− 4π

3a
− 2π√

3a

)
. (10)

~b1

~b2

kx

ky

~b1

~b2

kx

ky

Figure 4: The hexagon to the left and the parallelogram to the right hand side are related by parallel transport.

2.4 Fourier Transformation
To switch between the spatial and the reciprocal lattice, one must perform a discrete Fourier
transformation. The Fourier transformation has the following form

f̃(~k) =
∑
~x

f~x exp(−i~k · ~x), (11)
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and its inverse Fourier transformation looks as follows

f~x =

√
3a2

8π2

∫
B

d2k f̃(~k) exp(i~k · ~x). (12)

Here B indicates the Brillouin zone. Knowing that the Fourier transformed Kronecker-δ is equal
to one, we can derive its Fourier transformation, which is done below (13), and prove the above
relations (11) and (12).

δ~x,0 = δn1,0δn2,0 =

√
3a2

8π2

∫
B

d2k exp(i~k · ~x) =

1
2∫

− 1
2

dk1

1
2∫

− 1
2

dk2 exp(2πi(k1n1 + k2n2))

=



1
2∫
− 1

2

dk1

1
2∫
− 1

2

dk2 = 1 for i = j

(
1

2πin1

)(
1

2πin2

)exp(iπn1)− exp(−iπn1)︸ ︷︷ ︸
0

exp(iπn2)− exp(−iπn2)︸ ︷︷ ︸
0

 = 0

for i 6= j

(13)

In (13) we performed the substitution kx, ky → k1, k2

kx =
2π

a
k2, ky =

4π√
3a
k1 −

2π√
3a
k2. (14)

The absolute value of the Jacobian determinant is 8π2
√
3a2

, which is exactly the area of the Brillouin
zone. Similarly the Dirac-δ is given by

δ(~k) =

√
3a2

8π2

∑
~x

exp(−i~k · ~x). (15)
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3 Hubbard Model
The Hubbard model was first presented by Hubbard, Gutzwiler and Kanamori. It is a minimal
model for spin 1

2 -particles hopping on a two dimensional lattice.

3.1 Electron Propagation
Each carbon atom in graphene has three neighbours, and is assumed to be pointlike. Three
of the four electrons of a carbon atom are bound by a covalent σ-bond. The fourth electron can
propagate through the lattice. It is delocalized in the π-band. Since every carbon atom contributes
one electron to the π-band, it is half-filled. Thus the Hubbard model is analyzed at half-filling. The
description of the hopping of the electrons is achieved through the creation operator c†~x,s, which
creates an electron with spin s at the site ~x, and the annihilation operator c~x,s, which eliminates
an electron. The index s denotes the spin of the electron. The Pauli exclusion principle must be
fulfilled. Hence a lattice site can either be empty, filled with one electron of spin up or down, or
it can be occupied by two electrons of opposite spin, but never by two electrons of identical spin.
Therefore the following anti-commutation rules apply to the operators

{c~x,s, c~x′,s′} = 0,
{
c†~x,s, c

†
~x′,s′

}
= 0,

{
c†~x,s, c~x′,s′

}
= δ~x,~x′δs,s′ . (16)

Applying the discrete Fourier transformation to these operators leads to

c†s(
~k) =

∑
~x

c†~x,s exp(i~k · ~x), cs(~k) =
∑
~x

c~x,s exp(−i~k · ~x), (17)

and its inverse Fourier transformation to

c†~x,s =

√
3a2

8π2

∫
B

d2k c†s(
~k) exp(−i~k · ~x), c~x,s =

√
3a2

8π2

∫
B

d2k cs(~k) exp(i~k · ~x). (18)

In this thesis, a Hubbard model, which describes the energy resulting from the hopping of all the
pseudo-free electrons, is used. As already pointed out, the Hubbard Hamiltonian is considered at
half-filling. One could also add more terms to the Hamiltonian, which for example account for
the Coulomb repulsion of the electrons. However, in this work, only the following Hamiltonian is
used for the calculations

H = t
∑
〈~x,~y〉,s

c†~x,sc~y,s + c†~y,sc~x,s (19)

where t is the probability amplitude to tunnel between two neighbouring lattice sites, and 〈~x, ~y〉
is such a pair of neighbouring points. One should notice that this Hamiltonian only considers the
electron hopping to nearest neighbours. For next-to-nearest neighbour hopping more terms must
be added, which is done in section 3.4.

3.2 Symmetries of the Hubbard Model
In this section, the symmetries of the Hubbard Hamiltonian are pointed out, which are used later
on to construct an effective theory. A symmetry of a system is an invariance of this system under
a certain operation. Each continuous symmetry implies a conservation of a current, as stated by
Noether’s theorem. A symmetry of the Hamiltonian means that the energy is invariant under a
particular change. The Hubbard Hamiltonian (19) has three discrete symmetries, which arise from
the geometry of the lattice and three continuous symmetries. The following discussion is based
on [5].
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3.2.1 Discrete Symmetries

Not only the honeycomb lattice, but also the Hubbard Hamiltonian is invariant under the discrete
symmetries: Translation, rotation and reflection (section 2.2). The Hamiltonian is symmetric
under a translation along the two primitive vectors. Applying a unitary translation operator D
on the annihilation operator yields

Dc~x,s = D†c~x,sD = c~x+~ai,s. (20)

Now one can prove easily that the whole Hamiltonian (19) remains invariant; [H, D] = 0. The
Hamiltonian is also symmetric under a rotation by 60◦ although this results in an interchange of
the two sublattices. The rotation operator O acts in the following way

Oc~x,s = O†c~x,sO = cO~x,s. (21)

A point reflection at the lattice site ~x results in an interchange of the two sublattices too, but
leaves the Hamiltonian invariant. This can be achieved through the reflection operator R

Rc~x,s = R†c~x,sR = cR~x,s. (22)

3.2.2 SU(2)S Spin Symmetry

The Hubbard Hamiltonian has as SU(2)S spin symmetry. The SU(2)S group includes all (2× 2)
matrices which are unitary and have determinant 1. The corresponding operator V has the
following form

V = exp
(
i~η · ~S

)
, (23)

where ~S is the spin generator
~S =

∑
~x

~S~x =
∑
~x

c†~x
~σ

2
c~x. (24)

Here, ~σ are the Pauli matrices of eq.(53). By applying V on the annihilation operator

Sc~x = V †c~xV = exp

(
i~η · ~σ

2

)
c~x, exp

(
i~η · ~σ

2

)
∈ SU(2)S , (25)

one can show that the Hamiltonian is invariant, and that it commutes with the spin operator;[
H, ~S

]
= 0, which implies that the total spin is conserved.

3.2.3 U(1)Q Charge Symmetry

The U(1)Q charge symmetry is an invariance under a phase transformation. The transformation
achieved through the operator W leaves the Hubbard Hamiltonian invariant

W = exp (iωQ) , (26)

where Q denotes the charge or the fermion number with respect to half-filling

Q =
∑
~x

Q~x =
∑
~x,s

(
c†~x,sc~x,s − 1

)
. (27)

The invariance of the Hamiltonian can be proved taking the following equation into consideration

Qc~x = W †c~xW = exp (iω) c~x, exp (iω) ∈ U(1)Q. (28)

The U(1)Q charge symmetry implies a conservation of charge, or, equivalently, a conservation of
the fermion number; [H, Q] = 0.
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3.2.4 SU(2)Q Pseudo-Spin Symmetry

Yang and Zhang proved that the U(1)Q charge symmetry of the Hubbard Hamiltonian can be
extended to a non-Abelian SU(2)Q pseudo-spin symmetry [6]. The U(1)Q charge symmetry is a
subgroup of the SU(2)Q symmetry, which is not discussed in detail here. This symmetry causes
the symmetric energy values of electrons and holes, which are calculated in the next section. The
symmetry breaks down when the Hamiltonian is modified to account for next-to-nearest neighbour
hopping as in section 3.4.

3.3 Hopping to Nearest Neighbours
In this section, the energy values of the Hubbard Hamiltonian, which describes only nearest
neighbour hopping are computed, which means that the Hamiltonian has to be diagonalized.
In the case of graphene, there are two sublattices. Hence we must distinguish the c operators
according to where they take effect. The Hamiltonian now takes the following form

H = t
∑
〈~x,~y〉,s

c†◦,~x,sc•,~y,s + c†•,~y,sc◦,~x,s. (29)

To simplify the calculations, the sum over the nearest neighbours can be replaced with the sum
over all lattice sites ~x. In order to count each possible hopping of the electrons only once, the
hopping is considered around the hexagon of one lattice site ~x in clockwise direction

H = t
∑
~x,s

(
c†◦,~x+ 1

3~a1+
1
3~a2,s

c•,~x+~v1,s + c†•,~x+ 1
2~a1+

1
2~v2,s

c◦,~x+ 1
3~a1+

1
3~a2,s

+ c†◦,~x+~v2,sc•,~x+ 1
2~a1+

1
2~v2,s

+ c†•,~x− 1
3~a1−

1
3~a2,s

c◦,~x+~v2,s + c†◦,~x− 1
2~a1−

1
2~v2,s

c•,~x− 1
3~a1−

1
3~a2,s

+ c†•,~x+~v1,sc◦,~x− 1
2~a1−

1
2~v2,s

)
. (30)

In order to diagonalize the Hamiltonian, we perform a Fourier transformation

H = t
∑
~x,s

1
2∫

− 1
2

dk1

1
2∫

− 1
2

dk2

1
2∫

− 1
2

dk′1

1
2∫

− 1
2

dk′2

[
c†◦,s(

~k) exp

(
−i~k ·

(
~x+

1

3
~a1 +

1

3
~a2

))
c•,s(~k

′) exp
(
i~k′ · (~x+ ~v1)

)
+c†•,s(

~k) exp

(
−i~k ·

(
~x+

1

2
~a1 +

1

2
~v2

))
c◦,s(~k

′) exp

(
i~k′ ·

(
~x+

1

3
~a1 +

1

3
~a2

))
+c†◦,s(

~k) exp
(
−i~k · (~x+ ~v2)

)
c•,s(~k

′) exp

(
i~k′ ·

(
~x+

1

2
~a1 +

1

2
~v2

))
+c†•,s(

~k) exp

(
−i~k ·

(
~x− 1

3
~a1 −

1

3
~a2

))
c◦,s(~k

′) exp
(
i~k′ · (~x+ ~v2)

)
+c†◦,s(

~k) exp

(
−i~k ·

(
~x− 1

2
~a1 −

1

2
~v2

))
c•,s(~k

′) exp

(
i~k′ ·

(
~x− 1

3
~a1 −

1

3
~a2

))
+c†•,s(

~k) exp
(
−i~k · (~x+ ~v1)

)
c◦,s(~k

′) exp

(
i~k′ ·

(
~x− 1

2
~a1 −

1

2
~v2

))]
. (31)

Reordering the above equation, we can identify the δ-function of eq.(15)
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H = t
8π2

√
3a2

∑
s

1
2∫

− 1
2

dk1

1
2∫

− 1
2

dk2

1
2∫

− 1
2

dk′1

1
2∫

− 1
2

dk′2

√
3a2

8π2

∑
~x

exp
(
i~x ·

(
~k′ − ~k

))
︸ ︷︷ ︸

δ(~k′−~k)[
c†◦,s(

~k)c•,s(~k
′) exp

(
−i~k ·

(
1

3
~a1 +

1

3
~a2

))
exp

(
i~k′ ·

(
−1

3
~a1 +

2

3
~a2

))
+c†•,s(

~k)c◦,s(~k
′) exp

(
−i~k ·

(
2

3
~a1 −

1

3
~a2

))
exp

(
i~k′ ·

(
1

3
~a1 +

1

3
~a2

))
+c†◦,s(

~k)c•,s(~k
′) exp

(
−i~k ·

(
1

3
~a1 −

2

3
~a2

))
exp

(
i~k′ ·

(
2

3
~a1 −

1

3
~a2

))
+c†•,s(

~k)c◦,s(~k
′) exp

(
−i~k ·

(
−1

3
~a1 −

1

3
~a2

))
exp

(
i~k′ ·

(
1

3
~a1 −

2

3
~a2

))
+c†◦,s(

~k)c•,s(~k
′) exp

(
−i~k ·

(
−2

3
~a1 +

1

3
~a2

))
exp

(
i~k′ ·

(
−1

3
~a1 −

1

3
~a2

))
+c†•,s(

~k)c◦,s(~k
′) exp

(
−i~k ·

(
−1

3
~a1 +

2

3
~a2

))
exp

(
i~k′ ·

(
−2

3
~a1 +

1

3
~a2

))]
. (32)

Performing the integral over the δ-function yields

H = t
8π2

√
3a2

∑
s

1
2∫

− 1
2

dk1

1
2∫

− 1
2

dk2

[
c†◦,s(

~k)c•,s(~k)

[
exp

(
2πi

(
2

3
k1 −

1

3
k2

))

+ exp

(
2πi

(
−1

3
k1 −

1

3
k2

))
+ exp

(
2πi

(
−1

3
k1 +

2

3
k2

))]
+ c†•,s(

~k)c◦,s(~k)

[
exp

(
−2πi

(
2

3
k1 −

1

3
k2

))
+ exp

(
−2πi

(
−1

3
k1 −

1

3
k2

))
+ exp

(
−2πi

(
−1

3
k1 +

2

3
k2

))]]
. (33)

Defining

R(~k) = exp

(
2πi

(
2

3
k1 −

1

3
k2

))
+exp

(
2πi

(
−1

3
k1 −

1

3
k2

))
+exp

(
2πi

(
−1

3
k1 +

2

3
k2

))
, (34)

we obtain

H = t
8π2

√
3a2

∑
s

1
2∫

− 1
2

dk1

1
2∫

− 1
2

dk2

(
c†◦,s(

~k)c•,s(~k)R(~k) + c†•,s(
~k)c◦,s(~k)R∗(~k)

)

= t

√
3a2

8π2

∑
s

∫
B

d2k
(
c†◦,s(~k), c†•,s(~k)

)[
0 R(~k)

R∗(~k) 0

]
︸ ︷︷ ︸

M

(
c◦,s(~k)

c•,s(~k)

)
. (35)

The matrix M ∈ (2× 2,C) is Hermitian like the Hamiltonian itself. Thus it can be diagonalized
with a unitary transformation. Since R(~k) is a complex number, it can be expressed as R(~k) =∣∣∣R(~k)

∣∣∣ eiφ. The unitary matrix U then takes the form

U =
1√
2

[
e−i

φ
2 ei

φ
2

e−i
φ
2 −ei

φ
2

]
. (36)
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Figure 5: Energy spectrum of the electrons.

U

[
0 R(~k)

R∗(~k) 0

]
U† =

∣∣∣R(~k)
∣∣∣ 0

0 −
∣∣∣R(~k)

∣∣∣
 (37)

Hence the eigenvalues of the matrix M are ±
∣∣∣R(~k)

∣∣∣
∣∣∣R(~k)

∣∣∣2 = R(~k)R∗(~k) = 3 + 2 cos(2πk1) + 2 cos(2πk2) + 2 cos(2π (k1 − k2))

= 3 + 4 cos(

√
3

2
aky) cos(

a

2
kx) + 2 cos(akx). (38)

We made the transformation k1, k2 → kx, ky to get to eq.(38)

k1 =
a

4π
kx +

√
3a

4π
ky, k2 =

a

2π
kx. (39)

Therefore the two energy bands of the Hamiltonian are ±t
∣∣∣R(~k)

∣∣∣ with
∣∣∣R(~k)

∣∣∣ =

√
3 + 4 cos(

√
3

2
aky) cos(

a

2
kx) + 2 cos(akx). (40)

They are plotted in figure 5 for t = 2.8 eV and a = 1.

3.3.1 Dirac Cones

Looking at the two energy bands from a different perspective, as it is done in figure 6, one sees
a characteristic form. They are symmetric, and at the corners of the first Brillouin zone eq.(10),
which are called Dirac points, their value is zero. Positive and negative energy values correspond
to electrons and holes in the lattice. Hence there exists an electron-hole symmetry, or equivalently
an SU(2)Q charge symmetry which was mentioned in section 3.2.4. The two bands are the valence
and the conduction band. Since we are at half-filling, the valence band is completely filled, and
the conduction band is empty when the electrons are in the ground state. The fact that those two
bands touch each other at the Dirac points is responsible for graphene’s semimetallic properties.
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If we only consider low-energy values, cutting off the spectrum at high energies, as it is done in
figure 7, the form of the energy band resembles cones, the so-called Dirac cones. To calculate the
coordinates of these points, we have to set the energy to zero∣∣∣R(~k)

∣∣∣ = 0 ⇐⇒
∣∣∣R(~k)

∣∣∣2 = 0, (41)∣∣∣R(~k)
∣∣∣2 = 3 + 4 cos(

√
3

2
aky) cos(

a

2
kx) + 2 cos(akx) = 0. (42)

Choosing a certain corner of the Brillouin zone kx = 2π
3a and ky = 2π√

3a
is a result of the above

equation. Only two corners hold independent information, the coordinates of these points are for
example

~K± = ± 2π√
3a

( 1√
3

1

)
. (43)

When we expand the energy values around the points ~K± we get the Dirac cones

R2( ~K+ + ~δk) = R2( ~K+) +
∂R2(~k)

∂kx

∣∣∣∣∣
~K+

δkx +
∂R2(~k)

∂ky

∣∣∣∣∣
~K+

δky

+
1

2

∂2R2(~k)

∂kx
2

∣∣∣∣∣
~K+

δk2x +
1

2

∂2R2(~k)

∂ky
2

∣∣∣∣∣
~K+

δk2y +
∂2R2(~k)

∂kx∂ky

∣∣∣∣∣
~K+

δkxδky +O( ~δk
3
)

≈ 0 +

(
−4 cos

(√
3

2
aky

)
a

2
sin
(a

2
kx

)∣∣∣∣∣
~K+

− 2a sin(akx)| ~K+

 δkx

+

−4 cos
(a

2
kx

) √3

2
a sin

(√
3

2
aky

)∣∣∣∣∣
~K+

 δky

+

−1

2
4 cos

(√
3

2
aky

)(a
2

)2
cos
(a

2
kx

)∣∣∣∣∣
~K+

− 2a2 cos(akx)
∣∣
~K+

 δk2x

+

−1

2
4 cos

(a
2
kx

)(√3

2
a

)2

cos

(√
3

2
aky

)∣∣∣∣∣∣
~K+

 δk2y

+

4 sin
(a

2
kx

) a
2

√
3

2
a sin

(√
3

2
aky

)∣∣∣∣∣
~K+

 δkxδky

=
3

4
a2
∣∣∣ ~δk∣∣∣2 . (44)

Hence the energy is

E( ~K+ + ~δk) = ±ta
2

√
3
∣∣∣ ~δk∣∣∣ = ± a

√
3t

2~︸ ︷︷ ︸
vF

∣∣∣ ~δp∣∣∣ (45)

=⇒ E(~p) = ±vF
∣∣∣ ~δp∣∣∣ . (46)

We identified the Fermi velocity vF = a
√
3t

2~ ≈ 9 · 105ms in eq.(45). This is a very high velocity;
about 300 times less than the speed of light, and it does not depend on the momentum of the
electrons. The dispersion relation is very interesting since electrons usually have a quadratic
dispersion relation. On the other hand, a linear dispersion relation is characteristic for massless
particles, such as photons. Spin 1

2 -particles with such an energy dispersion relation are called
Dirac fermions. So these low-energy electrons have peculiar properties, generated by the geometry
of the honeycomb lattice. We must treat them as relativistic massless particles.
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Figure 7: Illustration of the Dirac cones.
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3.4 Hopping to Next-to-Nearest Neighbours
Electrons may also hop to next-to-nearest neighbours. If we want to account for this, we must
add an additional term to the Hubbard Hamiltonian with a different hopping parameter t′. To
diagonalize the additional term, we perform an analogous Fourier transformation. It is already
diagonal after the transformation, since the electrons stay on the same sublattice while hopping
to next-to-nearest neighbours. The full Hamiltonian now looks as follows

H = t
∑
〈~x,~y〉,s

(
c†◦,~x,sc•,~y,s + c†•,~y,sc◦,~x,s

)
+ t′

∑
〈~x,~z〉,s

(
c†◦,~x,sc◦,~z,s + c†•,~x,sc•,~z,s

)
. (47)

Here, 〈~x, ~z〉 is a pair of next-to-nearest neighbours on one of the two sublattices. We will now
diagonalize the new Hamiltonian. It is sufficient to make the calculation for one of the two added
terms. Therefore the indices ◦ or • will be neglected in the next steps. As already mentioned, the
method is the same as for the Hamiltonian which considers only nearest neighbour hopping

H = t′
∑
~x,s

c†~x+~v1,sc~x+~v1+~a1−~a2,s + c†~x+~v1+~a1−~a2,sc~x+~v1,s

+ c†~x+~v1,sc~x+~v1−~a2,s + c†~x+~v1−~a2,sc~x+~v1,s

+ c†~x+~v1+~a1−~a2,sc~x+~v1−~a2,s + c†~x+~v1−~a2,sc~x+~v1+~a1−~a2,s

= t′
√

3a2

8π2

∫
B

d2k c†s(
~k)cs(~k) 4 cos

(√
3

2
aky

)
cos
(a

2
kx

)
+ 2 cos (akx)︸ ︷︷ ︸

|R(~k)|2−3

. (48)

Taking the Hamiltonian of eq.(35) and inserting the additional part we get

H =

√
3a2

8π2

∑
s

∫
B

d2k
(
c†◦,s(~k), c†•,s(~k)

)t
′
(∣∣∣R(~k)

∣∣∣2 − 3

)
tR(~k)

tR∗(~k) t′
(∣∣∣R(~k)

∣∣∣2 − 3

)

(
c◦,s(~k)

c•,s(~k)

)
. (49)

The diagonalization of this Hamilton yields the energy eigenvalues

E±(~k) = t′
(∣∣∣R(~k)

∣∣∣2 − 3

)
± t
∣∣∣R(~k)

∣∣∣ . (50)

The eigenvalues are plotted in figure 8 with t = 2.8 eV , t′ = 1eV and a = 1. As one can see, the
symmetry between positive and negative energy values is broken. However for low energies, the
symmetry holds, and the energy bands still have the form of Dirac cones.
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Figure 8: Energy spectrum of the electrons if hopping to next-to-nearest neighbours is allowed.
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4 Effective Low-Energy Field Theory
Effective theories are very useful to understand the physics of a certain range of energy in which
they appropriately describe the relevant physical processes. A fundamental theory, a microscopic
model, is the basis to construct the effective theory. Since in the effective theory only the degrees
of freedom relevant in a certain domain of energy are included, this theory is simpler. Therefore
the physics it describes, can be calculated more easily i.e. effectively compared to the fundamen-
tal theory, which, on the other hand, is valid for all energies, but which is often only numerically
solvable. The effective theory is equivalent to the microscopic model in the chosen range of energy.

In this section, an effective theory for low energies is derived based on the Hubbard model. Al-
though the effective theory could be constructed generally by the determination of the degrees of
freedom, and the symmetries of the Hubbard model, in this case, it is straightforward to derive the
effective Hamiltonian from an expansion of the Hubbard Hamiltonian eq.(35) around the Dirac
points, where the energy is equal to zero. Before the calculations are presented, the Dirac equation
is introduced, so that one can put the effective Hamiltonian into the appropriate context.

4.1 Dirac Equation
In quantum mechanics particles are described by wave functions ψ. The Schrödinger equation is
used to compute the energy of particles, but the Schrödinger equation is not valid in the relativistic
regime. Paul Dirac found the "relativistic Schrödinger equation" for spin 1

2 -particles in 1928, the
Dirac equation:

i~
∂ψ

∂t
=
(
βmc2 + ~α · ~pc

)
ψ. (51)

αi =

[
0 σi
σi 0

]
, β =

(
12 0
0 −12

)
(52)

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(53)

Here, σi are the Pauli matrices and ψ is a Dirac spinor with four components. This equation is
valid in four-dimensional space-time. Unlike the Schrödinger equation, the Dirac equation only
has derivatives of first order, in both space and time.

4.2 Effective Hamiltonian
When we diagonalized the Hamiltonian of eq.(35), we got a (2× 2) matrix M . All the information
about the energy is stored in it. Thus, if we expand it about ~K+, we can derive the effective
Hamiltonian for graphene for low energies. The matrix M has the following form

M =

(
0 R(~k)

R∗(~k) 0

)
. (54)

Remembering also R(~k), and the coordinates of ~K+

R(~k) = exp

(
ia√

3
ky

)
+ exp

(
− ia

2
√

3
ky −

ia

2
kx

)
+ exp

(
− ia

2
√

3
ky +

ia

2
kx

)
(55)

~K+ =
2π√
3a

[ 1√
3

1

]
, (56)
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we can expand R(~k) about ~K+ up to first order which yields

R( ~K+ + ~δk) = exp

(
2πi

3

)
exp

(
ia√

3
δky

)
+ exp

(
−2πi

3

)
exp

(
− ia

2
√

3
δky −

ia

2
δkx

)
+ exp

(
− ia

2
√

3
δky +

ia

2
δkx

)
≈ a

2

√
3

(
− i

2
δky +

√
3i

2
δkx −

√
3

2
δky −

1

2
δkx

)

=

√
3a

2~

(
− i

2
δqy +

√
3i

2
δqx −

√
3

2
δqy −

1

2
δqx

)
. (57)

Above we set ~~k = ~q. Rotating the coordinate system by 240◦(
px
py

)
=

[
cos
(
4π
3

)
sin
(
4π
3

)
− sin

(
4π
3

)
cos
(
4π
3

)](qx
qy

)
, (58)

we obtain

R(~p) ≈
√

3a

2~
(px + ipy) , (59)

and complex conjugation yields

R∗(~p) ≈
√

3a

2~
(px − ipy) . (60)

We can write the Hamiltonian of eq.(35) as

H ≈ t

√
3a2

8π2~2
∑
s

∫
B

d2p
(
c†◦,s(~p), c†•,s(~p)

) √3a

2~

[
0 px + ipy

px − ipy 0

](
c◦,s(~p)
c•,s(~p)

)
=

√
3a2

8π2~2
∑
s

∫
B

d2p
(
c†◦,s(~p), c†•,s(~p)

) √3at

2~
(
σ1, −σ2

)︸ ︷︷ ︸
~α′

(
px
py

)(
c◦,s(~p)
c•,s(~p)

)

=

√
3a2

8π2~2
∑
s

∫
B

d2p
(
c†◦,s(~p), c†•,s(~p)

)
vF ~α

′ · ~p︸ ︷︷ ︸
HD′

(
c◦,s(~p)
c•,s(~p)

)
. (61)

We derived the Dirac equation for the point ~K+. In order to account for the whole energy of the
system, we must also compute the energy at the point ~K−. The calculation is analogous to the
one at ~K+, except that we must rotate the coordinate system by 60◦

R( ~K− + ~δk) =

√
3a

2~
(px − ipy), R∗( ~K− + ~δk) =

√
3a

2~
(px + ipy),

H =

√
3a2

8π2~2
∑
s

∫
B

d2p
(
c†◦,s(~p), c†•,s(~p)

) √3at

2~
(
σ1, σ2

)︸ ︷︷ ︸
~α

(
px
py

)(
c◦,s(~p)
c•,s(~p)

)

=

√
3a2

8π2~2
∑
s

∫
B

d2p
(
c†◦,s(~p), c†•,s(~p)

)
vF ~α · ~p︸ ︷︷ ︸
HD

(
c◦,s(~p)
c•,s(~p)

)
. (62)

If we compare the two Dirac HamiltoniansHD′ andHD with the Dirac eq.(51), we can see that they
have a similar term vF ~α · ~p, but no diagonal term βmc2, which makes sense since the electrons
behave like particles without mass. Here αi is a (2 × 2) matrix only, compared to the (4 × 4)
matrix αi in the Dirac equation. This results from the fact that graphene is a two-dimensional
material, and thus the above equations were calculated in three-dimensional space-time. The two
components of the effective Dirac spinors account for the two sublattices ◦, • . So we actually
derived an effective theory of two two-dimensional Dirac spinors.
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5 Introduction of a Magnetic Field
The properties of graphene in a magnetic field are very interesting. They have been researched
intensely, particularly since the half-integer quantum Hall effect was discovered. In this section,
a constant magnetic field is introduced which acts on the electrons. The energy spectrum of the
electrons is again calculated with the Hubbard model, but also with the effective theory. The
magnetic field causes the energy to quantize into discrete energy levels; the Landau levels. A
magnetic field, perpendicular to the graphene layer, pointing in the z − direction, is introduced
and a vector potential is chosen accordingly:

~B =

 0
0
B

 , ~A =

−Bx20
0

 . (63)

5.1 Pauli Equation
The Pauli equation describes the time evolution of non-relativistic spin 1

2 -particles. It differs form
the Schrödinger equation because it includes an additional term, which takes into account the
interactions between the spin of the particle and an external magnetic field. It is derived in the
calculations below by taking the non-relativistic limit (|~p| � mc2) of the Dirac eq.(51)

i~∂tψ = (~α · ~pc+ βmc2)ψ =

(
~c
i
~α · ~∇+ βmc2

)
ψ.

with ~α and β defined as in eqs. (52) and (53) and ~p = −i~~∇. In the next step the covariant
derivatives which account for a minimal coupling to an electromagnetic field

Dt = ∂t +
ie

~
φ, ~D = ~∇− ie

~c
~A, (64)

must be introduced, such that the Dirac equation stays invariant under gauge transformations.
The Dirac equation now reads

i~Dtψ =
~c
i
~α · ~Dψ + βmc2ψ. (65)

The Dirac spinor ψ, which has four components, can be expressed as

ψ =

(
u
v

)
(66)

with u denoting the two components of the particle and v of the antiparticle. Thus the Dirac
equation takes the following form

i~∂t
(
u
v

)
= eφ

(
u
v

)
+

(
~c
i
~σ · ~∇− e~σ · ~A

)(
v
u

)
+mc2

(
u
−v

)
. (67)

If we write (
u
v

)
= exp

(
−imc2

~
t

)(
ϕ
χ

)
, (68)

and insert the second component of eq.(68) into the second component of the Dirac equation we
obtain

i~
(
−imc2

~

)
χ+ i~∂tχ = eφχ+

~c
i
~σ · ~∇ϕ− e~σ · ~Aϕ−mc2χ. (69)

Taking the non-relativistic limit, which means assuming, that the time-dependence is mostly in
the phase factor, we can express χ in the following way

χ =
~c
i ~σ · ~∇− e~σ · ~A

2mc2
ϕ =

~~σ · ~D
2imc

ϕ. (70)
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Inserting this expression into the first component of the Dirac equation yields

i~∂tϕ = eφϕ+
1

2mc2

(
~c
i
~σ · ~∇− e~σ · ~A

)2

ϕ = eφϕ− ~2

2m

(
~σ · ~D

)2
ϕ. (71)

To compute
(
~σ · ~D

)2
ϕ we use

σiσj = δij + iεijkσk, (72)

whicht leads to (
~σ · ~D

)2
ϕ =

(
~D2 +

e

~c
~σ · ~B

)
ϕ. (73)

Finally, we derived the Pauli equation

i~∂tϕ =

eφ+
1

2m

(
~p− e

c
~A
)2

︸ ︷︷ ︸
Schrödinger term

− e~
2mc

~σ · ~B︸ ︷︷ ︸
Stern-Gerlach term

ϕ, (74)

where we can immediately see the additional Stern-Gerlach term. It was pointed out by Fröhlich
and Studer [7] that the Pauli equation, when two higher order terms are added, can be written
in a form which is invariant under local SU(2)S ⊗ U(1)Q gauge transformations. Thus the Pauli
equation can be written as follows

i~Dt ψ = HP ψ, (75)

where

Dt = ∂t −
ie

~
φ− ie

2mec
~σ · ~B +

ie~
8m2c2

~∇ · ~E, HP = − 1

2m

(
~∇+

ie

c
~A

)2

− ie~2

8m2
ec

2
~E × ~σ. (76)

The contribution of Fröhlich and Studer is very significant in many aspects, particularly, it deter-
mines how the Hamiltonian of the Hubbard model must be altered in order to take into consider-
ation the coupling of the electrons to the external magnetic field.

5.2 Applying a Magnetic Field to the Hubbard Model
We compute the energies of the electrons by accounting for nearest neighbour hopping as in the
Hamiltonian eq.(19), but the Hamiltonian must now be modified by an SU(2)S ⊗ U(1)Q parallel
transporter U~y,~z. This phase U~y,~z is defined as

U~y,~z = exp

(
ie

~

∫ ~z

~y

d~x ~A(~x)

)
∈ U(1). (77)

The parallel transporter U~y,~z and the creation respectively annihilation operators are changed by
the gauge transformation ~A(~x)→ ~A(~x)′ = ~A(~x) + ~∇ϕ(~x) in the following way

U~y,~z → U ′~y,~z = U~y,~z exp

(
ie

~
ϕ(~y)

)
exp

(
− ie

~
ϕ(~z)

)
, (78)

c~y → c′~y = c~y exp

(
ie

~
ϕ(~y)

)
, c†~y → c†

′

~y = c†~y exp

(
− ie

~
ϕ(~y)

)
. (79)

Because of the parallel transporter, the Hamiltonian of eq.(19) is invariant under the gauge trans-
formation, which can now easily be shown. Since there is a line integral in the exponential of the
parallel transporter, the transporter depends on the vector potential and differs for non-identical
lattice sites ~y, ~z. A hexagon at the position ~x has in total six parallel transporters (see figure 9)
although by calculating them, one finds that there are only three being non-identical

U1 = 1, U2 = exp (i~q · ~x− iϕ) , U3 = exp (−i~q · ~x− iϕ) , (80)
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U2U2

U1

U3 U3

Figure 9: New labeling of the honeycomb lattice with its parallel transporters.

where ~q and ϕ are defined by

~q =

(
0
1

)
aBe

2~
, ϕ =

√
3ea2B

8~
. (81)

Taking a close look, one notices that the parallel transporters do not depend on x1, and hence
they are invariant under a translation in this direction. This is not the case for the x2 direction.
A new labeling of the lattice sites is introduced in figure 9; instead of a vector ~x = n1~a1 + n2~a2,
which points to the middle of a hexagon and a translation vector ~vi, which points to the actual
lattice site, each site is labeled with two integers (n1, n2). The Hamiltonian can be written as

H = t
∑

n1,n2,s

c†(n1+1,n2)◦,s U1 c(n1+1,n2+1)•,s + c†(n1+1,n2)•,s U2 c(n1+1,n2)◦,s +

c†(n1,n2)◦,s U2 c(n1+1,n2)•,s + c†(n1,n2+1)•,s U1 c(n1,n2+1)◦,s +

c†(n1,n2+1)◦,s U3 c(n1,n2+1)•,s + c†(n1+1,n2+1)•,s U3 c(n1,n2+1)◦,s. (82)

To diagonalize the Hamiltonian without a magnetic field, we performed a two-dimensional Fourier
transformation. Taking into consideration the magnetic field, we will only perform the Fourier
transformation in the x1 direction since the Hamiltonian is invariant under translation operations
in this direction only. Below the Fourier transformation of the annihilation and creation operators
is shown

c(n2)s(kx) =
∑
n1

c(n1,n2),s exp (ikxan1) , c†(n2)s
(kx) =

∑
n1

c†(n1,n2),s
exp (−ikxan1) , (83)

as well as the inverse Fourier transformation

c(n1,n2),s =
a

2π

π
a∫

−πa

dkxc(n2),s(kx) exp (−ikxan1) , c†(n1,n2),s
=

a

2π

π
a∫

−πa

dkxc
†
(n2),s

(kx) exp (ikxan1) .

(84)
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The next calculation is similar to the ones without any magnetic field. We must also identify a
δ-function to simplify the Hamiltonian, which then has the following form

H =
∑
n2,s

( a
2π

) π
a∫

−πa

dkx

[
c†(n2)◦,s(kx)c(n2+1)•,s(kx) +

c†(n2)•,s(kx)c(n2)◦,s(kx) exp (iϕ(2n2 − 1)) +

c†(n2)◦,s(kx)c(n2)•,s(kx) exp (iϕ(2n2 − 1)− ikxa) +

c†(n2+1)•,s(kx)c(n2)◦,s(kx) +

c†(n2+1)◦,s(kx)c(n2+1)•,s(kx) exp (−iϕ(2n2 − 1)) +

c†(n2+1)•,s(kx)c(n2+1)◦,s(kx) exp (−iϕ(2n2 − 1) + ikxa)

]
. (85)

To solve the eigenvalue problem E |ψ〉 = H |ψ〉, one acts with the above Hamiltonian on the
following eigenvector

|ψ〉 =
∑
n2

a(n2)◦,s(kx) c†(n2)◦,s(kx) + a(n2)•,s(kx) c†(n2)•,s(kx). (86)

Comparing the coefficients of the creation operators, and defining two new functions g(kx) =
exp

(
ikx

a
2

)
and h(kx, n2) = 2 cos

(
2ϕn2 − ϕ− kx a2

)
, one obtains the two recursive relations

E

t
a(n2)◦,s(kx) = a(n2+1)•,s(kx) + a(n2)•,sg(kx)∗h(kx, n2), (87)

E

t
a(n2)•,s(kx) = a(n2−1)◦,s(kx) + a(n2)◦,sg(kx)h(kx, n2). (88)

Those two relations can also be written as a matrix equation

. .
. .
. .

0 1
1 0 gh

g∗h 0 1
1 0

. .
. .

. .





.

.

.
a(n2−1)◦,s
a(n2)•,s
a(n2)◦,s
a(n2+1)•,s

.

.

.


=
E

t



.

.

.
a(n2−1)◦,s
a(n2)•,s
a(n2)◦,s
a(n2+1)•,s

.

.

.


, (89)

where the dependence of the functions g and h on kx and n2 has been suppressed. This problem
can only be solved numerically. This has been done in the paper [2]. For the energy value E = 0,
the eigenvalue problem decouples on each sublattice, which simplifies the problem. By making it
finite, for example setting a(−1)(kx) = 0 and a(0)(kx) = 1, one can write down the eigenvectors
as a product of the two functions g(kx) and h(kx, n). This has not been pursued further in this
thesis because it led to results which could not be compared with those of the effective theory.

5.3 Energy Levels of the Electrons in an External Magnetic Field Cal-
culated with the Effective Theory

To compute the energy spectrum, we take the Hamiltonians of the effective theory HD′ (61) and
HD (62), derived earlier. The energies must be computed separately for each Dirac cone because
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the effective Hamiltonian has a slightly different form for each one. We start with the Hamiltonian
HD around the Dirac point ~K−

H = vF ~α · ~p, ~α = (σ1, σ2). (90)

Here σi are the Pauli matrices of eq.(53). We will now insert the quantum mechanical momentum
~p = −i~ ~D with the covariant derivatives eq.(64) to account for the magnetic field

H = vF

[
0 −i~∂x + ie

c Bx− ~∂y
−i~∂x − ie

c Bx+ ~∂y 0

]
. (91)

The eigenvalue problem Hψ(x, y) = Eψ(x, y) leads to the energy values, where ψ(x, y) is a spinor
with two components, one for each sublattice. This problem can be solved by the separation
ansatz:

ψi(x, y) = ϕi(y)ψi(x) = e(ikyy) ψi(x). (92)

The problem reduces to

vF

[
0 −i~∂x + ie

c Bx− i~ky
−i~∂x − ie

c Bx+ i~ky 0

](
ψ1(x)
ψ2(x)

)
= E

(
ψ1(x)
ψ2(x)

)
. (93)

These are two coupled differential equations. The equations can be decoupled by solving the first
equation for ψ1(x)

ψ1(x) = − i~vF
E

(
∂x −

eB

~c
x+ ky

)
ψ2(x), (94)

and inserting it into the second equation(
∂2x −

(
eB

~c
x− ky

)2

− eB

~c

)
ψ2(x) = − E2

~2v2F
ψ2(x). (95)

The form of this equation resembles a harmonic oscillator. To obtain the exact form, we must
perform two substitutions

ω =
eB

mc
, z = x− c~

eB
ky = x− ~

ωm
. (96)

This yields (
− ~2

2m
∂2z +

1

2
mω2z2 +

~ω
2

)
ψ2(z) =

E2

2mv2F︸ ︷︷ ︸
E′

ψ2(z). (97)

The term ~ω
2 is already diagonal and will result in an energy shift. The energy eigenvalues E′ of

the harmonic oscillator are
E′n = ~ω (n+ 1) . (98)

The energy of an electron becomes

En = ±vF
√

2m~ω(n+ 1), (99)

and its corresponding eigenfunctions ψ2(x) are the Hermite polynomials ϕn(x). We will substitute
n+1→ n, such that E0 is equal to zero and n ≥ 0. The corresponding eigenfunction to the energy
En becomes ϕn−1. For n = 0 the eigenfunction ϕ−1 = 0.

Identifying the raising operator a† and the lowering operator a of the harmonic oscillator, creates
a different perspective for the eigenvalue problem

a† =
1√
2

(√
mω

~
z −

√
~
mω

∂z

)
, a =

1√
2

(√
mω

~
z +

√
~
mω

∂z

)
. (100)
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They fulfill the commutation relation
[a, a†] = 1, (101)

and they are called raising operator and lowering operator because

a†ϕn(x) =
√
n+ 1ϕn+1(x) and aϕn(x) =

√
nϕn−1(x) (102)

if ϕn(x) is the solution to the eigenvalue En of the harmonic oscillator. The Hamiltonian H can
also be written in terms of the raising operator a† and the lowering operator a

H = vF
√

2mω~
[

0 ia†

−ia 0

]
. (103)

Also ψ1(x) can be expressed by those operators (ψ2(x) = ϕn(x))

ψ1(x) =
ivF
E

√
2mω~ a†ψ2(x) = ± i√

n+ 1
a†ϕn(x) = ±iϕn+1(x). (104)

The ground eigenstate (n = 0) of our harmonic oscillator is

ϕ0 = A exp

(
−mω

2

2~2

(
x− ~

mω
ky

)2
)
. (105)

The other eigenfunctions of the Hamiltonian are attained by acting on the ground state with the
raising operator. The two-component spinor to the eigenvalue En now looks the following way(

ψ1(x)
ψ2(x)

)
=

(
±iϕn(x)
ϕn−1(x)

)
. (106)

The Hamiltonian of the other Dirac cone has almost the same form eq.(90) with a different ~α′ =
(σ1,−σ2). Therefore the calculations are analogous to the ones above. Identifying the same raising
and lowering operators as in eq.(100), leads to a Hamiltonian of the following form

H = vF
√

2mω~
[

0 −ia
ia† 0

]
. (107)

The energy of an electron becomes

En = ±vF
√

2m~ωn, (108)

and the eigenstates are (
ψ1(x)
ψ2(x)

)
=

(
±iϕn−1(x)
ϕn(x)

)
. (109)

The minus sign in the second component of ~α′ causes the energy shift ~ω
2 to be added respectively

subtracted in the first respectively second component of the spinor, which is exactly the other way
around at the other cone.

The energy spectrum of the electrons in an external magnetic field eq.(108) is, of course, the same
for both Dirac cones, but it is very interesting to notice that it is discrete because of the external
magnetic field that is applied. These discrete energy values are called Landau levels. Furthermore
the electron-hole symmetry still holds and there exists a state of zero energy (n = 0).
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6 Conclusion and Outlook
In this thesis, the energy spectrum of electrons in graphene is analyzed. First, the honeycomb lat-
tice on which the electrons propagate is investigated and the Hamiltonian of the Hubbard model,
which describes the propagation of the quasi-free electrons, is introduced.

By diagonalizing the Hamiltonian, we find two symmetric energy bands due to the SU(2)Q
electron-hole symmetry. However this symmetry is broken when we also consider second near-
est neighbour hopping (t′ 6= 0). The low-energy electrons are found to behave like massless
relativistic particles, propagating through the honeycomb lattice with a Fermi velocity vF , being a
fraction of the speed of light. Because they have half-integer spin and a linear dispersion relation
(E(~p) = ±vF

∣∣∣ ~δp∣∣∣), they are called Dirac fermions.

An effective low-energy field theory is derived for these Dirac fermions and found to be described
by the massless Dirac equation. This is in agreement with the microscopic model, which also
predicts the electrons to behave like massless particles.

When an external magnetic field is applied to graphene, it changes the energy spectrum of the
electrons. This is calculated using the Hubbard model, but it leads to equations only numerically
solvable, which is not further pursued in this thesis. However, the energy values can be calculated
analytically by the effective theory. They are quantized into energy levels called Landau levels;
En = ±vF

√
2m~ωn. The fact that the Landau levels are calculated relatively easily by the effec-

tive low-energy field theory emphasizes its advantage over the microscopic model.

A future project is the numerical computation of the Landau levels with the Hubbard model,
and afterwards, the comparison between them and the energy levels obtained from the effective
theory. Furthermore, one could expand the effective theory such that it accounts for an electric
field applied parallel to the graphene layer. Then one can investigate the anomalous half-integer
quantum Hall effect.
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