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Abstract

Acknowledging Leutwyler’s no-interaction theorem for classical Hamiltonian particle mechan-
ics, we show that in one spatial dimension there actually is an interaction, a linear confining
potential, that is at least at the classical level Poincaré invariant. Not being able to prove
Poincaré invariance at the quantum level explicitly, we go on to solve a relativistic version of
the Schrödinger equation in order to show that the spectrum is Lorentz invariant. However,
we arrive at the conclusion that the spectrum is either not relativistically invariant, or that
the Hamiltonian may not be extended to be self-adjoint. Both possible interpretations of our
results suggest that in the usual Cartesian coordinates relativistic invariant particle quantum
mechanics does not exist. Finally, we show that in light cone coordinates the Poincaré algebra
also closes at the quantum level.
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B Some Facts about Lie Groups 43

C Hermite Functions 45

D Boundary Conditions following from Fourier Symmetry 49

E Hermiticity and Self-Adjointness 51

Bibliography 53

v





Introduction

The principles of special relativity and quantum mechanics are naturally incorporated in rel-
ativistic quantum field theories such as QED, QCD, or the standard model, which provide
accurate descriptions of elementary particle interactions. Since field theories are systems
with infinitely many degrees of freedom — a given number per space point — their quanti-
zation is not straightforward. In particular, for non-perturbative questions, e.g. concerning
bound states, it is a highly non-trivial step from the quantum mechanics of a few interact-
ing non-relativistic particles to quantum field theory. For example, the QED description of
positronium using the Bethe-Salpeter equation is already much more complicated than the
Schrödinger equation for the hydrogen atom, and understanding the binding of quarks and
gluons inside hadrons remains one of the biggest challenges in QCD. Relativistic mechanics
— the theory of systems with a finite number of relativistic degrees of freedom — should be a
lot easier to quantize than a field theory and seems to provide a natural intermediate step be-
tween non-relativistic quantum mechanics and relativistic field theory. Relativistic quantum
mechanics is usually discussed in the context of the Klein-Gordon and the Dirac equation,
which one considers either for free particles or for particles in an external field. Of course,
the single particle interpretation of these equations is problematical, since they really belong
to quantum field theory and not to relativistic quantum mechanics. Consequently, bound
states of interacting relativistic particles are usually discussed in the context of quantum field
theory.

Of course, there is a good reason for that. The interaction potentials that are familiar
from non-relativistic quantum mechanics are unacceptable in relativistic theories, because
they are instantaneous. In relativistic theories interactions are naturally mediated by particle
exchange, for example by the exchange of photons between the electron and positron forming
positronium. As a consequence of causality, an electron that has just emitted a virtual photon
cannot be prevented from emitting additional photons before the first one has been absorbed
by the positron. As a result, the number of exchanged particles seems to involve infinitely
many degrees of freedom and its treatment seems to require quantum field theory and not
just relativistic quantum mechanics.

Dirac was first to point out that the Poincaré algebra can be realized in different forms [1].
In the most familiar ”instant” form (usual Cartesian space-time coordinates) of the dynamics
the initial conditions are imposed at a given instant of time. In the ”front” form (light cone
coordinates) of the dynamics the initial conditions are specified on a light front. It has been
shown by Currie, Jordan, and Sudarshan that — due to the problems with instantaneous
potentials — the Poincaré algebra in instant form cannot be realized for two interacting
particles [2, 3]. This statement was extended to three particles by Cannon and Jordan [4].
Finally, Leutwyler proved a no-interaction theorem for any number of particles in the context
of relativistic classical Hamiltonian mechanics [5]. However, as Currie already pointed out [3],
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2 Introduction

this theorem does not hold in one space plus one time dimension. In this case there is just one
potential for which the classical Poincaré algebra closes, namely a linear confining potential
that results from a string which, in one dimension, has no degrees of freedom in addition to
the position of its endpoints. Hence two relativistic particles in one dimension confined by a
linear rising potential also interact locally and thus respect causality.

Unfortunately, it turns out that in the usual Cartesian coordinates it is not possible
to quantize this system without running into serious problems. In light cone coordinates,
however, the Poincaré algebra also closes at the quantum level. In the first three chapters
of this thesis we derive the Poincaré algebra, review Leutwyler’s no-interaction theorem,
and show that in one dimension the linear confining potential is relativistically invariant, at
least classically. In the fourth chapter we try to solve the resulting relativistic form of the
Schrödinger equation, first in a semi-classical Bohr-Sommerfeld approximation and then fully
quantum mechanically. Finally, Chapter 5 deals with the linear confining potential in light
cone coordinates.



Chapter 1

Poincaré Algebra

1.1 Notation and Commutation Relations

The Poincaré group in d dimensions includes the following transformations of d+1–dimensional
space–time:

• rotations of the d space dimensions,

• boosts on space–time,

• space translations,

• time translations.

A generic transformation belonging to the Poincaré group may be written as

x′µ = Λµ
νx

ν + aµ. (1.1)

Performing two such transformations,

x′µ = Λ1
µ
νx

ν + a1
µ,

x′′µ = Λ2
µ
νx
′ν + a2

µ, (1.2)

in a row yields

x′′µ = Λ2
µ
ν(Λ1

ν
ρx

ρ + a1
ν) + a2

µ = Λ2
µ
νΛ1

ν
ρx

ρ + Λ2
µ
νa1

ν + a2
µ. (1.3)

So we obtain the following composition law:

U(Λ2, a2)U(Λ1, a1) = U(Λ2Λ1,Λ2a1 + a2). (1.4)

We denote by

• H the generator of time translations,

• P1, . . . , Pd the generators of space translations,

• J1, . . . , J d(d−1)
2

the generators of rotations,
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4 Chapter 1. Poincaré Algebra

• K1, . . . ,Kd the generators of boosts.

Using the composition law for an infinitesimal transformation one obtains the following com-
mutation relations (see Appendix A) for d = 3:

[Pi, H] = 0, [Ji, H] = 0, [Ki, H] = iPi, [Pi, Pj ] = 0, [Ji, Pj ] = iεijkPk,

[Ki, Pj ] = iδijH, [Ji, Jj ] = iεijkJk, [Ji,Kj ] = iεijkKk, [Ki,Kj ] = −iεijkJk. (1.5)

In one spatial dimension this reduces to

[P,H] = 0, [K,H] = iP, [K,P ] = iH. (1.6)

The ten (three) generators together with the commutation relations form the Poincaré algebra.
A compact way to write the commutation relations is

[Xi, Xk] =
∑

l

clikXl, (1.7)

where the clik are the structure constants and the Xi the generators.

1.2 Casimir Operators

Of special interest are those quantities that are invariant under symmetry operations. Such
quantities may be described by operators that commute with all the generators of the group
and are called Casimir operators. It is an interesting question how many linearly independent
Casimir operators there are. The answer for non-semi-simple Lie algebras as the Poincaré
algebra is (see Appendix B for details)

Nc = r − Rank

(
r∑

l=1

clikαl

)

, (1.8)

where r is the dimension of the Lie algebra, i.e. the number of generators. The αl are to
be treated as independent variables. Putting X1 = H,X2 = P,X3 = K, the only structure
constants different from zero are C2

13 = −C2
31 = −i, C1

23 = −C1
32 = −i. Thus we have

Rank

(
r∑

l=1

clikαl

)

= Rank





0 0 −iα2

0 0 −iα1

iα2 iα1 0



 = 2. (1.9)

So in one dimension there is only one Casimir operator. We of course know an invariant
physical quantity which is the rest mass squared. Hence M 2 = H2 − P 2 should be a Casimir
operator and it is easy to show that M 2 commutes with all the three generators.

In three dimensions we have to deal with a 10 by 10 matrix, but things are just as simple
as in the one-dimensional case. One finds that the rank of the matrix is 8 and thus there
must be two linearly independent Casimir operators. One is again the rest mass squared

M2 = H2 − ~P 2. (1.10)

The other one is not that easy to find. The idea is to construct a translation invariant four
vector and square it, such that it becomes Lorentz invariant. The result is

W 2 = (~P · ~J)2 − (~P × ~K +H ~J)2. (1.11)



1.2 Casimir Operators 5

The eigenvalues of this Casimir operator are [6] −m2s(s+ 1), where s may be interpreted as
the spin. All the irreducible representations of the Poincaré group may be classified through
the eigenvalues of the two Casimir operators.

For a system of N free spinless relativistic particles of rest mass ma with positions ~xa and
momenta ~pa, (a ∈ {1, 2, . . . , N}) the operators of the Poincaré algebra may be represented as

H =
N∑

a=1

√

~p2
a +m2

a, ~P =
N∑

a=1

~pa, ~J =
N∑

a=1

~xa × ~pa,

~K =

N∑

a=1

1

2

(

~xa
√

~p2
a +m2

a +
√

~p2
a +m2

a~xa

)

. (1.12)

Using the canonical commutation relations

[xai, pbj ] = iδabδij , (1.13)

it is straightforward to show that the operators above indeed obey the commutation relations
of the Poincaré algebra.





Chapter 2

Leutwyler’s No-Interaction

Theorem in Three Dimensions

In this chapter a no-interaction theorem in classical relativistic Hamiltonian particle mechan-
ics is stated and part of the proof is reviewed.
This theorem was presented by H. Leutwyler in [5] and most of this chapter follows the
description therein. A proof of this theorem for two particles has already been established
earlier on by Currie, Jordan and Sudarshan [2], while Cannon and Jordan extended the proof
to three particles [4].

We consider the classical Poincaré algebra in this chapter. Thus we deal with Poisson
brackets rather than with commutators as in Chapter 1. The Poisson bracket is defined as

{A,B} =
N∑

a=1

3∑

i=1

(
∂A

∂xai

∂B

∂pai
− ∂A

∂pai

∂B

∂xai

)

. (2.1)

Here N denotes the number of particles and a labels them, whereas xai and pai are the compo-
nents of the position and the momentum of particle a. The Poisson brackets for the Poincaré
algebra read

{Pi, H} = 0, {Ji, H} = 0, {Ki, H} = Pi, {Pi, Pj} = 0, {Ji, Pj} = εijkPk,

{Ki, Pj} = δijH, {Ji, Jj} = εijkJk, {Ji,Kj} = εijkKk, {Ki,Kj} = −εijkJk. (2.2)

Further the no-interaction theorem requires manifest Lorentz invariance, i.e. the particle co-
ordinates transform correctly under Lorentz transformations. This requirement is equivalent
to

{xai , Pk} = δik, {xai , Jk} = εiklx
a
l , {xai ,Kk} = xak{xai , H}. (2.3)

Theorem: If the set of ten functions H,Pi, Ji,Ki satisfies the bracket relations (2.2) and
(2.3) and if the equations of motion are not degenerate, i.e.

det
∂2H

∂pai ∂p
a
k

6= 0, (2.4)

then the acceleration of each particle (a = 1, . . . , N) vanishes

{{xai , H}, H} = 0. (2.5)

7



8 Chapter 2. Leutwyler’s No-Interaction Theorem in Three Dimensions

The condition that the equations of motion are not degenerate excludes Hamilton functions
that only depend linearly on the momenta. If there is a kinetic term, i.e. a term quadratic in
the momenta, the condition is fulfilled. Let’s go on to give part of the proof for this theorem.
First we show that the six generators Pi, Ji may be brought to their free particle form by a
suitable canonical transformation. The bracket

{xai , Pk} = δik (2.6)

implies
∂Pk
∂pai

= δik. (2.7)

Thus Pi is of the form

Pi =

N∑

a=1

pai +Wi(x). (2.8)

Further

{xai , Jk} = εiklx
a
l (2.9)

implies
∂Jk
∂pai

= εiklx
a
l , (2.10)

and thus we have

Ji =
N∑

a=1

εiklx
a
kp

a
l + Fi(x). (2.11)

The Poisson brackets (2.2) impose non-trivial restrictions on the function Wi and Fi which
imply [5]

Fi = {Ji, F}, Wi = {Pi, F}, (2.12)

where F is some function of the x variables only. The above brackets are

Fi = −
∑

l,a

∂Ji
∂pal

∂F

∂xal
, Wi = −

∑

l,a

∂Pi
∂pal

∂F

∂xal
. (2.13)

This leads to

Pi = P 0
i −

∑

a

∂F

∂xai
, Ji = J0

i −
∑

a

εiklx
a
k

∂F

∂xal
. (2.14)

Here J0
i and P 0

i denote the free particle form of the generators. We now perform the canonical
transformation

xai
′ = xai , p

a
i
′ = pai −

∂F

∂xai
(2.15)

and obtain for Ji and Pi in the new variables

Pi =
∑

a

(pai
′ +

∂F

∂xai
)−

∑

a

∂F

∂xai
=
∑

a

pai
′,

Ji =
∑

a

εiklx
a
k(p

a
l
′ +

∂F

∂xal
)−

∑

a

εiklx
a
k

∂F

∂xal
=
∑

a

εiklx
a
k
′pal

′. (2.16)
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So we have indeed brought all the Ji and Pi to their free particle form. The next step is now
to bring H and Ki to their free particle form while leaving Ji and Pi unmodified. We drop
the primes and work with the new variables only. We start from the last equation of (2.3),

{xal ,Kk} =
∂Kk

∂pal
= xak

∂H

∂pal
. (2.17)

Taking the partial derivative with respect to pbi we obtain

∂2Kk

∂pbi∂p
a
l

= xak
∂2H

∂pal ∂p
b
i

.

Of course, one may do the same for a and b interchanged which leads to

∂2Kk

∂pbi∂p
a
l

= xak
∂2H

∂pal ∂p
b
i

= xbk
∂2H

∂pbi∂p
a
l

.

So we have

(xbk − xak)
∂2H

∂pal ∂p
b
i

= 0. (2.18)

For a 6= b we thus have
∂2H

∂pal ∂p
b
i

= 0.

Therefore we may write H as

H =
∑

a

ha(pa, x). (2.19)

So the Hamiltonian is a sum of terms of which each may depend on the position of every
particle but only on the momentum of one of them. The brackets {Pi, H} = 0 and {Ji, H} = 0
imply that H must be invariant both under rotations and translations. One can show [5] that

H =
∑

a

h̄a(pa, x), (2.20)

with each of the h̄a being invariant under both rotations and translations. We drop the bar
and insert this expression for H into (2.17)

∂Kk

∂pal
= xak

∂ha

∂pal
,

which leads to
Ki =

∑

a

xai h
a(pa, x) + ki(x). (2.21)

Evaluation of {Ki, Pj} = 0 leads to {ki, Pj} = 0, so the term ki(x) is also translation invariant.
Until now we have used all the Poisson brackets of (2.2) and (2.3) except {Ki, H} = Pi.

So let’s evaluate this bracket using the expressions (2.20) for H and (2.21) for Ki

{Ki, H} =
∑

b,k

{

∂

∂xbk

(
∑

a

xai h
a(pa, x) + ki(x)

)

∂

∂pbk

(
∑

c

hc(pc, x)

)

− ∂

∂pbk

(
∑

a

xai h
a(pa, x) + ki(x)

)

∂

∂xbk

(
∑

c

hc(pc, x)

)}

=
∑

a

ha(pa, x)
∂ha

∂pai
+
∑

a,k

∂ki
∂xak

∂ha

∂pak
+
∑

a,b,k

∂hb

∂xak

∂ha

∂pak
(xbi − xai ) =

∑

a

pai .
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We may simplify this to

0 =
1

2

∑

a

∂

∂pai

(
ha2 − pa2

)
+
∑

a,k

∂ki
∂xak

∂ha

∂pak
+
∑

a,b,k

∂hb

∂xak

∂ha

∂pak

(

xbi − xai
)

. (2.22)

In section 4 of [5] it is shown, using the non-degeneracy condition of the theorem, that this
simplifies to

∂ha

∂xbi
=
∑

k

∂2L

∂xbi∂x
a
k

∂ha

∂pak
+
∂Ma

∂xbi
, (2.23)

where L and Ma are functions of the positions only, invariant with respect to translations
and rotations. It remains to solve this differential equation. In order to do this we perform
the following canonical transformation

xai
′ = xai , p

a′ = pai +
∂L

∂xai
. (2.24)

Let’s first show that this transformation indeed leaves Pi and Ji invariant. This uses the fact
that L is invariant under translations and rotations, i.e. from {Ji, L} = 0 follows

∑

a

εiklx
a
k

∂L

∂xal
= 0, (2.25)

and from {Pi, L} = 0 we obtain
∑

a

∂L

∂xai
= 0, (2.26)

and thus

Pi =
∑

a

pai =
∑

a

(

pai
′ − ∂L

∂xai

)

=
∑

a

pai
′ = P 0

i ,

Ji =
∑

a

εiklx
a
kp

a
l =

∑

a

εiklx
a
k

(

pal
′ − ∂L

∂xal

)

=
∑

a

εiklx
a
kp

a
l
′ = J0

i . (2.27)

With
ha′(p′, x′) = ha(pa, x), Ma′(x′) =Ma(x) (2.28)

and

∂

∂xai
=

∂

∂xbk
′
∂xbk

′

∂xai
+

∂

∂pbk
′
∂pbk

′

∂xai
=

∂

∂xai
′ +

∂2L

∂xai ∂x
b
k

∂

∂pbk
′ ,

∂

∂pai
=

∂

∂xbk
′
∂xbk

′

∂pai
+

∂

∂pbk
′
∂pbk

′

∂pai
=

∂

∂pai
′ , (2.29)

equation (2.23) reduces to
∂ha′

∂xbi
′ =

∂Ma′

∂xbi
′ . (2.30)

This implies
ha′(x′, p′) =Ma′(x′) +Na′(pa′), (2.31)
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i.e. in terms of the new variables ha decomposes into a function Ma of the position only and
a function Na of the momentum pa only. We shall now work with the new variable only and
drop the primes. Equation (2.22) is still valid in the new variables since we only used the
Poisson bracket {Ki, H} and the decomposition of H and Ki in terms of ha to derive it. Both
the bracket and the decomposition are still valid after the transformation. Inserting (2.31)
into (2.22) gives

0 =
1

2

∑

a

∂

∂pai

(
(Ma +Na)2 − pa2

)
+
∑

a,k

∂Na

∂pak

(

∂ki
∂xak

+
∑

b

∂M b

∂xak
(xbi − xai )

)

=
1

2

∑

a

∂

∂pai

(
Na2 − pa2

)
+
∑

a,k

∂Na

∂pak

(

∂ki
∂xak

+Maδik +
∑

b

∂M b

∂xak
(xbi − xai )

)

=
1

2

∑

a

∂

∂pai

(
Na2 − pa2

)
+
∑

a,k

∂Na

∂pak

(

∂

∂xak

(
∑

b

M bxbi + ki

)

− xai
∂

∂xak

∑

b

M b

)

.

︸ ︷︷ ︸

Ca
ki

(2.32)

As ki(x) and M
b(x) are functions of the position only, so is Ca

ik. Taking the derivative of the
above equation with respect to pcj and x

b
l we obtain (using the fact that Na only depends on

pa)

0 =
∂

∂xbl

∑

a,k

∂2Na

∂pcj∂p
a
k

Ca
ki =

∂

∂xbl

∑

k

∂2Na

∂paj∂p
a
k

Ca
ki,

where we have also used (2.18). From the non-degeneracy condition in the theorem follows

det ∂2Na

∂paj ∂p
a
k
6= 0 and thus the inverse exists. Multiplying the above equation from the left with

the inverse (which is of course independent of x since N a is) we obtain

∂

∂xbl
Ca
ki = 0, (2.33)

so Ca
ki is a constant but also transforms as a second rank tensor. Thus it follows that

Ca
ki = Caδki, (2.34)

and therefore

0 =
1

2

∑

a

∂

∂pai

(
Na2 − pa2

)
+
∑

a,k

∂Na

∂pak
Caδki

=
1

2

∑

a

∂

∂pai

(
Na2 − pa2 + 2CaNa

)

=
1

2

∑

a

∂

∂pai

(
(Na + Ca)2 − pa2

)
, (2.35)

since ∂Ca

∂pai
= 0. Taking the derivative with respect to pbk yields

∂2

∂pai ∂p
a
k

(
(Na + Ca)2 − pa2

)
= 0, (2.36)
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which has the solution
(Na + ca)2 − pa2 =

∑

k

dakp
a
k + da. (2.37)

Since ha and Ma are rotational invariant, so is N a. Thus the whole left-hand side of the
above equation is invariant under rotations and thus dak must transform as a vector, but there
is no numerically invariant vector, so dak must be zero and we have

(Na + Ca) =
√

pa2 + da. (2.38)

Now this looks rather familiar. In [5] it is shown that in fact

ki =
∑

a

(Ca −Ma)xai ,
∑

a

(Ca −Ma) = 0. (2.39)

So we obtain

H =
∑

a

(Na +Ma) =
∑

a

√

pa2 + da,

Ki =
∑

a

haxai + ki =
∑

a

xai
√

pa2 + da. (2.40)

The requirement that the velocity of the particles is smaller than the velocity of light further
requires that da > 0, such that we may put da = m2

a. Hence we have

H =
∑

a

√

pa2 +m2
a, Ki =

∑

a

xai

√

pa2 +m2
a (2.41)

and all ten generators have been brought to their usual free particle form.



Chapter 3

Interacting Particles in One

Dimension

The proof presented in the preceding chapter relies crucially on the dimension of space-time.
As we will show below, there exists a representation of the Hamiltonian form in one space
and one time dimension that satisfies the requirements of relativistic invariance and that has
a non-vanishing interaction potential.

Let’s first write down the classical Poincaré algebra in one dimension:

{P,H} = 0, {K,P} = H, {K,H} = P. (3.1)

Explicit invariance of the position x requires

{xa, P} = 1, {xa,K} = xa{xa, H}. (3.2)

As in the three-dimensional case one can find a suitable canonical transformation which brings
P to its free particle form. The bracket {xa, P} implies ∂P

∂pa
= 1 and thus

P (p, x) =
N∑

a=1

pa + F (x). (3.3)

Making the canonical transformation xa′ = xa, pa′ = pa+ 1
N
F (x) brings P to its free particle

form. The second requirement for explicit invariance {xa,K} = xa{xa, H} leads to

∂K

∂pa
= xa

∂H

∂pa
, (xa − xb) ∂2H

∂pa∂pb
= 0, (3.4)

and thus

H =
N∑

a=1

ha(pa, x), K =
N∑

a=1

xaha(pa, x) + k(x). (3.5)

From now on we restrict ourselves to the simplest case, namely two interacting particles.
We make the following ansatz for the generators which satisfies the requirements (3.2) for
explicit Lorentz invariance:

H =
√

p2
1 +m2

1 +
√

p2
2 +m2

2 + V (x1, x2), (3.6)

P = p1 + p2, (3.7)

K = x1

√

p2
1 +m2

1 + x2

√

p2
2 +m2

2 +W (x1, x2). (3.8)

13
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The first restriction on V (x1, x2) comes from the bracket {P,H} = 0

∂V

∂x1
+
∂V

∂x2
= 0, (3.9)

which implies V (x1, x2) = V (x1 − x2). From {K,P} = H we obtain

∂W

∂x1
+
∂W

∂x2
= V (x1 − x2). (3.10)

The last bracket {K,H} = P yields

−x1
p1

√

p2
1 +m2

1

∂V

∂x1
− x2

p2
√

p2
2 +m2

2

∂V

∂x2
= p1 + p2. (3.11)

We may write this as

p1
√

p2
1 +m2

1

(
∂W

∂x1
− x1

∂V

∂x1

)

+
p2

√

p2
2 +m2

2

(
∂W

∂x2
− x2

∂v

∂x2

)

= 0. (3.12)

Since this must be true for any value of p1 and p2, we obtain

∂W

∂x1
= x1

∂V

∂x1
,

∂W

∂x2
= x2

∂V

∂x2
. (3.13)

Inserting (3.13) in (3.10) and using (3.9) yields

V (x1 − x2) = x1
∂V

∂x1
+ x2

∂V

∂x2
= (x1 − x2)

∂V (x1 − x2)

∂x1
. (3.14)

Introducing x = x1 − x2 we may write

V (x) = x
∂V

∂x
, (3.15)

which has as solution
V (x) = σ|x|. (3.16)

In order to obtain W (x1, x2) we make the ansatz W (x1, x2) = (a1x1 + a2x2)V (x). Inserting
into eq. (3.13) and adding the two equations one obtains (a1+a2)V (x) = x∂V

∂x
, i.e. a1+a2 = 1.

We subtract the two equations one gets from eq. (3.13) by inserting the ansatz and obtain

2(a1x1 + a2x2) = (x1 + x2). (3.17)

Since this must be true for any value of x1, x2 we finally get a1 = a2 = 1
2 and thus

W (x1, x2) =
x1 + x2

2
σ|x1 − x2|. (3.18)

Now this has all been done in classical Hamiltonian particle mechanics. The question is
though, whether this system preserves the Poincaré symmetry through the process of quanti-
zation. What can be shown [7] is that for the simplest symmetrisation of the boost operator

K =
2∑

i=1

1

2

(

xi

√

p2
i +m2

i +
√

p2
i +m2

ixi

)

+W (x1, x2), (3.19)
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the Poincaré algebra does not close at the quantum level. However, this does not allow
for the conclusion that hence we have a Poincaré anomaly here, as is done in [7]. There
might actually exist some complicated ordering that allows the Poincaré algebra to close
at the quantum level and that is classically equivalent with the above representation. As
will be shown in Chapter 5, the Poincaré algebra does close at the quantum level in light
cone coordinates. Our strategy in the next chapter will be to solve the modified Schrödinger
equation arising from the Hamiltonian

H =
√

p2
1 +m2

1 +
√

p2
2 +m2

2 + σ|x1 − x2|, (3.20)

and to explicitly check whether the spectrum satisfies the usual relativistic energy-momentum
relation E2 =M2 + P 2.

It is easy to see that the above considerations may be repeated for N particles. We then
have the following expressions for the generators

H =

N∑

a=1

√

p2
a +m2

a +
∑

pairs

σ|xa − xb|, (3.21)

P =
∑

a=1

pa, (3.22)

K =
∑

a=1

xa
√

p2
a +m2

a +
∑

pairs

xa + xb
2

σ|xa − xb|. (3.23)

In what follows we will only consider the two-particle case.





Chapter 4

Linear Confining Potential

In this chapter we try to solve the time independent Schrödinger equation with the relativistic
Hamiltonian written down at the end of last chapter. Before we do this, we first solve
the time independent Schrödinger equation for this potential with the usual non-relativistic
Hamiltonian, since there we may illustrate a method we will use later on in the relativistic
case. We then go on to find the semi-classical spectrum for the relativistic Hamiltonian before
we eventually tackle the problem fully quantum mechanically.

4.1 Non-Relativistic Schrödinger Equation

In this section we solve the non-relativistic Schrödinger equation for two particles interacting
through a linear confining potential. The two-particle Hamiltonian reads

H =
p2
1

2m1
+

p2
2

2m2
+ σ|x1 − x2|. (4.1)

Separating the center of mass motion, as is commonly done when solving the two-particle
problem, one arrives at the following time independent Schrödinger equation for the relative
coordinate x = x1 − x2 (we have also set m1 = m2 = m)

Hψ(x) =

(

− 1

m
∂2
x + σ|x|

)

ψ(x) = Eψ(x). (4.2)

The usual way to solve this problem is to solve the problem for x > 0 and x < 0 separately
and put it back together using some boundary condition. Denoting with ψ+(x) the solution
for x > 0 and with ψ−(x) the one for x < 0 we may write

∂2
xψ±(x) = (σx∓ E)mψ±(x). (4.3)

Introducing y = (±σx− E)m(σm)−
2
3 we have dy = ±(σm)

1
3dx and thus

∂2
yψ±(y)− yψ±(y) = 0. (4.4)

The solutions of this differential equation are the so called Airy functions Ai(y) and Bi(y) of
which only Ai(y) is normalizable. So we have the following solutions in the two regions:

ψ±(x) = CAi

[

(σm)
1
3

(

±x− E

σ

)]

, (4.5)

17
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Figure 4.1: Ground state: wave function for σ = m = 1.
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Figure 4.2: First excited state: wave function for σ = m = 1.

where normalization fixes the factor C. The energy spectrum is determined through the
boundary condition at x = 0. One sees from the original equation (4.2) that the solution must
be twice differentiable where the second derivative has a cusp at x = 0. Parity symmetry
only allows even or odd solutions so we have the boundary condition ψ(x)|x=0 = 0 for the
odd solutions and ψ′(x)|x=0 for the even solutions. For σ = m = 1 the first few values
following from these boundary conditions are: (1.01879, 2.33811,3.2482,4.08795,4.8201). The
normalized wave functions for the ground state and the first excited state are shown in Fig. 4.1
and Fig. 4.2, respectively.

Since we will later on use this method, let’s show that in this case one may solve the
problem in a different way. We again consider the equation separately for x > 0 and x < 0:

(
p2

m
± σx

)

ψ±(x) = Eψ±(x). (4.6)

Instead of solving these two equations as before, we first go into momentum space where they
read

(
p2

m
± iσ∂p

)

ψ̃±(p) = Eψ̃±(p), (4.7)
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and lead to the following first order differential equation:

∂pψ̃±(p) = ∓
i

σ

(

E − p2

m

)

ψ̃±(p), (4.8)

which has the unique solution

ψ̃±(p) = ψ0 exp

(

∓ i

σ

(

Ep− p3

3m

))

. (4.9)

Transforming back to coordinate space we obtain

ψ±(x) =
ψ0

π

∫ ∞

0
cos

(
p3

3σm
± p

(

x∓ E

σ

))

dp

= ψ0(σm)
1
3Ai

[

±(σm)
1
3

(

x∓ E

σ

)]

, (4.10)

where ψ0 is determined through the normalization. This is the same solution as above.

4.2 Semi-Classical Non-Relativistic Calculation

The Bohr-Sommerfeld quantization condition is given by

J =

∮

p dx =

∫

T

pẋ dt = 2πn, (4.11)

where n is a positive integer and T is one period of motion. In this section we do the
calculation for the non-relativistic Schrödinger equation so that we afterwards may compare
with the non-relativistic limit of the result obtained in the relativistic calculation, which we
do in the next section. For simplicity we put m1 = m2, but the calculation may also be
carried out for m1 6= m2. The Hamiltonian in relative coordinates is given by (m1 = m2)

H =
p2

m
+ σ|x|. (4.12)

The equations of motion are

ẋ = {x,H} = ∂H

∂p
=

2p

m
,

ṗ = {p,H} = −∂H
∂x

= −σsgn(x), (4.13)

where sgn(x) denotes the sign function. For x > 0, x < 0 respectively, we have the following
solutions:

x±(t) =
1

m

(
∓σt2 + 2p(0)t

)
+ x(0),

p±(t) = ∓σt+ p(0). (4.14)

Choosing the initial conditions such that the two particles are furthest apart, one period of
motion has four parts. During the first part the two particles move towards each other until
they meet and we have x(T/4) = 0. In the second part we have the first part reversed: the
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Figure 4.3: Semi-classical vs. quantum mechanical calculation: spectrum from the
quantum mechanical calculation compared to the result of the semi-classical Bohr-Sommerfeld
approximation for σ = m = 1.

particles start at the same point and move away from each other until they are furthest apart
and we have the same situation as at the beginning only with the two particles interchanged.
The third part then corresponds to the first, and the fourth to the second only with particles
interchanged. The action integral J , however, is the same in all parts, since comparing first
and second part p and ẋ both change sign, which does not alter the integrand. Thus we only
need to integrate over the first quarter of a period and multiply it by four:

J =

∫

T

pẋ dt = 4

∫ T
4

0
pẋ dt. (4.15)

Starting with the two particles furthest apart means x(0) = xmax = H
σ
and p(0) = 0. Inserting

into x+(t) and setting x+(t) = 0 we have T
4 =

√
Hm
σ

. Thus we obtain

J = 4

∫
√
Hm
σ

0
(−σt)

(

−2σt

m

)

dt = 4

∫
√
Hm
σ

0

2σ2t2

m
dt =

8

3σm
(Hm)

3
2 . (4.16)

Applying the quantization condition we obtain the following spectrum:

En−1 =

(
9

16m
π2σ2n2

) 1
3

, n = 1, 2, . . . . (4.17)

We put En−1 because we denote the ground state energy by E0 and in the semi-classical
approximation n = 1, 2, . . . . In Fig. 4.3 the semi-classical spectrum is plotted against the
quantum mechanical spectrum we obtained in Section (4.1).

4.3 Semi-Classical Relativistic Calculation

For two relativistic particles interacting through a linear potential, we have the following
Hamiltonian as derived in Chapter 3:

H =
√

p2
1 +m2

1 +
√

p2
2 +m2

2 + σ|x1 − x2|. (4.18)
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Introducing relative and ”center of mass” coordinates x = x1− x2, p =
p1−p2

2 , P = p1 + p2 we
have

H =
1

2

√

(P + 2p)2 + 4m2 +
1

2

√

(P − 2p)2 + 4m2 + σ|x|. (4.19)

The equations of motion for the relative coordinates are

ẋ = {x,H} = P + 2p
√

(P + 2p)2 + 4m2

− P − 2p
√

(P − 2p)2 + 4m2

,

ṗ = {p,H} = −σsgn(x). (4.20)

For x > 0 we have the following solution

p(t) = −σt,

x(t) = − 1

2σ

(√

(P − 2σt)2 + 4m2 +

√

(P + 2σt)2 + 4m2

)

+ const. (4.21)

We again choose the initial condition such that x(0) = xmax, i.e. at the start the particles are
furthest apart. This sets the constant in x(t) to H

σ
. After a quarter of a period they meet

each other, after two quarters they have swapped places comparing to the start and after
three quarters they meet again. As in the non-relativistic case, all quarters give again the
same contribution. The value of T

4 is determined through x(t) = 0 and is given by

T

4
=
H

2σ

√

H2 − P 2 − 4m2

H2 − P 2
. (4.22)

We thus obtain

J = 4

∫ T
4

0
pẋ dt = 4

∫ T
4

0




σt (P + 2σt)

√

(P + 2σt)2 + 4m2

− σt (P − 2σt)
√

(P − 2σt)2 + 4m2



 dt. (4.23)

Introducing the rescaled variable s = 2σt and putting s0 = 2σ T
4 = H

√
H2−P 2−4m2

H2−P 2 we obtain

J =
1

σ

{(

s

√

(P + s)2 + 4m2 + s

√

(P − s)2 + 4m2

)∣
∣
∣
∣

s0

0

−
∫ s0

0

(√

(P + s)2 + 4m2 +

√

(P − s)2 + 4m2

)

ds

}

=
1

σ

{
(P + s)

2

√

(P − s)2 + 4m2 − (P − s)
2

√

(P + s)2 + 4m2

+2m2Arsh

[
P − s
2m

]

− 2m2Arsh

[
P + s

2m

]}∣
∣
∣
∣

s0

0

=
1

σ

{
(P + s0)

2

√

(P − s0)2 + 4m2 − (P − s0)
2

√

(P + s0)
2 + 4m2

+2m2Arsh

[
P − s0
2m

]

− 2m2Arsh

[
P + s0
2m

]}

= 2πn. (4.24)
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In the limit m→ 0 we have s0 = H and the above expression simplifies to

J =
1

2σ
((P +H)|P −H| − (P −H)|P +H|) . (4.25)

Since H > 0 and |H| > |P | we may write

J =
1

σ

(
H2 − P 2

)
=
M2

σ
, (4.26)

which yields the following spectrum for the ultra-relativistic case

Mn−1 =
√
2πσn, n = 1, 2, . . . . (4.27)

As above we put Mn−1 because we want to denote the ground state energy by M0. In general
we have not been able to show analytically that the quantization condition (4.24) is only on
M , i.e. that when inserting H2 = M2 + P 2, J is independent of P . However, up to machine
precision Mathematica tells us that this is indeed the case. Hence we may put P to zero. We
then have s0 =

√
M2 − 4m2 and

J =
1

σ

(

M
√

M2 − 4m2 − 4m2Arsh

[√
M2 − 4m2

2m

])

= 2πn. (4.28)

In general this equation can only be solved numerically. We may though have a look at the
non-relativistic limit. In order to do that we first need to know the expansion parameter. For
P = 0 we have p1 = P

2 + p = p and therefore

|ẋ1| =
∣
∣
∣
∣

∂H

∂p1

∣
∣
∣
∣
=

∣
∣
∣
∣
∣

p1
√

p2
1 +m2

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

p
√

p2 +m2

∣
∣
∣
∣
∣
. (4.29)

The particle velocity arrives at its maximum when the two particles meet, i.e. we have

|ẋ1|max −
M2 − 4m2

2M
. (4.30)

We may thus put M = 2m + ε and expand in terms of ε
m
. Keeping only terms up to

(
ε
m

) 3
2

we obtain

J =
8m2

3σ

( ε

m

) 3
2
= 2πn. (4.31)

So in the non-relativistic limit we have the following spectrum:

Mn−1 = 2m+

(
9

16m
π2σ2n2

) 1
3

, n = 1, 2, . . . , (4.32)

which is the same as we obtained in the semi-classical approximation for the non-relativistic
Schrödinger equation in Section (4.2).
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4.4 Hermite Function Expansion

After the semi-classical approximation we now want to tackle the problem fully quantum
mechanically. The difficulty of this problem arises from the kinetic terms with the square
root of p2 +m2. It is not at all clear how to treat this at the operator level. We concentrate
on the ultra-relativistic case of massless particles for which the Hamiltonian reads

H = |p1|+ |p2|+ σ|x1 − x2|. (4.33)

Again, we introduce relative and ”center of mass” coordinates x = x1 − x2, P = p1 + p2,
p = p1−p2

2 such that the Hamiltonian becomes

H =

∣
∣
∣
∣

P

2
+ p

∣
∣
∣
∣
+

∣
∣
∣
∣

P

2
− p
∣
∣
∣
∣
+ σ|x|. (4.34)

Going to the frame with zero total momentum we obtain the following equation

H|ψ〉 = (2|p|+ σ|x|)|ψ〉 = E|ψ〉. (4.35)

Introducing ε = E√
2σ
, q =

√
2
σ
p, y =

√
σ
2x the above equation simplifies to

H|ψ〉 = (|q|+ |y|)|ψ〉 = ε|ψ〉. (4.36)

This Hamiltonian is symmetric under exchange of the rescaled position y and the rescaled
momentum q. So the solutions of this equation must be the same in position space and
in momentum space, i.e. eigenfunctions under Fourier transformation. A complete set of
eigenfunctions of the Fourier transformation are the so called Hermite functions (for the
proof see Appendix C). The Fourier transform of

φn(y) =
1

√

2nn!
√
π
Hn(y) exp(−

y2

2
) (4.37)

is given by

φ̃n(q) =

√
2π

√

2nn!
√
π
(−i)nHn(q) exp(−

q2

2
), (4.38)

where Hn are the Hermite polynomials. Due to the symmetry of the Hamiltonian its eigen-
functions are a linear combination of Hermite functions to the same eigenvalue. Our strategy
is thus to calculate matrix elements of the form

Tnm = 〈φn|H|φm〉 = 〈φn||q||φm〉+ 〈φn||y||φm〉 (4.39)

up to a certain order and to then diagonalize the matrix. The first term may be calculated in
position space and the second in momentum space if one takes into account the eigenvalues,
i.e. we have

Tnm =

∫ ∞

−∞
φn(y)(|q|+ |y|)φm(y)dy

=

∫ ∞

−∞
φn(y)|y|φm(y)dy +

1

2π

∫ ∞

−∞
(i)nφ̃n(q)|q|(−i)mφ̃m(q)dq. (4.40)
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So we need to calculate integrals of the form

Inm =

∫ ∞

−∞
|x|Hn(x)Hm(x) exp(−x2)dx, (4.41)

which are different from zero only if n and m are both even or odd. In the even case we
obtain

I2n2m =

∫ ∞

0
2xH2n(x)H2m(x) exp(−x2)dx = −

∫ ∞

0
(∂x exp(−x2))H2n(x)H2m(x)dx

= − exp(−x2)H2n(x)H2m(x)
∣
∣
∞
0

+

∫ ∞

0
exp(−x2) ((∂xH2n(x))H2m(x) +H2n(x)(∂xH2m(x))) dx. (4.42)

Since ∂xHn(x) = 2nHn−1(x) we obtain

I2n2m =

∫ ∞

0
exp(−x2) (4nH2n−1(x)H2m(x) + 4mH2n(x)H2m−1(x)) dx

+H2n(0)H2m(0). (4.43)

Using H2n(x) = (−1)n22nn!L
− 1

2
n (x2) and H2m−1(x) = (−1)m−122(m−1)+1(m− 1)!xL

1
2
m−1(x

2),
where Lαn(x) are the generalized Laguerre polynomials, and putting z = x2 leads to

I2n2m = (−1)m+n−122n+2mm!n!

∫ ∞

0
exp(−z)

(

L
1
2
n−1(z)L

− 1
2

m (z) + L
− 1

2
n (z)L

1
2
m−1(z)

)

dz

+H2n(0)H2m(0). (4.44)

This integration may be carried out to give

I2n2m = H2n(0)H2m(0) + 22n+2mm!n!

((
n− 1

2

m

)(
m− 1

2

n− 1

)

+

(
n− 1

2

m− 1

)(
m− 1

2

n

))

, (4.45)

which may be simplified to

I2n2m = 22m+2nΓ

(
2n

2
+

1

2

)

Γ

(
2m

2
+

1

2

)
cos
(
π
2 (2n− 2m)

)

π (1− (2m− 2n)2)

(
(2m− 2n)2 + 2n+ 2m

)

+H2n(0)H2m(0). (4.46)

The same calculation in the odd case leads to

I(2n+1)(2m+1) = 2(2n+1)+(2m+1)
cos
(

π
(

(2n+1)−(2m+1)
2

))

π
(

1− ((2n+ 1)− (2m+ 1))2
)(2n+ 1)(2m+ 1)

Γ

(

n+
1

2

)

Γ

(

m+
1

2

)

. (4.47)

Taking into account the eigenvalue of the Hermite functions under Fourier transformation
and the normalization factor, we get the following results for the matrix elements in the even
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Table 4.1: Eigenvalues for P = 0 and σ = 1. The order is given by the degree of the
Hermite function up to which matrix elements were calculated.

Order E0 E1 E2 E3 E4

20 1.562065 3.157103 3.922112 4.709790 5.307030

50 1.561470 3.156936 3.921421 4.709372 5.305028

80 1.561426 3.156931 3.921371 4.709357 5.304983

100 1.561415 3.156930 3.921362 4.709356 5.304974

300 1.561399 3.156930 3.921351 4.709354 5.304964

500 1.561398 3.156930 3.921350 4.709354 5.304964

1000 1.561397 3.156930 3.921350 4.709354 5.304963

and odd case:

T2n2m =
1 + (i)2n(−i)2m

√

22n+2m(2n)!(2m)!π

(

H2n(0)H2m(0) + 22n+2mΓ

(

n+
1

2

)

Γ

(

m+
1

2

)
cos (π(n−m))

π (1− (2n− 2m)2)

(
(2n− 2m)2 + 2n+ 2m

)
)

,

T(2n+1)(2m+1) =
1 + (i)2n+1(−i)2m+1

√

2(2n+1)+(2m+1)(2n+ 1)!(2m+ 1)!π

(

Γ

(

n+
1

2

)

Γ

(

m+
1

2

)

2(2n+1)+(2m+1) cos (π(n−m))

π (1− (2n− 2m)2)
(2n+ 1)(2m+ 1)

)

. (4.48)

Using these formulae one may generate a large matrix rather efficiently. The more difficult
problem is to diagonalize the matrix. For this we used the NAG routine F02FCF. The results
for the energy E =

√
2σε in the case of σ = 1 are listed in Table 4.1. The eigenvalues converge

surprisingly quickly.

The question if they are Lorentz invariant, however, remains since we have not been able
to show that the Poincaré algebra also closes at the quantum level. Thus we also have to do
this calculation for non-zero total momentum, i.e. for the Hamiltonian

H =

∣
∣
∣
∣

P

2
+ p

∣
∣
∣
∣
+

∣
∣
∣
∣

P

2
− p
∣
∣
∣
∣
+ σ|x|. (4.49)

Doing the same rescaling as above ( ε = E√
2σ
, q =

√
2
σ
p, y =

√
σ
2x) we obtain

H|ψ〉 =
(∣
∣
∣
∣

P

2
√
2σ

+
q

2

∣
∣
∣
∣
+

∣
∣
∣
∣

P

2
√
2σ
− q

2

∣
∣
∣
∣
+ |y|

)

|ψ〉 = ε|ψ〉 (4.50)

This Hamiltonian is of course not invariant under Fourier transformation anymore. Since,
however, the Hermite functions form a complete basis of square integrable functions we may
still expand in them and hope that convergence is reasonable. The problem is that now
the integrals may not be solved analytically as easily as before. So to calculate each matrix
element we have to integrate. We did this using a numerical integration routine from the
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Table 4.2: Dependence of E0 on the total momentum P . The last row gives the values
calculated from the ground state energy through the relativistic energy-momentum dependence.
As ground state energy we took the one from the order 80 calculation.

Order P = 0 P = 1 P = 2 P = 3 P = 4

20 1.56207 1.92513 2.65264 3.50520 4.41298

50 1.56147 1.92481 2.65216 3.50440 4.41178

80 1.56143 1.92478 2.65212 3.50434 4.41170√
M2 + P 2 1.56143 1.85420 2.53733 3.38202 4.29396

NAG library (D01AMF) and to determine the eigenvalues we used the same routine as above.
Unfortunately round-off errors in the integration routine prevent us from going to such high
order as in the zero momentum frame, but convergence is still good enough so that we can
already be certain at this order about the main result, namely, that the spectrum is not
Lorentz invariant. In Table 4.2 we have the results for E (again in the case σ = 1) for
different values of the total momentum P and different orders of calculation. We see that
convergence is pretty good. The discrepancy between the values obtained through the matrix
element calculation for non-zero P (first three rows) and the values obtained by the relativistic
energy-momentum relation E2 =M2+P 2 (last row) is too big that convergence could account
for it.

This expansion in terms of Hermite functions requires no boundary condition, the eigen-
values are real, and the eigenfunctions orthogonal. So one point of view is that this solves
the problem completely and proves that we have a Poincaré anomaly here. The other point
of view is that this description is somehow too rigid, i.e. that there is some degree of freedom
which determines the boundary condition at the origin and which is set to some particular
value with this method (i.e. ψ(0) = 0, ψ′(0) = 0, respectively).

4.5 Auxiliary Fresnel Functions

In Section 4.1 we solved the non-relativistic Schrödinger equation in two different ways. Let’s
now apply the second method also to the relativistic case, i.e. we consider the equation for
x > 0 and x < 0 separately, solve it in momentum space, and then Fourier transform back to
position space to obtain the solution in position space. The main problem is then to find the
right boundary condition.

In relative coordinates we have the following Hamiltonian

H =

∣
∣
∣
∣

P

2
+ p

∣
∣
∣
∣
+

∣
∣
∣
∣

P

2
− p
∣
∣
∣
∣
+ σ|x|. (4.51)

We consider the time independent Schrödinger equation for x > 0 and x < 0 separately, i.e.
we have

Hψ±(x) =

(∣
∣
∣
∣

P

2
+ p

∣
∣
∣
∣
+

∣
∣
∣
∣

P

2
− p
∣
∣
∣
∣
± σx

)

ψ±(x). (4.52)
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In momentum space this is

Hψ̃±(p) =

(∣
∣
∣
∣

P

2
+ p

∣
∣
∣
∣
+

∣
∣
∣
∣

P

2
− p
∣
∣
∣
∣
± iσ∂p

)

ψ̃±(p) = Eψ̃±(p), (4.53)

which leads to the following differential equation

∂ψ̃±(p)

∂p
= ∓ i

σ

(

E −
∣
∣
∣
∣

P

2
+ p

∣
∣
∣
∣
−
∣
∣
∣
∣

P

2
− p
∣
∣
∣
∣

)

ψ̃±(p). (4.54)

This equation has of course the following solution

ψ̃±(p) = ψ0 exp

(

∓ i

σ

∫ p

0

(

E −
∣
∣
∣
∣

P

2
+ p′

∣
∣
∣
∣
−
∣
∣
∣
∣

P

2
− p′

∣
∣
∣
∣

)

dp′
)

. (4.55)

In order to obtain the explicit solution we must perform the integration in the exponent. This
depends on the value of P

2 :

ψ̃±(p) =







ψ0 exp
(

∓ i
σ

(

Ep− p2 − P 2

4

))

: p > P
2

ψ0 exp
(
∓ i

σ
(E − P ) p

)
: |p| ≤ P

2

ψ0 exp
(

∓ i
σ

(

Ep+ p2 + P 2

4

))

: p < −P
2

. (4.56)

We now obtain ψ±(x) through Fourier transformation

ψ±(x) =
ψ0

2π

(
∫ −P

2

−∞
exp

(

∓ i

σ

(

Ep+ p2 +
P 2

4

)

+ ipx

)

dp

+

∫ P
2

−P
2

exp

(

∓ i

σ
(E − P ) p+ ipx

)

dp

+

∫ ∞

P
2

exp

(

∓ i

σ

(

Ep− p2 − P 2

4

)

+ ipx

)

dp

)

=
ψ0

2π

(
∫ ∞

P
2

exp

(

∓ i

σ

(

−Ep+ p2 +
P 2

4

)

− ipx
)

dp

+2

∫ P
2

0
cos

(

∓ 1

σ
(E − P ) p+ px

)

dp

+

∫ ∞

P
2

exp

(

∓ i

σ

(

Ep− p2 − P 2

4

)

+ ipx

)

dp

)

=
ψ0

2π

(

2

∫ ∞

P
2

cos

(

∓ 1

σ

(

Ep− p2 − P 2

4

)

+ px

)

dp

+2

∫ P
2

0
cos

(

∓ 1

σ
(E − P ) p+ px

)

dp

)

. (4.57)

Using
∫

cos
(
ax2 + 2bx+ c

)
dx =

√
π

2a

(

cos

(
b2 − ac
a

)

C

[√

2

aπ
(ax+ b)

]

+sin

(
b2 − ac
a

)

S

[√

2

aπ
(ax+ b)

])

, (4.58)
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where C and S are the so called Fresnel functions

C(x) =

∫ x

0
cos
(π

2
t2
)

dt, S(x) =

∫ x

0
sin
(π

2
t2
)

dt, (4.59)

we obtain for ψ±(x)

ψ±(x) =
ψ0√
π

√
σ

2

{

cos

(

σ

4

(
E

σ
∓ x
)2

− P 2

4σ

)(

1

2
− C

[√

2σ

π

(
P

2σ
− 1

2

(
E

σ
∓ x
))])

+sin

(

σ

4

(
E

σ
∓ x
)2

− P 2

4σ

)(

1

2
− S

[√

2σ

π

(
P

2σ
− 1

2

(
E

σ
∓ x
))])

+

√

2

πσ

sin
(
P
2σ (E − P )∓ Px

2

)

1
σ
(E − P )∓ x

}

.(4.60)

For P = 0 the energy eigenvalue E equals the rest mass M because of E2 = M2 + P 2. So
in order to remind us that we are in the rest frame of the relativistic calculation we write M
instead of E whenever we put P = 0. We do this now and obtain

ψ±(x) =
ψ0√
π

√
σ

2

{

cos

(

σ

4

(
M

σ
∓ x
)2
)(

1

2
− C

[√

2σ

π

(

−1

2

(
M

σ
∓ x
))])

+ sin

(

σ

4

(
M

σ
∓ x
)2
)(

1

2
− S

[√

2σ

π

(

−1

2

(
M

σ
∓ x
))])}

. (4.61)

Introducing z± = −
√

σ
2π

(
M
σ
∓ x
)
we may write (again for P = 0)

ψ±(x) =
ψ0√
π

√
σ

2

{

cos
(π

2
z2
±

)(1

2
− C[z±]

)

+ sin
(π

2
z2
±

)(1

2
− S[z±]

)}

=
ψ0√
π

√
σ

2
g(z±), (4.62)

where g(z) is one of the two auxiliary Fresnel functions, with the other being

f(z) = cos
(π

2
z2
)(1

2
− S[z]

)

− sin
(π

2
z2
)(1

2
− C[z]

)

. (4.63)

The two auxiliary Fresnel functions g(z) and f(z) are connected through their derivatives

dg(z)

dz
= πzf(z)− 1,

df(z)

dz
= −πzg(z). (4.64)

The difficult question now is what boundary condition one has to impose at x = 0 and
how this boundary condition depends on the total momentum P . The Hamiltonian has parity
symmetry, so the wave functions must be either even or odd. Since ψ−(−x) = ψ+(x), one
may easily construct even and odd functions. One possible route to follow is to use the
symmetry under Fourier transformation for P = 0 that we described in the last section. One
can show (see Appendix D) that symmetry under Fourier transformation implies ψ(0) = 0
for odd functions and ψ′(0) = 0 for even functions. This is true as long as ψ(x) is a square
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integrable function, which is the case for the auxiliary Fresnel functions. So we have the
following boundary condition for odd functions:

cos

(
M2

4σ

)(
1

2
− C

[

− M√
2πσ

])

+ sin

(
M2

4σ

)(
1

2
− S

[

− M√
2πσ

])

= 0. (4.65)

For large values of M the Fresnel functions go to 1
2 , so the condition simplifies to

tan

(
M2

4σ

)

= −1, (4.66)

which leads to the following spectrum

M =

√

2πσ

(

2n+
3

2

)

, n = 0, 1, 2, . . . . (4.67)

For the even functions the condition is ψ′(0) = 0 which implies

−M
2

cos

(
M2

4σ

)(
1

2
+ S

[
M√
2πσ

])

+
M

2
sin

(
M2

4σ

)(
1

2
+ C

[
M√
2πσ

])

−
√

σ

2π
= 0. (4.68)

For large M this simplifies to

tan

(
M2

4σ

)

= 1, (4.69)

which leads to the following spectrum

M =

√

2πσ

(

2n+
1

2

)

, n = 0, 1, 2, . . . . (4.70)

So altogether we obtain for large values of M the following spectrum

Mn =

√

2πσ

(

n+
1

2

)

, n = 0, 1, 2, . . . . (4.71)

So at least in the classical limit this spectrum is consistent with the semi-classical approx-
imation. To obtain the low lying part of the spectrum one needs to numerically solve the
equations above. In the case of σ = 1 we get (1.84644,3.05106,3.96079,4.69371,5.31788). One
important check whether this route is correct is to see whether the eigenfunctions for these
eigenvalues are orthogonal and unfortunately this is not the case. The scalar products are all
of the order of 10−2 − 10−3. So assuming symmetry under Fourier transformation for P = 0
does not lead to an orthogonal set of eigenfunctions, hence the Hamiltonian with this bound-
ary condition in the frame with P = 0 is not self-adjoint. When defined on x ∈ (−∞,∞), the
operator is at least hermitian as one sees from the following calculation:

〈Hψ1|ψ2〉 = 〈2|p|ψ1|ψ2〉+ 〈σ|x|ψ1|ψ2〉

=

∫ ∞

−∞
(2|p|ψ1(p))

∗ψ2(p)dp+

∫ ∞

−∞
(σ|x|ψ1(x))

∗ψ2(x)dx

=

∫ ∞

−∞
ψ∗1(p)2|p|ψ2(p)dp+

∫ ∞

−∞
ψ1(x)

∗σ|x|ψ2(x)dx

= 〈ψ1|2|p||ψ2〉+ 〈ψ1|σ|x||ψ2〉
= 〈ψ1|Hψ2〉. (4.72)
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Details on the difference between hermiticity and self-adjointness are to be found in Ap-
pendix E. The fact that assuming Fourier symmetry does not lead to self-adjointness has
two possible explanations. One is that we do not have Fourier symmetry, i.e. that we need a
self-adjoint extension of the operator which breaks Fourier symmetry, or perhaps the method
of solving separately for x > 0 and x < 0 does not lead to a correct solution.

Since it is not clear for instance how |p| acts in position space, we do not attempt to answer
the question whether there is a boundary condition for which the Hamiltonian becomes self-
adjoint, but we simply demand that the eigenfunctions be orthogonal and see if we can extract
a spectrum from that. If we denote with s(M1,M2) the scalar product of ψ+(x) withM =M1

and ψ+(x) with M =M2, we get the following system of conditions:

s(M1,M2) = 0, s(M1,M3) = 0, s(M2,M3) = 0. (4.73)

So these three equations should have common solutions if there is an orthogonal set of ψ+(x)
for different values of M . We have made many attempts to find such solutions, first with a
routine that tried to solve the above system and later with one that miminizes the following
function:

S(M1,M2,M3) = s(M1,M2)
2 + s(M1,M3)

2 + s(M2,M3)
2. (4.74)

With the first method we got no solution at all but with the second one we at least got one
triple of values that brought S down as far as 10−20. Unfortunately, when looking for the
next value which is orthogonal to the three values found (this now is simple one-dimensional
root finding), we got discrepancies of M4 of the order of 10−3. Now this is very small and
made us go through all of the calculation again looking for possible errors in the numerics,
but unfortunately they are four to five orders of magnitude smaller than the discrepancy.

The method used in this section which lead to the auxiliary Fresnel functions as solutions
gives the correct result in the non-relativistic case and thus was definitely worth trying. It
is somehow less restrictive than the matrix element calculation in Section 4.4, for it requires
(or allows for, depending on the point of view) a boundary condition which one must try to
choose in a particular way to make the operator self-adjoint. The fact that it is not possible to
find an orthogonal set of these auxiliary Fresnel functions leads to the conclusion that either
the operator cannot be made self-adjoint or that the method used is not correct in this case.



Chapter 5

Linear Confining Potential on the

Light Cone

5.1 Notation and Conventions

Before we consider in detail light cone coordinates, let’s first have a look at the usual Cartesian
space-time coordinates. For a more extensive treatment we refer to [1]. As we mentioned
earlier, the task of developing relativistic quantum mechanics is reduced to the question of
finding expressions for the generators that satisfy the Poincaré algebra, which in general form
reads

[Kµν ,Kρσ] = i(gνρKµσ − gµρKνσ + gµσKνρ − gνσKµρ),

[Kµν , Pρ] = i(gνρPµ − gµρPν), [Pµ, Pν ] = 0. (5.1)

The ten generators are all functions of the coordinates xµ and momenta pµ of the particles.
In the instant form the initial conditions are specified on the hypersurface x0 = 0. With this
p0 = ∂L

∂x0
no longer has a meaning and thus needs to be eliminated from the expressions for

the ten generators. In the less familiar so called front form the initial conditions are specified
on the hypersurface x0 − x1 = 0. It is now convenient to introduce new, so called light cone
coordinates (we concentrate on the case for one space dimension):

x+ =
1√
2
(x0 + x1), x− =

1√
2
(x0 − x1), p+ =

1√
2
(p0 + p1), p− =

1√
2
(p0 − p1). (5.2)

In these coordinates the initial conditions are specified on the hypersurface x− = 0 and here
now p+ no longer has a meaning and needs to be eliminated from the expressions for the
generators. The metric tensor has the form

g++ = g−− = 0, g+− = g−+ = 1. (5.3)

The canonical commutation relations of the particle coordinates still have the same form

[xµ, xν ] = [pµ, pν ] = 0, [pµ, xν ] = igµν . (5.4)

Written out we have [p−, x+] = i. The commutation relations read

[P+, P−] = 0, [K+−, P+] = iP+, [K+−, P−] = −iP−. (5.5)

31
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The question now is how to implement the confining potential for two particles on the light
cone. It is straightforward (though a bit lengthy) to show that the following generators satisfy
the commutation relations

P+ =
m2

1

2p1−
+

m2
2

2p2−
+ σ |x1+ − x2+| ,

P− = p1− + p2−,

K+− =
1

2
(x1+p1− + p1−x1+ + x2+p2− + p2−x2+) . (5.6)

For details on how one arrives at these expressions we refer to [1], which, however, uses a
different convention for the metric tensor. At this point we also want to pay attention to work
by Bardeen, Bars, Hanson, and Peccei, who have treated very similar problems, however, from
a string point of view [8–10]. We regain the spectrum through

2P+P− = 2

(
1√
2
(H + P )

1√
2
(H − P )

)

= H2 − P 2 =M2. (5.7)

In light cone coordinates P+ plays the role of the Hamiltonian. If one can solve the eigenvalue
problem for P+ the spectrum then is determined by the above equation. So the equation to
be solved is (

m2
1

2p1−
+

m2
2

2p2−
+ σ |x1+ − x2+|

)

|ψ〉 = G|ψ〉. (5.8)

We introduce P− = p1−+ p2−, p− = p1−−p2−
2 and x+ = x1+− x2+. The Hamiltonian P+ now

has the form (m1 = m2 = m)

P+ =
m2

2

(

1
P−
2 + p−

+
1

P−
2 − p−

)

+ σ|x+| = 2m2

(
P−

P 2
− + 4p2

−

)

+ σ|x+|. (5.9)

For the commutator of p− and x+ we get

[p−, x+] =
1

2
[p1− − p2−, x1+ − x2+] =

1

2
([p1−, x1+] + [p2−, x2+]) = i. (5.10)

There is an important difference to usual coordinates where one has [p, x] = −i. This does
not change things much, we just have to be aware of it. Another important difference to
the usual coordinates is that the momenta are no longer unrestricted but (only allowing for

positive energies) we now have pi0 =
√

m2 + p2
i1 ≥ m and thus pi− = pi0 − pi1 > 0 for

m > 0. From this follows that P− = p1− + p2− > 0. Further since p1− = P−
2 + p− > 0 and

p2− = P−
2 − p− > 0 we have |p−| < P−

2 for m > 0. The boundaries for |p| are different for
different m, but for all positive values of m the above restrictions hold. In the case of m = 0
we have P− ≥ 0 and |p−| ≤ P−

2 . So the relative momentum p− is bounded and the boundary
depends on the total momentum P−.

5.2 Semi-Classical Treatment

Let’s now solve the problem semi-classically and show that the spectrum obtained is the same
as in the semi-classical calculation in the usual coordinates. We do the calculation differently
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Figure 5.1: Phase space: path in phase space for the linear confining potential.

than in the usual coordinates. Instead of solving the equations of motion and integrating
p−ẋ+ over time, we directly do the integral over the path in phase space, i.e.

J =

∮

p− dx+. (5.11)

We may do this because — in contrast to the usual coordinates— one can resolve in this case
H with respect to p− and give the integration boundary explicitly. We obtain for p2

− as a
function of x+

p2
−(x+) =

P 2
−
4

(

1− 2m2

P− (H − σ|x+|)

)

. (5.12)

This closed curve crosses the x+-axis at ±|x+max| = 1
σ

(

H − 2m2

P−

)

. The maximum value of

p− it can reach is p−max = P−
2

(

1− 2m2

P−H

)

= P−
2

(

1− 4m2

M2

)

, which goes to P−
2 in the massless

limit. The path is shown in Fig. 5.2. Since the path has parity symmetry with respect to x+

and p−, we need to perform the following integral

J = 2P−

∫ x+max

0

√

1− 2m2

P− (H − σ|x+|)
dx+ (5.13)

Also using 2HP− =M2 we obtain

J =
1

σ

(

M
√

M2 − 4m2 − 4m2 ln

(
1

2m

√

M2 − 4m2 +
M

2m

))

=
1

σ

(

M
√

M2 − 4m2 − 4m2Arsh

(√
M2 − 4m2

2m

))

. (5.14)

This is exactly the same result as we obtained in the semi-classical calculation (4.28) in the
usual coordinates. In the limit m→ 0 we thus of course also have the same result, namely

Mn−1 =
√
2πσn, n = 1, 2, . . . . (5.15)
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5.3 Quantum Mechanical Approach

We deal with the Hamiltonian

P+ = 2m2 P−
P 2
− − 4p2

−
+ σ|x+|, (5.16)

however, with the complications that [p−, x+] = i, P− > 0 and p− is bounded, where the
boundary depends on m and P−. Now the restriction of p− would imply, that x+ is quantized!
However, since these restrictions are the result of classical kinematic calculations, we take the
point of view that the classically forbidden regions might have non-vanishing probability at
the quantum level. Thus we assume that x+ and p− are connected through the usual Fourier
transform and we may thus apply the already twice used method of solving the problem
separately for x+ > 0 and x+ < 0. We concentrate on x+ > 0 where we have

(

2m2 P−
P 2
− − 4p2

−
+ σx+

)

ψ+(x+) = Gψ+(x+). (5.17)

Written in momentum space this reads (since [p−, x+] = i we have x+ = −i∂p− )

(

2m2 P−
P 2
− − 4p2

−
− i∂p−

)

ψ̃+(p−) = Gψ̃+(p−). (5.18)

Thus we have the following first order differential equation

∂p−ψ̃+(p−) =
i

σ

(

G− 2m2 P−
P 2
− − 4p2

−

)

ψ̃+(p−), (5.19)

with the solution

ψ̃+(p−) = ψ0 exp

(
i

σ

∫ p−

0

(

G− 2m2 P−
P 2
− − 4q2

)

dq

)

. (5.20)

For the integral we obtain

∫ p−

0

(

G− 2m2 P−
P 2
− − 4q2

)

dq =







Gp− − m2

2 ln

(

1+
2p−
P−

1− 2p−
P−

)

: |p−| < P−
2

Gp− − m2

2 ln

(
2p−
P−

−1

1+
2p−
P−

)

: |p−| > P−
2

=







Gp− −m2Arth
(

2p−
P−

)

: |p−| < P−
2

Gp− −m2Arcth
(

2p−
P−

)

: |p−| > P−
2

. (5.21)

So we have

ψ̃+(p−) =







ψ0 exp
(
i
σ

(

Gp− −m2Arth
(

2p−
P−

)))

: |p−| < P−
2

ψ0 exp
(
i
σ

(

Gp− −m2Arcth
(

2p−
P−

)))

: |p−| > P−
2

. (5.22)
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To obtain ψ+(x) we need to inverse Fourier transform ψ̃+(p). Due to [p−, x+] = i we have
exp(−ix+p−) instead of exp(ix+p−). We obtain

ψ+(x) =
ψ0

2π





∫ −P−
2

−∞
exp

(
i

σ

(

(G− x+)p− −m2Arcth

(
2p−
P−

)))

dp−

+

∫ P−
2

−P−
2

exp

(
i

σ

(

(G− x+)p− −m2Arth

(
2p−
P−

)))

dp−

+

∫ ∞

P−
2

exp

(
i

σ

(

(G− x+)p− −m2Arcth

(
2p−
P−

)))

dp−

)

=
ψ0

π





∫ P−
2

0
cos

(
i

σ

(

(G− x+)p− −m2Arth

(
2p−
P−

)))

dp−

+

∫ ∞

P−
2

cos

(
i

σ

(

(G− x+)p− −m2Arcth

(
2p−
P−

)))

dp−

)

. (5.23)

Unfortunately we have not been able to solve this integral and thus we stop here with our
attempt to solve the linear confining potential on the light cone fully quantum mechanically.





Summary and Conclusion

We have seen that the only relativistic invariant interaction of point particles in one dimension
is given by a linear confining potential. Subsequently we have tried to quantize this theory
in order to obtain a relativistically invariant quantum theory for interacting particles. In
usual coordinates we have not been able to prove Poincaré invariance at the quantum level
explicitly and all attempts to solve the problem and show that the spectrum is relativistically
invariant have led to the conclusion that either the Hamiltonian has no self-adjoint extension
or that the system is not invariant on the quantum level, i.e. that we have an anomaly.
In light cone coordinates, however, the Poincaré algebra closes and we have been able to
show that in a semi-classical calculation the results agree with the ones obtained in a semi-
classical calculation in usual coordinates. Unfortunately, when trying to solve the problem
fully quantum mechanically, we faced serious problems originating from the fact that in light
cone coordinates the momentum is restricted. Perhaps one might gain further insight into this
subject by going in detail into issues such as self-adjoint extensions. At this point, however,
it seems that an easy access to relativistic bound state problems does not exist.

Apparently, there are similar problems in bosonic string theory. The bosonic string is only
free of anomalies in 26 space-time dimensions. Even in d = 26, i.e. when the anomalies cancel,
there is still a tachyon, and thus an inconsistency in the theory. Adding supersymmetry, the
string theory becomes anomaly-free in 10 space-time dimensions and there is no tachyon.
Since in the massless limit two particles with a linear confining potential are basically the
same as a string, it would be interesting to have a look at the calculation leading to the result
that the bosonic string is anomaly-free only in one particular dimension and to see, whether
this could be adapted to our problem. This would perhaps lead to a deeper understanding of
the problems discussed in this thesis.
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Appendix A

Derivation of the Poincaré Algebra

We use the following conventions for the metric tensor gµν :

g00 = 1, g11 = g22 = g33 = −1. (A.1)

The condition on a homogeneous Lorentz transformation is

gµνΛ
µ
ρΛ

ν
σ = gρσ. (A.2)

Inserting an infinitesimal transformation

Λµ
ν = δµν + ωµν (A.3)

into the condition yields

gµν(δ
µ
ρ + ωµρ)(δ

ν
σ + ωνσ) = gρσ. (A.4)

Only keeping term of order ω we obtain

gρσ + ωσρ + ωρσ = gρσ, (A.5)

which implies

ωρσ = −ωσρ. (A.6)

A Poincaré transformation (an inhomogeneous Lorentz transformation) has the general
form

x′µ = Λµ
νx

ν + aµ. (A.7)

Performing two such transformations

x′µ = Λ1
µ
νx

ν + a1
µ, x′′µ = Λ2

µ
νx
′ν + a2

µ (A.8)

in a row yields

x′′µ = Λ2
µ
ν(Λ1

ν
ρx

ρ + a1
ν) + a2

µ = Λ2
µ
νΛ1

ν
ρx

ρ + Λ2
µ
νa1

ν + a2
µ. (A.9)

Hence, for two successive Poincaré transformations we have the following composition law:

U(Λ2, a2)U(Λ1, a1) = U(Λ2Λ2,Λ2a1 + a2). (A.10)

41



42 Appendix A. Derivation of the Poincaré Algebra

An infinitesimal transformation may be written as

U(1 + ω, ε) = 1− i

2
ωµνJ

µν − iεµPµ. (A.11)

In order to derive the commutation relations we use the commutator of two infinitesimal
transformations. First we use the composition law for two infinitesimal transformations,

U12 = U(1 + ω2, ε2)U(1 + ω1, ε1)− U(1 + ω1, ε1)U(1 + ω2, ε2)

= U(1 + ω1 + ω2 + ω2ω1, ε1 + ε2 + ω2ε1)

−U(1 + ω1 + ω2 + ω1ω2, ε1 + ε2 + ω1ε2). (A.12)

Inserting the expansion yields

U12 = − i
2
(ω2ω1)µνJ

µν +
i

2
(ω1ω2)µνJ

µν + i(ω1ε2)µP
µ − i(ω2ε1)µP

µ. (A.13)

Next we calculate the same commutator but this time only using the infinitesimal expansion
and not the composition law

U12 = (1− i

2
ω2µνJ

µν − iε2µPµ)(1− i

2
ω1ρσJ

ρσ − iε1ρP ρ)

−(1− i

2
ω1ρσJ

ρσ − iε1ρP ρ)(1− i

2
ω2µνJ

µν − iε2µPµ)

=
1

4
ω1ρσω2µν(J

ρσJµν − JµνJρσ)− 1

2
ω2µνε1ρ(J

µνP ρ − P ρJµν)

−1

2
ω1ρσε2µ(P

µJρσ − JρσPµ) +
1

2
ε1ρε2µ(P

ρPµ − P µP ρ). (A.14)

Comparing the coefficients in the two expansions of U12 one obtains the commutation relations
for the generators. From the terms with ω1ω2 we obtain

[Jµν , Jρσ] = i(gνρJµσ − gµρJνσ + gµσJνρ − gνσJµρ). (A.15)

The terms with ω1ε2 and ω2ε1 yield

[P ρ, Jµν ] = i(gρµP ν − gρνPµ). (A.16)

Finally, from the ε1ε2 term we get
[Pµ, P ν ] = 0. (A.17)

Introducing the following notation

H = P 0, ~P = (P 1, P 2, P 3), ~J = (J23, J31, J12), ~K = (J10, J20, J30), (A.18)

one obtains the usual commutation relations of the Poincaré algebra as written down in
Chapter 1.



Appendix B

Some Facts about Lie Groups

In order to state a theorem on the number of Casimir operators we first want to give some
definitions (for more details see [6, 11])

• A Lie Group is a group that is at the same time a finite dimensional manifold of the
differentiability class C2 in such a way that

µ : (x, y)→ xy : G×G→ G, (B.1)

ı : x→ x−1 : G→ G (B.2)

are C2 mappings.

• A Lie group G is said to be connected if for every two elements a1, a2 ∈ G there is a
continuous path (in parameter space) which connects them.

• A Lie algebra A is a vector space over a field K with a linear composition [ , ], such
that with Ji, Jk ∈ A also [Ji, Jk] ∈ A and the bracket (commutator) satisfies

[Ji, Jk] = −[Jk, Ji], (B.3)

[αJi + βJk, Jl] = α[Ji, Jl] + β[Jk, Jl], (B.4)

[Ji, [Jk, Jl]] + [Jl, [Ji, Jk]] + [Jk, [Jl, Ji]] = 0 (Jacoby identity). (B.5)

• A′ is a subalgebra of A if A′ ⊂ A and A′ is itself a Lie algebra.

• S ⊂ A is an invariant subalgebra if [Ji, Jk] ∈ S for each Ji ∈ S and Jk ∈ A.

• An algebra A or subalgebra S is said to be abelian if [Ji, Jk] = 0 for each Ji, Jk ∈ A or
S.

• An Algebra A is said to be simple if it has no invariant subalgebras besides A and {0}.

• An algebra A is said to be semi-simple if it does not contain an invariant abelian
subalgebra.

• The Rank of a Lie algebra is the maximum number of mutually commuting infinitesimal
generators.
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The commutation relations of a Lie algebra may be written as

[Xi, Xk] =
∑

l

clikXl, (B.6)

where the clik are the structure constants. One may define the Killing form gik as

gik :=
∑

l,n

cnilc
l
kn = gki. (B.7)

The theorem of Cartan then states:
A Lie algebra is semi-simple if and only if the determinant of the Killing form is different
from zero: det(gik) 6= 0.

We are now ready to state a theorem by Beltrametti and Blasi [12] on the number of Casimir
operators associated with any Lie Group. Let Nc denote the number of Casimir operators of
a Lie Group. We then have

Theorem: If the Lie algebra is semi-simple, i.e if det(gik) 6= 0, then Nc equals the Rank
of the Lie algebra. If the Lie algebra is non-semi-simple, i.e if det(gik) = 0, then

Nc = r − Rank

(
r∑

l=1

clikαl

)

, (B.8)

where r is the dimension of the Lie algebra and the αl are to be treated as independent vari-
ables.

The Poincaré algebra is non-semi-simple since (H,P1, P2, P3) form an invariant abelian sub-
algebra, as one easily sees from the commutation relations. In the one-dimensional case an
invariant abelian subalgebra is given by (H,P ).



Appendix C

Hermite Functions

In this appendix we want to prove that the Hermite functions are eigenfunctions of the Fourier
transformation and form a complete orthonormal set in the space L2 of square integrable
functions. The Hermite functions are given by

φn(x) = AHn(x) exp(−
x2

2
), (C.1)

where A is determined by normalization and Hn(x) is the Hermite polynomial of order n
which is defined as

Hn(x) = (−1)n exp(x2)

(
d

dx

)n

exp(−x2). (C.2)

We find

φ̃n(p) = (−1)nA
∫ ∞

−∞
exp(−ipx) exp

(

−x
2

2

)

exp(x2)

(
d

dx

)n

exp(−x2)dx

= (−1)nA
∫ ∞

−∞
exp

(

−ipx+
x2

2

)(
d

dx

)n

exp(−x2)dx

= (−1)nA
∫ ∞

−∞
exp

(
1

2
(x− ip)2 + p2

2

)(
d

dx

)n

exp(−(x− ip+ ip)2)dx (C.3)

Putting y = x− ip we obtain

φ̃n(p) = (−1)nA
∫ ∞−ip

−∞−ip
exp

(
p2

2

)

exp

(
y2

2

)(
d

dy

)n

exp(−(y + ip)2)dy. (C.4)

For y →∞ the integrand goes to zero and it has no poles. Thus we may move the integration
path back to the real axis. We find

φ̃n(p) = (−1)nA exp

(
p2

2

)∫ ∞

−∞
exp

(
y2

2

)

(−i)n
(
d

dp

)n

exp(−(y + ip)2)dy

= (i)nA exp

(
p2

2

)(
d

dp

)n ∫ ∞

−∞
exp

(

−p2 − 1

2
(y + 2ip)2

)

dy. (C.5)
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Now we put z = y+2ip and use the same argument as above concerning the path of integration.
This yields

φ̃n(p) = (i)nA exp

(
p2

2

)(
d

dp

)n

exp
(
−p2

)
∫ ∞

−∞
exp

(

−z
2

2

)

dz

=
√
2π(−i)nA exp

(

−p
2

2

)

(−1)n exp(p2)

(
d

dp

)n

exp(−p2)

=
√
2π(−i)nφn(p). (C.6)

So φn is indeed an eigenfunction of the Fourier transformation with eigenvalue (−i)n.
Instead of just going through the calculation one might instead use a different argument.

The Hermite functions are eigenfunctions to the following differential operator (harmonic
oscillator)

Dφ(x) = −∂2
xφ(x) + x2φ(x). (C.7)

This operator commutes with the Fourier transformation F

FDφ(x) = F(−∂2
xφ(x) + x2φ(x)) = p2φ̃(p)− ∂2

p φ̃(p)

= Dφ̃(p) = DFφ(x), (C.8)

so the two operators must have the same eigensystem and thus the Hermite functions are
eigenfunctions of the Fourier transformation.

The harmonic oscillator Hamiltonian is self-adjoint and thus its eigenfunctions form a com-
plete basis in L2. We may also show this explicitly, i.e. that if f ∈ L2 and 〈f |φn〉 = 0, ∀n
then f = 0. We may write xn for arbitrary n as

xn = αnHn + αn−1Hn−1 + · · ·+ α1H1 + α0H0. (C.9)

Since 〈f |φn〉 = 0, ∀n, we also have 〈f |xn exp
(

−x2

2

)

〉 = 0, ∀n, which written out reads

∫ ∞

−∞
f(x) exp

(

−x
2

2

)

xndx = 0. (C.10)

If f ∈ L2 than also ff0 = f(x) exp
(

−x2

2

)

and thus we have

Fff0(p) =

∫ ∞

−∞
f(x) exp

(

−x
2

2

)

exp (−ipx) dx

=

∫ ∞

−∞

∞∑

n=0

f(x) exp

(

−x
2

2

)
(−ipx)n

n!
dx. (C.11)

Since
∣
∣
∣
∣
∣

∞∑

n=0

f(x) exp

(

−x
2

2

)
(−ipx)n

n!

∣
∣
∣
∣
∣
≤ |f(x)| exp

(

−x
2

2

) ∞∑

n=0

|px|n
n!

= |f(x)| exp
(

−x
2

2

)

exp (|px|) , (C.12)
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we may interchange summation and integration and obtain (using (C.10))

Fff0(p) =
∞∑

n=0

(−ip)n
n!

∫ ∞

−∞
f(x) exp

(

−x
2

2

)

xndx = 0. (C.13)

Thus we have Fff0(p) = 0, from this follows ff0 = 0 and we therefore have f = 0.





Appendix D

Boundary Conditions following

from Fourier Symmetry

In this appendix we show that assuming Fourier symmetry and integrability of the wave
function leads to the condition ψ(0) = 0 for odd functions and ψ′(0) = 0 for even functions.
Using ψ−(−x) = ψ+(x) we obtain

ψ̃odd(p) =

∫ ∞

0
exp(−ipx)ψ+(x)dx−

∫ 0

−∞
exp(−ipx)ψ−(x)dx

= −2i
∫ ∞

0

(
exp(ipx)− exp(−ipx)

2i

)

ψ+(x)dx

= −2iψ0

√
σ

2π

∫ ∞

0
sin(px) g

(

−
√

σ

2π

(
E

σ
− x
))

dx. (D.1)

Since we assume that ψ(x) is an eigenfunction of the Fourier transform, ψ̃(p) = ψ(p) has
exactly the same behavior at the origin. So we are interested in the following limit:

lim
p→0

ψ̃odd(p) = −2iψ0

√
σ

2π
lim
p→0

∫ ∞

0
sin(px) g

(

−
√

σ

2π

(
E

σ
− x
))

dx (D.2)

If one is allowed to exchange the order of limit and integration on the right hand side we have
of course ψ̃(0) = 0. Since we have

∣
∣
∣
∣
sin(px)g

(√
σ

2π

(

x− E

σ

))∣
∣
∣
∣
≤
∣
∣
∣
∣
g

(√
σ

2π

(

x− E

σ

))∣
∣
∣
∣
, (D.3)

one may interchange limit and integration if

∫ ∞

0

∣
∣
∣
∣
g

(√
σ

2π

(

x− E

σ

))∣
∣
∣
∣

(D.4)

is finite. This is the case for finite values of E, since g(x) is bounded and for x → ∞ goes
like x−3. Thus we may interchange limit and integration, which leads to ψ̃odd(0) = 0. Fourier
symmetry then tells us that we have indeed

ψodd(0) = 0. (D.5)
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In the even case we may proceed very similarly. We have

ψ̃even(p) =

∫ ∞

0
exp(−ipx)ψ+(x)dx+

∫ 0

−∞
exp(−ipx)ψ−(x)dx

= 2

∫ ∞

0
cos(px)ψ+(x). (D.6)

To be even, ψ̃even(p) must be continuous at the origin. But what happens with the derivative?
We find

dψ̃even(p)

dp
= 2

d

dp

∫ ∞

0
cos(px)ψ+(x)dx. (D.7)

As above ∫ ∞

0
|cos(px)ψ+(x)| dx (D.8)

is finite and thus we may interchange integration and derivative

lim
p→0

dψ̃even(p)

dp
= 2ψ0

√
σ

2π
lim
p→0

∫ ∞

0
sin(px)x g

(√
σ

2π

(

x− E

σ

))

. (D.9)

Using the same argument as in the odd case we may interchange limit and integration and
thus obtain due to the Fourier symmetry

dψeven(x)

dx

∣
∣
∣
∣
x=0

= 0. (D.10)

So indeed Fourier symmetry applied to the auxiliary Fresnel function implies ψ ′(0) = 0 for
even functions and ψ(0) = 0 for odd functions.



Appendix E

Hermiticity and Self-Adjointness

This appendix closely follows [13].
It turns out that on an infinite dimensional Hilbert space it is not sufficient for an operator

to be hermitian in order to have only real eigenvalues and a complete set of eigenvectors, but
that in order to have these properties the operator must be self-adjoint.

The domain of definition D(A) ⊂ H of an operator A is the set of vectors ψ on which
Aψ is defined and belongs again to the Hilbert space H.

An operator A defined on D(A) is called hermitian if it satisfies

〈φ|Aψ〉 = 〈Aφ|ψ〉, for any φ, ψ ∈ D(A) ⊂ H. (E.1)

One denotes A† the adjoint operator to A if

〈φ|Aψ〉 = 〈A†φ|ψ〉, for ψ ∈ D(A), φ ∈ D(A†). (E.2)

A symmetric operator A is self-adjoint if A† = A, which also means that D(A†) = D(A).

The hermitian operator A1 is a self-adjoint extension of the hermitian operator A if

• D(A) ⊂ D(A1)

• A1 coincides with A on D(A)

• D(A†1) = D(A1)

The question whether there exists such a self-adjoint extension for a hermitian operator is
highly non-trivial.
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