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Abstract

In this thesis the Hamiltonian for a relativistic particle in a δ-potential is investigated. Thereby I work
with the concept of renormalization, an important instrument in quantum field theory. As a final result,
I obtain the wave function for the bound and the scattering states in position space. Furthermore I
examine asymptotic freedom and I introduce the β-function of the coupling constant.
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Chapter 1

Introduction

When I started to study physics, several times I was shown the diagram in fig.(1.1). Slow and big objects

Figure 1.1: Divisions of physics for which each theory gives accurate results [1].

can be described physically well with classical mechanics. For big objects with a speed comparable to the
speed of light we use relativistic mechanics. Small and slow particles are treated with quantum mechanics.
Small, relativistic objects are described up today with high accuracy by quantum field theory.
However, this leads to the question why we have to make use of an even more unintuitive quantum field
theory, which is no longer based on particles itself but on fields? Alternatively, one could attempt to
extend the known quantum theory such that relativistic effects are also respected. In this context we
have to respect the non interaction theorem [5].
In this thesis we use quantum mechanical as well as quantum fieldtheoretical concepts. Therefore we can
consider it as an in-between of these two theories.
The thesis covers come issues contained in a paper published by Al-Hashimi, Shalaby, and Wiese [2] but
was developed independently.

1.1 Quantum mechanical overview

When we consider a particle with mass m in quantum mechanics, its physical characteristics are described
by the wave function Ψ(~x, t). The probability for finding this particle in an interval [a, b] can be calculated
as follows

Pa≤x≤b(t) =

∫ b

a

|Ψ(~x, t)|2dx . (1.1)

We can determine the wave function by solving the Schrödinger equation

i~
∂Ψ(~x, t)

∂t
= ĤΨ(~x, t) . (1.2)

Ĥ is the Hamiltonian, where the hat illustrates its function as a quantum mechanical operator. The
Hamiltonian itself consists of the particle’s (kinetic) energy and the potential, to which it is exposed.
The bracket indicates that in classical mechanics only a kinetic term occurs, contrary to the relativistic
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situation where the rest energy enters as well.
As an example, in the non-relativistic case the Hamiltonian usually has the following form (possibly
obtained by the Legendre transformation of the Lagrangian)

H =
~p

2m
+ V (~x, t) . (1.3)

If we replace the classical expressions by quantum mechanical operators

~p→ ~̂p = −i~~∇ , ~x→ ~̂x = ~x , E → Ê = i~
∂

∂t
, (1.4)

we can rewrite the Hamiltonian

Ĥ =
−~2

2m
~∇2 + V (~x, t) , (1.5)

insert this in eq.(1.2) and obtain the relation

i~
∂Ψ(~x, t)

∂t
=

[
−~2

2m
~∇2 + V (~x, t)

]
Ψ(~x, t) (1.6)

(remember that ~∇2 = ∆).
From now on, we only consider time-independent situations (where this independence refers particularly
to the potential)

Ψ(~x, t)→ Ψ(~x) . (1.7)

We can write the time-independent Schrödinger equation in a brief and general form

ĤΨ(~x) = EΨ(~x) . (1.8)

If we act with the Hamiltonian on Ψ(~x) and the result is proportional to the wave function, we can
directly read off the energy of the particle. In more mathematical terms: Ψ(~x) is the eigenvector of the
Hamiltonian with the eigenvalue E that corresponds to the energy of the particle.
As a further step we reduce the problem to one dimension Ψ(~x) → Ψ(x). This is the final situation, for
which we will solve the relativistic Schrödinger equation.
If one is interested in a more detailed to non-relativistic classical quantum mechanics and perturbation
theory, I would recommend Griffiths, Quantenmechanik [3].

In relativistic quantum mechanics the Hamiltonian for a time independent and one-dimensional situ-
ation takes the form

Ĥ =

√
m2c2 − c2~2 ∂

2

∂x2
+ V (x) . (1.9)

One may be sceptical about the first term, which contains a square root of a second derivative. What
does this mean mathematically? Either one takes a derivative or not, but how does a so-called pseudo-
differential operator act? We could expand the square root as a series, but the higher-order terms do
not necessarily converge such that we have to deal with derivatives of infinite order, which are no longer
point like operations. In this thesis we will avoid such troubles.
From now on, we will work in natural units. This means c = ~ = 1.

1.2 No-interaction theorem

In 1963, Currie, Jordan and Sudarshan proved that two particles can not interact without violating the
principles of relativity [4]. This was extended by H. Leutwyler (a retired professor at the university of
Bern) to an arbitrary number of particles [5]. However, particle interactions play a fundamental role in
physics and we need to treat them. Thus, in general quantum field theory needs to be introduced. I
like to give a very short overview of the problem and the exceptions. I recommend the thesis of Daniel
Klauser [6], who examined this topic in more detail.
In one dimension, under the use of the composition law for infinitesimal transformations the Hamiltonian
Ĥ, the momentum operator P̂ , and the boost generator K̂ (the generators of the Poincaré group) obey

[P̂ , Ĥ] = 0 , [K̂, Ĥ] = iP̂ , [K̂, P̂ ] = iĤ . (1.10)

They form the so-called Poincaré algebra.
Leutwyler was able to show that at the classical level no potential exists such that these conditions are
fulfilled. Therefore no particle interactions occur. This is the no-interaction theorem.
There is one exception: For the one-dimensional linear potential eq.(1.10) is fulfilled.
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1.3 The δ-potential

In this thesis we work with the δ-potential

V (x) = λδ(x) , (1.11)

where λ is the coupling constant and δ(x) the Dirac delta. It is defined as follows

δ(x) =

{
∞ x = 0

0 x 6= 0
(1.12)

and ∫ ∞
−∞

δ(x− a)f(x)dx = f(a) . (1.13)

Especially, we have for the constant function f(x) = 1∫ ∞
−∞

δ(x− a)dx = 1 . (1.14)

It is no potential in the classical sense. Therefore the δ-potential was not considered by Leutwyler for
the no-interaction theorem. It is possible that it fulfils eq.(1.10). In this thesis we do not address this
issue, because we work with a system that is not invariant under translations.

Figure 1.2: The potential V (x) = λδ(x) with a positive coupling constant λ > 0.

1.4 Dimensional Regularisation

Before we deal with the regularisation of ultraviolet divergences in a mathematical way, I would like
to give a short overview. The historical informations are taken from a very interesting article by W.
Bietenholz and L. Prado in Physics Today [7].
In physics we use regularisation and renormalisation to deal with divergent expressions. In dimensional
regularisation the dimension of space-time is analytically continued to complex values in order to identify
poles associated with integer dimensions. The (dimensional) regularisation is used primarily in quantum
field theory, but also in this thesis.
We can distinguish between the minimal subtraction scheme MS, where we only reduce the divergent
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part and the modified minimal subtraction or MS-bar scheme MS, where also a constant term is affected.
The MS scheme is used more commonly and is also used in this thesis.
In 1971 a new method to handle divergences was found by the Argentinian theoretical physicists C. G.
Bollini and J. J. Giambiagi. The situation under which the two professors had to do research is remark-
able. From 1966 to 1973 a repressive military dictatorship complicated the work on such an important
discovery, that changed and advanced particle physics. For a long time, all this was not widely attributed
to them.
Giambiagi and Bollini wrote an article and sent it to the Dutch journal Physics Letter B for publishing.
It was refused with the explanation of being too strange. They wrote a second article presenting their
new approach and sent it to the Italian journal Il Nuovo Cimento B where it was released half a year
later. Meanwhile the Dutch physicists G. ’t Hooft and M. Veltman included the idea of dimensional regu-
larisation into their more extensive work. Hooft and Veltman proved the renormalisability of Yang-Mills
theory, the description of the strong and weak force. These results were a basis for the introduction of
the standard model.
G. ’t Hooft and M. Veltman were awarded the Nobel prize in 1999.

1.5 Additional calculations

In this thesis we will meet several rather complicated integrals. Long and non-trivial calculations are
described in the appendix. This will be announced in each case.
All non-analytical calculations as well as the plots of the wave functions are realised using MAPLE 8.
The sketches in the appendix are drawn by GeoGebra. To plot the β-function, I wrote a program in C
and plotted with ROOT.
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Chapter 2

Solution of the non-relativistic
problem

At first we start with the solution of the non-relativistic problem. Hence we solve the Schrödinger equation
of the form

−1

2m

∂2

∂x2
Ψ(x) + λδ(x)Ψ(x) = EΨ(x) . (2.1)

As already mentioned, λ can be positive or negative. We distinguish between the bound and the scattering
states of the particle.

2.1 λ < 0

2.1.1 Solution for the bound state

For the bound state the particle’s energy EB is negative, such that energy has to be added to obtain an
unbound particle. This can occur only if the potential peak is negative. This means λ < 0.
To solve eq.(2.1) we consider the two regions x < 0 and x > 0 separately and finally connect these two
solutions.
In the case x < 0 we have the differential equation

∂2ΨI
∂x2

= −2mEBΨI = κ2ΨI (2.2)

with
κ = ±

√
−2mEB . (2.3)

Because EB < 0, κ is a real number.
The general solution of this problem is easy to find and looks as follows

ΨI(x) = Ae−κx +Beκx . (2.4)

An analogous calculation for x > 0 gives

ΨII(x) = Ce−κx +Deκx . (2.5)

The wave function still must be normalised, which is possible only if we set A = D = 0. A further
condition is the continuity of the wave function, which implies

ΨI(x = 0) = ΨII(x = 0)⇒ B = C (2.6)

and it follows that
ΨB(x) = Be−κ|x| . (2.7)

The index B refers to the bound state.
Let’s now consider the first derivative of the wave function. It should be continuous in every location
except at the position of the potential peak. We analyse the behaviour of the function around x = 0 by
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integrating the Schrödinger equation (2.1) from −ε to ε and examine it in the limit ε→ 0

lim
ε→0

(
−1

2m

∫ ε

−ε

∂2ΨB
∂x2

dx+ λ

∫ ε

−ε
δ(x)ΨB(x)dx = EB

∫ ε

−ε
ΨB(x)dx

)
. (2.8)

The first term contains an integration of a second derivative and therefore becomes a derivative of first
order, executed at the integration boundaries. The second term can be computed with the definition of
the δ-distribution. The term on the right-hand side becomes 0 when ε tends to 0

lim
ε→0

−1

2m

(
dΨB
dx

∣∣∣∣
ε

− dΨB
dx

∣∣∣∣
−ε

)
+ λΨB(0) = 0 . (2.9)

Finally we obtain
−2κB = 2mλΨB(0) . (2.10)

Using
ΨB(0) = B (2.11)

and the definition of κ in eq.(2.3) this leads to the binding energy

EB = −λ
2m

2
. (2.12)

As a final step we normalise the wave function to obtain the still unknown factor B. This is a simple
integral ∫ ∞

−∞
|ΨB(x)|2dx = 2

∫ ∞
0

|B|2e−2κxdx =
|B|2

κ

!
= 1⇒ B =

√
κ . (2.13)

Hence we obtain the wave function for a non-relativistic bound state (remember that λ is negative)

ΨB(x) =
√
κe−κ|x| =

√
−mλemλ|x| . (2.14)

2.1.2 Solution for the scattering states

Now we consider the other case, where the particle’s energy is bigger than zero. As we did in the bound
state case, we divide the system into two parts, one where x is smaller than zero and the other one where
x is bigger than zero. Finally we connect the results using the same conditions as for the bound state.
Let us consider the Schrödinger equation (2.1). However, as already said, with an energy E > 0. Therefore
we have to solve for x < 0

∂2ΨI
∂x2

= −2mEΨI = −k2ΨI , (2.15)

with
k =
√

2Em (2.16)

as a real number.
The solution of this problem has the well-known form

ΨI = Aeikx +Be−ikx . (2.17)

In an analogous approach for the region x > 0 one obtains

ΨII = Ceikx +De−ikx . (2.18)

So we have

Ψk(x) =

{
Ceikx +De−ikx x > 0

Aeikx +Be−ikx x < 0
. (2.19)

The index refers to a scattering state with momentum k.
First of all, the wave function has to be continuous such that

ΨI(x = 0)
!
= ΨII(x = 0)⇒ A+B = C +D . (2.20)
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Figure 2.1: Solution of the Schrödinger equation for the bound state for m = 1 and λ = −1. The black
line describes the wave function, the red line the potential. Remember that the probability to find a
particle in a region is equal to the integration of the squared wave function over this region (see eq.(1.1)).
Therefore it can be seen easily that the particle favours the region around the δ-peak. Although it can
appear farther away, but with exponentially suppressed probability.

Now we consider the first derivative of the wave function and again it should be continuous everywhere
except at x = 0 where the δ-peak is located. Therefore we integrate the solution over a range from −ε to
ε and take the limit ε to zero. We then obtain

lim
ε→0

(
dΨk
dx

∣∣∣∣
ε

− dΨk
dx

∣∣∣∣
−ε

)
= 2mλΨk(0) with Ψk(0) = A+B

⇒ ik(C −D +B −A) = 2mλ(A+B)

⇒ C −D =

(
−2imλ

k
+ 1

)
A+

(
−2imλ

k
− 1

)
B (2.21)

For simplification we set

α = −mλ
k

(2.22)

and get the following condition

C −D = (2iα+ 1)A+ (2iα− 1)B . (2.23)

This is already the final result.

However there is another interesting component:
If we take a particle, that starts in the region x < 0, its wave function is a linear combination of a left-
and a right-moving stationary wave. For x > 0 only the right-moving part exists. Therefore we can set
D = 0. The wave function then has the following form

Ψk(x) =

{
Aeikx +Be−ikx x < 0

Ceikx x > 0
. (2.24)
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Because of the continuity at x = 0, we obtain A+B = C. We insert this into the condition required by
eq.(2.23). With some simple algebraic operations we obtain

B

A
=
−iα
iα− 1

,

C

A
=

1

1− iα
. (2.25)

Let us now investigate what eq.(2.25) and eq.(2.25) really mean. As we wanted the particle to start in
the region x < 0 and let it run towards the potential peak, we can observe two possible events: Either
the particle passes the potential peak or it is reflected. In the reflected case we have a back-moving wave
with an amplitude B. Otherwise it passes and continues as a wave with an amplitude C. Hence B over A
is simply the part of the incoming wave which is reflected, C over A the part which is transmitted. This
leads to the following quantum mechanical interpretation: The square of the absolute value of eq.(2.25)
gives us the reflection probability |R|2. Analogously we obtain the transmission coefficient |T |2 from
eq.(2.25)

|R|2 =
|B|2

|A|2
=

α2

(iα− 1)(−iα− 1)
=

α2

1 + α2
=

m2λ2

k2 +m2λ2
, (2.26)

|T |2 =
|C|2

|A|2
=

1

(1− iα)(1 + iα)
=

1

1 + α2
=

k2

k2 +m2λ2
. (2.27)

It is easy to see that |R|2 + |T |2 = 1 (which has to be valid, because the particle can either be reflected
or transmitted).

2.2 λ > 0

In this case no bound state exists. Therefore we only consider the scattering states.

2.2.1 Solution for the scattering states

The procedure is exactly the same as for the negative coupling constant. We solve the Schrödinger
equation (2.1) by dividing the system in a region x < 0 and another one x > 0, solve them separately
and then put them together. For x < 0 we obtain

∂2ΨI
∂x2

= −2mEΨI = −k2ΨI , (2.28)

with
k =
√

2mE . (2.29)

The solution of this differential equation is

ΨI = Aeikx +Be−ikx . (2.30)

The same for x > 0 leads to
ΨII = Ceikx +De−ikx . (2.31)

Due to continuity, it is required that
A+B = C +D . (2.32)

Again we consider the first derivative of the wave function at x = 0. This is done exactly in the same
way as before and finally leads to

ik(C −D +B −A) = 2mλΨ(0) ,

⇒ C −D = (2iβ + 1)A+ (2iβ − 1)B , (2.33)

where we introduced

β = −mλ
k

. (2.34)
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As in the previous chapter, we can start the particle right-moving on the negative x-axis. Therefore D
becomes 0. With a little algebraic effort we obtain

B

A
=

iβ

iβ − 1
,

C

A
=

1

1− iβ
. (2.35)

With the same thoughts as before we conclude that the square of the absolute value gives us the reflection
respectively the transmission probability of the particle

|R|2 =
|B|2

|A|2
=

β2

1 + β2
=

m2λ2

k2 +m2λ2
, (2.36)

|T |2 =
|C|2

|A|2
=

1

1 + β2
=

k2

k2 +m2λ2
. (2.37)

Again, it is easy to check that |R|2 + |T |2 = 1.
If we compare the results for |R|2 and |T |2 to those with negative λ, we discover a very interesting fact: If
we take a close look at the definitions of β (eq.(2.34)) and α (eq.(2.22)), we see that α = −β (because of
the different sign of λ). However the transmission and reflection probabilities depend only on the square
of α and β. Hence these probabilities do not care about the sign of λ. In other words: The reflection/-
transmission probability is the same, independent of whether the potential is positive or negative. This
is a really interesting and unexpected result.
Another case we can consider the limit of λ going to infinity. Then β (or α) tends to infinity and therefore
|R|2 to one and |T |2 to zero.

2.3 Alternative solution with sine and cosine functions

When we solved the Schrödinger equation for the scattering states, we obtained a function consisting of
linear combinations of plane waves, expressed by the exponential function. However, it is also possible
to write this solution as a linear combination of parity-odd sine and parity-even cosine functions. If both
ansätze solve the Schrödinger equation themselves, every linear combination is a solution as well. And
hence we can construct plane waves as before using the well-known relation [8, p.31]

eikx = cos(kx) + i sin(kx) . (2.38)

Parity-odd ansatz

We start with a simple case. Therefore we take the following ansatz for the wave function

Ψk(x) = B sin(kx) , (2.39)

with k =
√

2mE as the quantum mechanical.
Here we do not even need to calculate anything. Sine is an odd function, this means: Ψ(−x) = −Ψ(x).
Notably it is Ψ(0) = 0. Then we have |Ψ |2 = 0. So the particle is not at all influenced by the potential
which only appears at x = 0, because the particle never stays there.

Parity-even ansatz

The case with the cosine function is a little bit more complex. As an ansatz for an even function we take

Ψk(x) = A cos(k|x|+ ϕ0) . (2.40)

Here ϕ0 is a phase which we are going to calculate.
It is obvious that this function is continuous. Again we take a closer look at the derivative at x = 0

lim
ε→0

(
−1

2m

∫ ε

−ε

∂2Ψk
∂x2

dx+ λ

∫ ε

−ε
δ(x)Ψk(x)dx = E

∫ ε

−ε
Ψk(x)dx

)
. (2.41)
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Like before, the integral with the δ-function becomes Ψk(0) and the term on the right-hand side becomes
zero. So we obtain

lim
ε→0

(
−1

2m

∂Ψk
∂x

∣∣∣∣ε
−ε

+ λΨk(0)

)
= 0 ,

lim
ε→0

(
−Ak sin (k|x|+ ϕ0)

d|x|
dx

∣∣∣∣ε
−ε

)
= 2mλΨk(0) = 2mλA cos(ϕ0) . (2.42)

With
d|x|
dx

=

{
−1 x < 0

1 x > 0
, (2.43)

we finally obtain
lim
ε→0

(−2Ak sin(kε+ ϕ0)) = 2mλA cos(ϕ0) . (2.44)

We take the limit and solve this equation for ϕ0

sin(ϕ0)

cos(ϕ0)
= tan(ϕ0) = −mλ

k
⇒ ϕ0 = arctan(−mλ

k
) . (2.45)

Under this additional condition for ϕ0, the wave function (2.40) solves the non-relativistic Schrödinger
equation, too. As a comment, we should consider the sign of λ which changes the sign of the phase and
therefore the form of the wave function (compare to fig.(2.2) and fig.(2.3)). If the coupling constant is
negative, the particle favours the region around x = 0, indicated by the narrow peak in the figure (2.2),
contrary to the case for λ > 0.

Figure 2.2: The even wave function in eq.(2.40) with m = 1, E = 1 and λ = −1.

2.4 Solution in momentum space

Especially for the relativistic case it is inevitable to consider the problem in momentum space. Therefore
we deal with this method in the non-relativistic considerations as well.
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Figure 2.3: The even wave function with m = 1, E = 1 and λ = 1.

We define the Fourier transform as follows

Ψ̃(p) =

∫ ∞
−∞

Ψ(x)e−ipxdx , (2.46)

with the inverse transform

Ψ(x) =
1

2π

∫ ∞
−∞

Ψ̃(p)eipxdp . (2.47)

From the inverse Fourier transform we extract another useful relation

Ψ(0) =
1

2π

∫ ∞
−∞

Ψ̃(p)dp (2.48)

2.4.1 Bound state

Let us first consider the bound case EB < 0. We take the Schrödinger equation in momentum space

p2

2m
Ψ̃B(p) + λΨB(0) = EBΨ̃B(p) (2.49)

and solve it Ψ̃B(p). This gives

Ψ̃B(p) =
λΨ(0)

EB − p2

2m

. (2.50)

By using eq.(2.48) we write

ΨB(0) =
1

2π

∫ ∞
∞

Ψ̃B(p)dp =
1

2π

∫ ∞
−∞

λΨB(0)

EB − p2

2m

dp . (2.51)

As ΨB(0) is just a constant, we cancel it and get

λ

2π

∫ ∞
−∞

1

EB − p2

2m

dp = 1 . (2.52)
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This is a so-called gap equation.
Because EB is negative there are no poles on the real axis what could cause trouble. With the help of
the residue theorem it is rather easy to solve this integral. It becomes

− λ

2π

π
√

2mEB
EB

= 1 , (2.53)

such that finally

EB = −λ
2m

2
. (2.54)

We transform Ψ̃(p) back to position space

ΨB(x) =
1

2π

∫ ∞
−∞

Ψ̃B(p)eipxdp =
1

2π

∫ ∞
−∞

λΨB(0)eipx

EB − p2

2m

dp =
λΨB(0)

2π

∫ ∞
−∞

eipx

−λ2m
2 − p2

2m

dp . (2.55)

The integrand has two poles at p = ±iλm with λ < 0. We extend the function to the complex plane
p→ z and use the residual theorem. The integration path is composed of an integral along the real axis
from −R to R and semi-circle with radius R in the plane =(z) > 0. The integral over the second path
disappears for R→∞ and what remains is the integral that we want to calculate∫ ∞

−∞

eipx

−λ2m
2 − p2

2m

dp = 2πi Res

(
eizx

−λ2m
2 − z2

2m

, z = −iλm

)
=

2π

λ
emλx . (2.56)

So we have
λΨB(0)

2π

∫ ∞
−∞

eipx

−λ2m
2 − p2

2m

dp =
λΨB(0)

2π

2π

λ
emλx = ΨB(0)emλx . (2.57)

If we use a negative value for x, we obtain ΨB(0)e−mλx. Therefore we can write

ΨB(x) = ΨB(0)emλ|x| . (2.58)

As a final step, we still have to normalise the wave function∫ ∞
−∞
|ΨB(x)|2dx = ΨB(0)2

∫ ∞
−∞

e2mλ|x|dx = 2ΨB(0)2
∫ ∞
0

e2mλxdx =
ΨB(0)2

−mλ
!
= 1 (2.59)

and we obtain
ΨB(0) =

√
−mλ =⇒ ΨB(x) =

√
−mλemλ|x| . (2.60)

The results for the binding energy EB and the wave function are the same as the ones we obtained from
the solution of the Schrödinger equation in position space.

2.4.2 Scattering states

Now we consider the case E > 0. Here we distinguish between the odd and the even wave function.

Parity-odd ansatz

As an ansatz for the odd wave function we use the sine-function in momentum space.

Ψ̃k(p) =
1

2i
(δ(p− k)− δ(p+ k)) , (2.61)

where k is a fixed value. This leads to

p2

2m
Ψ̃k(p) +

λ

2π

∫ ∞
−∞

Ψ̃k(p)dp = EΨ̃k(p) . (2.62)

It is easy to convince oneself that the integral is equal to zero. We also see that

p2

2m
δ(p± k) =

(±k)2

2m
δ(p± k) =

k2

2m
δ(p± k) , (2.63)
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such that the Schrödinger equation simplifies to

k2

2m
Ψ̃k(p) = EΨ̃k(p) , (2.64)

which implies the well-known relation k = ±
√

2Em.
When we transform Ψ̃(p) back to position space, we obtain

Ψk(x) =
1

2π
sin(kx) . (2.65)

Parity-even ansatz

This case is more sophisticated. At the beginning we take an ansatz for a cosine-function in momentum
space plus an additional function whose form has to be determined

Ψ̃k(p) =
1

2
(δ(p− k) + δ(p+ k)) + Φ̃(p) . (2.66)

We insert this in the momentum space Schrödinger equation (compare to eq.(2.62)). However, there is a
difference to the parity-odd states: the integral no longer disappears as we can easily calculate

1

2π

∫ ∞
−∞

(
1

2
(δ(p− k) + δ(p+ k)) + Φ̃(p)

)
dp =

1

2π
+

1

2π

∫ ∞
−∞

Φ̃(p)dp =
1

2π
+ Φ(0) . (2.67)

First of all, we are only interested in the additional part. The Schrödinger equation has to be solved for
this term and we obtain the following expression

Φ̃(p) =
λ
(

1
2π + Φ(0)

)
E − p2

2m

. (2.68)

We transform Φ̃ back to position space

Φ(x) =
λ
(

1
2π + Φ(0)

)
2π

∫ ∞
−∞

eipx

E − p2

2m

dp . (2.69)

This is a non-trivial integration because E > 0 and therefore there are two poles on the real axis over
which we integrate. We take a closer look at this problem in appendix A.1. Here we only give the result

Φ(x) =
λ
(

1
2π + Φ(0)

)
2π

√
2mE

E
π sin(

√
(2mE)|x|) . (2.70)

For x = 0, Φ becomes zero and with our definition for the energy E = k2

2m it simplifies to

Φ(x) =
1

2π

λm

k
sin(k|x|) . (2.71)

As already said, the first part of our ansatz is a cosine in position space and so we obtain

Ψk(x) =
1

2π

(
cos(kx) +

λm

k
sin(k|x|)

)
. (2.72)

For reasons of consistency, this has to be equal to our former ansatz in eq.(2.40) which we will now
examine. We equate the two solutions

A cos(k|x|+ ϕ0) =
1

2π

(
cos(kx) +

λm

k
sin(k|x|)

)
. (2.73)

Notably, at x = 0 they have to be equal such that

A cos(ϕ0) =
1

2π
. (2.74)

For the left-hand part we use the following addition theorem [8, p.54]
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cos(α+ β) = cos(α) cos(β)− sin(α) sin(β) ,

which gives us

A(cos(k|x|) cos(ϕ0)− sin(k|x|) sin(ϕ0)) =
1

2π

(
cos(kx) +

λm

k
sin(k|x|)

)
. (2.75)

Factorising cos(ϕ0) on the left side, we obtain

A cos(ϕ0)

(
cos(k|x|)− sin(ϕ0)

cos(ϕ0)
sin(k|x|)

)
=

1

2π

(
cos(kx) +

λm

k
sin(k|x|)

)
. (2.76)

The factors in front of both sides cancel because of the equality at x = 0. Furthermore, cos(k|x|) =
cos(kx). Therefore we can subtract them on both sides and finally divide by sin(k|x|). It results

sin(ϕ0)

cos(ϕ0)
= tan(ϕ0) = −λm

k
. (2.77)

This is exactly the same result for ϕ0 that we already received in eq.(2.45). Hence we conclude that
everything is consistent.

2.5 Orthogonality

The final step in our handling of the non-relativistic problem is to check whether all solutions are orthog-
onal to each other. We take the definition of the scalar product in a Hilbert space

〈f |g〉 =

∫ ∞
−∞

f(x)∗g(x)dx (2.78)

We know that if two functions are orthogonal in position space, they are orthogonal in momentum space,
too. Therefore, in the different cases we always consider the simpler alternative.

Bound-Bound case

Due to normalisation, in the position space this is a trivial conclusion

〈ΨB |ΨB〉 =

∫ ∞
−∞
|ΨB |2dx = 1 . (2.79)

Bound-scattering case

Here we do not take the solution from chapter 2.1.2. The orthogonality can be shown more easily for
the sine and cosine functions (we know that both solutions are equivalent for the scattering states). We
consider two different possibilities (e stands for even and o for odd)

〈ΨB |Ψok 〉 =

∫ ∞
−∞

√
κe−κ|x|B sin(kx)dx = 0 . (2.80)

This becomes clear because the product of an even and an odd function is again an odd function. In
combination with the symmetric integration boundaries this implies that the integral is equal to zero.
The second possibility requires a little bit more attention

〈ΨB |Ψek〉 =

∫ ∞
−∞

√
κe−κ|x|A cos(k|x|+ ϕ0)dx ,

= 2A
√
κ
κ cos(ϕ0)− k sin(ϕ0)

k2 + κ2
=

2A
√
κ cos(ϕ0)

k2 + κ2
(κ− k tan(ϕ0)) ,

2A
√
κ cos(ϕ0)

k2 + κ2

(
κ+ k

mλ

k

)
κ=−mλ

= 0 . (2.81)

The definition of κ comes from eq.(2.3).
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Scattering-Scattering case

For these considerations it is recommended to check the orthogonality in momentum space. First, we
take a look at two odd wave functions

Ψ̃ok1(p) =
1

2
(δ(p− k1)− δ(p+ k1)) (2.82)

Ψ̃ok2(p) =
1

2
(δ(p− k2)− δ(p+ k2)) . (2.83)

We obtain

〈Ψ̃ok1 |Ψ̃
o
k2〉 =

∫ ∞
−∞

1

4
(δ(p− k1)− δ(p+ k1)) (δ(p− k2)− δ(p+ k2)) dp

=
1

4

(∫ ∞
−∞

δ(p− k1)δ(p− k2)dp+

∫ ∞
−∞

δ(p+ k1)δ(p+ k2)dp

)
−1

4

(∫ ∞
−∞

δ(p+ k1)δ(p− k2)dp+

∫ ∞
−∞

δ(p− k1)δ(p+ k2)dp

)
=

1

4
(δ(k2 − k1) + δ(k1 − k2)) =

1

2
δ(k1 − k2) (2.84)

The fact that if k1 = k2 the scalar product becomes infinite (and not one) is due to the unconventional
normalisation of scattery wave functions.
Next we consider the scalar product of two even wave functions

Ψ̃ek1(p) =
1

2
(δ(p− k1) + δ(p+ k1)) + φ̃1(p) , (2.85)

Ψ̃ek2(p) =
1

2
(δ(p− k2) + δ(p+ k2)) + φ̃2(p) . (2.86)

We calculate the scalar product

〈Ψ̃ek1 |Ψ̃
e
k2〉 =

1

4
(δ(k1 − k2) + δ(k2 − k1)) +

(
φ̃1(k2) + φ̃2(k1)

)
+ 〈φ̃1|φ̃2〉 . (2.87)

If we use

φ̃1(k2) =
λ

2π

1
k21
2m −

k22
2m

= − λ

2π

1
k22
2m −

k21
2m

= −φ̃2(k1) (2.88)

the second term disappears. Furthermore we treat the last one

〈φ̃1|φ̃2〉 =
λ2

4π2

∫ ∞
−∞

1

(
k21
2m −

p2

2m )(
k22
2m −

p2

2m )
dp . (2.89)

At first sight this expression seems to be complicated. However, if we use partial fraction decomposition,
we will obtain

〈φ̃1|φ̃2〉 =
λ2

4π2

(
1

k22 − k21

∫ ∞
−∞

1
k21
2m −

p2

2m

dp+
1

k21 − k22

∫ ∞
−∞

1
k22
2m −

p2

2m

dp

)
. (2.90)

With the relation (2.48) we can simplify this term without any further calculations to

〈φ̃1|φ̃2〉 =
λ2

2π

(
1

k22 − k21
φ1(0) +

1

k21 − k22
φ2(0)

)
. (2.91)

We already know the function φ(x) (see eq.(2.71)) and especially φ(0) = 0. Hence we can write

〈Ψ̃ek1 |Ψ̃
e
k2〉 =

1

4
(δ(k1 − k2) + δ(k2 − k1)) =

1

2
δ(k1 − k2) (2.92)

There is a third case where we take an even and an odd function but it is easy to understand that
the scalar product of such a combination of wave functions is zero due to the symmetric integration
boundaries.
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Chapter 3

Solution of the relativistic problem

This is the main part of this thesis. As already mentioned, we can solve this problem in the momentum
space in a much easier way. Therefore the Schrödinger equation appears in the following form√

m2 + p2Ψ̃(p) + λΨ(0) = EΨ̃(p) . (3.1)

We solve this equation for Ψ̃(p) and obtain

Ψ̃(p) =
λΨ(0)

E −
√
m2 + p2

. (3.2)

In analogue to the non-relativistic treatment we rewrite

Ψ(0) =
1

2π

∫ ∞
−∞

Ψ̃(p)dp =
1

2π

∫ ∞
−∞

λΨ(0)

E −
√
m2 + p2

dp , (3.3)

with Ψ(0) as a constant expression such that we cancel it on both sides

1

λ
=

1

2π

∫ ∞
−∞

1

E −
√
m2 + p2

dp . (3.4)

This is the gap equation in the relativistic case. Here occurs the problem that demands renormalisation.
For high momentum the mass can be neglected and the square root reduces to p. Hence in this region
the integrand behaves like 1

E−p and the integral diverges logarithmically. This is a so-called ultraviolet
divergence.
Below we concentrate on the case λ < 0, where both bound and scattering states exist.

3.1 Solution for the bound state

Analogously to the non-relativistic considerations, we start with the bound state and its binding energy
EB < m. To solve this problem we use a trick: We subtract the diverging part of eq.(3.4) to obtain an
expression which converges. Then we calculate this subtraction separately and finally add it again

1

2π

∫ ∞
−∞

1

EB −
√
m2 + p2

dp+
1

2π

∫ ∞
−∞

1√
m2 + p2

dp =

EB
2π

∫ ∞
−∞

1

EB
√
m2 + p2 − (m2 + p2)

dp . (3.5)

We introduce the following definitions

αB =
EB
m

, α =
E

m
, (3.6)

where E is the energy of an unbound particle and the index B refers to the bound state. Note that
αB < 1 and α > 1.
First of all, we calculate this integral in the bound case and we obtain

EB
2π

∫ ∞
−∞

1

EB
√
m2 + p2 − (m2 + p2)

dp =
−αB

π
√

1− α2
B

(π
2

+ arcsin(αB)
)

=
1

λ(EB)
. (3.7)
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Now we consider the additional part by itself. As already discussed, the integral∫ ∞
−∞

1√
m2 + p2

dp (3.8)

diverges. To solve this problem, we use dimensional regularisation. The principle of this method is
the following: An integral may diverge in a space of integer dimension (in our case in one dimension).
However, we rewrite it in a form of dimension D = 1 + ε and finally examine the behaviour for ε → 0,
respectively D → 1

1

2π

∫ ∞
−∞

1√
m2 + p2

dp −→ 1

(2π)D

∫ ∞
−∞

1√
m2 + p2

dDp . (3.9)

We can parametrise the last expression in spherical coordinates such that the integral consists of an
angular and a radial part. The angular part can be calculated directly and results in the surface of a
(D − 1)-dimensional unit sphere, SD−1. We introduce a factor mεin order to maintain the dimension of
λ. The radial part remains to be calculated

mε

λ(ε)
=
SD−1

(2π)D

∫ ∞
0

pD−1√
m2 + p2

dp =
SD−1

(2π)D
mD−1Γ( 1

2 −
D
2 )Γ(D2 )

2
√
π

, (3.10)

where Γ(t) is the Gamma function defined as

Γ(t) =

∫ ∞
0

xt−1e−xdx , Γ(t+ 1) = tΓ(t) . (3.11)

We use [9]

SD−1 =
2π

D
2

Γ(D2 )
, (3.12)

insert this in eq.(3.10) and obtain

mε

λ(ε)
=
SD−1

(2π)D

∫ ∞
0

pD−1√
m2 + p2

dp =
π
−D−1

2

2D
Γ(

1

2
− D

2
)mD−1 . (3.13)

We replace D = 1 + ε and expand it analytically

mε

λ(ε)
=
π−

1
2 ε−1

21+ε
Γ(− ε

2
)mε ∼=

(
− 1

πε
− γ − log(4π)

2π
+O(ε)

)
mε . (3.14)

We terminate the expansion at the order ε0 because we let ε go towards 0 after all and the first term
then dominates completely. The second expression is a constant that we regard as well, correspondingly
to the MS scheme. The γ in this term is the Euler-Mascheroni constant γ ≈ 0.577.
So the final result for the gap equation looks as follows

1

2π

∫ ∞
−∞

1

EB −
√
m2 + p2

dp =

1

λ(EB , ε)
=

−αB
π
√

1− α2
B

(π
2

+ arcsin(αB)
)

+
1

πε
+
γ − log(4π)

2π
. (3.15)

We are now interested in the form of the wave function in position space. From eq.(3.2) we know that
the wave function for the bound state in momentum space has the form

Ψ̃B(p) =
AλΨ(0)

EB −
√
m2 + p2

=
A′

EB −
√
m2 + p2

, (3.16)

where we introduced a constant A respectively A′ (λ and Ψ(0) are constants and can be put together)
which we will calculate next.
The wave function has to be normalised

〈Ψ̃B(p)|Ψ̃B(p)〉 =
1

2π

∫ ∞
−∞

A′

EB −
√
m2 + p2

(
A′

EB −
√
m2 + p2

)∗
dp

=
A′2

2π

∫ ∞
−∞

1

(EB −
√
m2 + p2)2

dp
!
= 1 . (3.17)
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This is a rather long calculation. At the end we obtain

A′ =

√
2πm(1− α2

B)
3
2

π + 2 arcsin(αB) + 2αB
√

1− α2
B

. (3.18)

In a final step we are interested in the form of the wave function in position space. Therefore we have to
transform Ψ̃(p) to position space (compare to eq.(2.47))

ΨB(x) =
1

2π

∫ ∞
−∞

eipx

EB −
√
m2 + p2

dp . (3.19)

This is a highly non-trivial integral and needs a long treatment, but can be solved with the help of
complex analysis, a special parametrisation and line integration. This is done in appendix A.2. Here we
present the result of the bound wave function in the relativistic case

ΨB(x) =
A′EB√
m2 − E2

B

e−
√
m2−E2

B |x| +
A′

π

∫ ∞
m

√
(µ2 − 1)e−mµ|x|

α2
B + µ2 − 1

dµ . (3.20)

Figure 3.1: The wave function in position space (m = 1, EB = 0.6). The fact that the wave function
diverges at x = 0 is quite astonishing. Still, the probability to find the particle in an interval dx around
x = 0 remains finite.

We want to know whether this result turns into the non-relativistic solution in the non-relativistic limit.
This means that the binding energy of the particle is comparable to its mass (EB . m).
We consider the condition

1

λ(EB)
=

−αB
π
√

1− α2
B

(π
2

+ arcsin(αB)
)
. (3.21)

We expand this expression as a series with αB = 1 and we obtain

−αB
π
√

1− α2
B

(π
2

+ arcsin(αB)
)
∼=

i√
2
√
αB − 1

+
1

π
+O(

√
αB − 1) . (3.22)
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We see that the first term dominates for αB ≈ 1. Therefore we can neglect all other terms and write

1

λ(EB)
=

i√
2
√
αB − 1

. (3.23)

We solve for αB = EB

m . Furthermore we write EB = E′B + ∆EB . The relativistic binding energy consists
of a variable part E′B and a constant part which remains fixed in the non-relativistic limit. Finally we

take
E′B
m → 1 and obtain

EB
m
− 1 =

E′B + ∆EB
m

− 1 =
E′B
m
− 1 +

∆EB
m

=
−λ2

2
=⇒ ∆EB =

−mλ2

2
,

which is nothing but the non-relativistic binding energy. Let us now see what happens to the solution
for the bound state wave function in eq.(3.20) for EB

m → 1. In this case the first term in eq.(3.20)
dominates. This can be easily seen. Hence the expression in the denominator tends to zero and therefore
the pre-factor grows strongly. So we concentrate on the following expression√

2πm(1− α2
B)

3
2

π + 2 arcsin(αB) + 2αB
√

1− α2
B

αB√
1− α2

B

e−m
√

1−α2
B |x| . (3.24)

With αB → 1 the last summand in the denominator of the normalisation factor can be neglected, with
2 arcsin(1) = π and fraction reduction we obtain√

m
√

1− α2
Be
−m
√

1−α2
B |x| . (3.25)

After all we just have to examine the square root
√

1− α2
B . We rewrite EB = E′B + ∆EB the same way

as above √
1− α2

B =

√
1−

(E′B + ∆EB)2

m2
=

√
1−

(
E′B
m

)2

−
2E′B∆EB

m2
+

(
∆EB
m

)2

, (3.26)

for
E′B
m → 1 and neglecting the quadratic terms, this results in√

− 2

m
∆EB =

√
− 2

m

−mλ2
2

=
√
λ2 = |λ| . (3.27)

If we insert this in eq.(3.25), we obtain exactly the wave function of the non-relativistic case.

3.2 Solution for the scattering states

3.2.1 The parity-odd solution

Just as in the non-relativistic case we take the following ansatz for an odd wave function in momentum
space

Ψ̃k(p) =
1

2i
(δ(p− k)− δ(p+ k)) . (3.28)

With

Ψk(0) =
1

2π

∫ ∞
−∞

Ψ̃k(p)dp =
1

4πi

(∫ ∞
−∞

δ(p− k)dp−
∫ ∞
−∞

δ(p+ k)dp

)
= 0 (3.29)

eq.(3.1) reduces to√
m2 + p2

1

2i
(δ(p− k)− δ(p+ k)) = E

1

2i
(δ(p− k)− δ(p+ k))

=⇒
√
m2 + k2Ψ̃(p) = EΨ̃(p) . (3.30)

Ψ̃(p) is a solution under the condition

k = ±
√
E2 −m2 . (3.31)
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Remember that in the unbound case E > m and therefore k ∈ R.
To obtain the form of the wave function in position space we transform it

Ψk(x) =
1

2π

∫ ∞
−∞

1

2
(δ(p− k)− δ(p+ k)) eipxdp =

Ψok (x) =
B(k)

2π
sin(kx) . (3.32)

This solution is the same as in the non-relativistic treatment except the value of the energy E. We know
that Ψ(0) = 0. Hence the particle never stays at x = 0 and is not influenced by the potential.

3.2.2 The parity-even solution

As well we take an ansatz similar to the non-relativistic chapter

Ψ̃k(p) =
1

2
(δ(p− k) + δ(p+ k)) + φ̃(p) . (3.33)

Let us have a closer look at Ψ(x)

Ψk(x) =
1

2π

∫ ∞
−∞

(
1

2
(δ(p− k) + δ(p+ k)) + φ̃(p)

)
eipxdp =

1

2π
cos(kx) + φ(x) (3.34)

with k = ±
√
E2 −m2 and especially

Ψ(0) =
1

2π
+ φ(0) . (3.35)

What we still have to find out is φ̃(p) and finally φ(x). If we insert φ̃(p) in the Schrödinger equation, we
obtain √

m2 + p2φ̃(p) + λΨk(0) = Eφ̃(p) . (3.36)

We solve it for φ̃(p), instert eq.(3.35) and integrate over all momenta (times 1
2π )

1

2π

∫ ∞
−∞

φ̃(p)dp =
1

2π

∫ ∞
−∞

λ
(

1
2π + φ(0)

)
E −

√
m2 + p2

dp = φ(0) , (3.37)

where we used eq.(2.48) for the last relation. All the expressions in the numerator of the integrand are
independent of p and can be drawn out of the integral. With the definition

I(E) =
1

2π

∫ ∞
−∞

1

E −
√
m2 + p2

dp (3.38)

we can rewrite

λ

(
1

2π
+ φ(0)

)
I(E) = φ(0) (3.39)

and obtain

φ(0) =
1

2π

λI(E)

1− λI(E)
. (3.40)

We must calculate I(E), whereupon we operate the same way as we did for the relativistic bound state.
We subtract the diverging part and calculate it separately

1

2π

∫ ∞
−∞

1

E −
√
m2 + p2

dp+
1

2π

∫ ∞
−∞

1√
m2 + p2

dp

=
E

2π

∫ ∞
−∞

1

E
√
m2 + p2 − (m2 + p2)

dp =
α

π
√
α2 − 1

tanh−1

(√
α2 − 1

α

)
. (3.41)

The subtracted integral is exactly the same as in eq.(3.10) and so we can write

I(E) =
α

π
√
α2 − 1

tanh−1

(√
α2 − 1

α

)
+

1

πε
+
γ − log(4π)

2π
. (3.42)
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With eq.(3.35) and eq.(3.40) we rewrite φ̃(p) as follows

φ̃(p) =

λ

(
1
2π + 1

2π

λI(E)

1− λI(E)

)
E −

√
m2 + p2

, (3.43)

where λ = λ(EB , ε) what we already calculated. Here comes the essential part of the renormalisation.
Up to now we only mentioned that we will send ε towards zero, but we have not done anything so far.
Let us see what will happen. From eq.(3.15) we see that λ(EB , ε) tends to zero in the limit ε→ 0. This
implies that the first term in the numerator disappears. The second term needs some care (we simply
consider the numerator)

λ

(
1

2π
+

1

2π

λI(E)

1− λI(E)

)
ε→0−→ 1

2π

λ2I(E)

1− λI(E)
. (3.44)

We expand the fraction in 1
λ and fill in our results for λ = λ(EB , ε) and I(E). We obtain

1

2π

λI(E)
1
λ − I(E)

=
1

2π

α
π
√
α2−1 tanh−1

(√
α2−1
α

)
+ 1

πε + γ−log(4π)
2π

−αB

π
√

1−α2
B

(
π
2 + arcsin (αB)

)
+ 1

πε + γ−log(4π)
2π

×

[
−αB

π
√

1− α2
B

π

2
+ arcsin (αB) +

1

πε
+
γ − log(4π)

2π
−
(

α

π
√
α2 − 1

tanh−1

(√
α2 − 1

α

)
+

1

πε
+
γ − log(4π)

2π

)]−1

(3.45)

The numerator simplifies to 1 because in the limit ε → 0 the 1
πε -terms dominate on both sides. In the

denominator something very interesting occurs: The diverging parts cancel out each other. And this
leads to the renormalised coupling constant of the δ-potential in relativistic quantum mechanics

λ(EB , E) =
−π

EB√
m2−E2

B

(
π
2 + arcsin

(
EB

m

))
+ E√

E2−m2
tanh−1

(√
E2−m2

E

) . (3.46)

So we can write

Ψ̃k(p) =
1

2
(δ(p− x) + δ(p+ k)) +

1

2π

λ(EB , E)

E −
√
m2 + p2

(3.47)

and transform it back to position space. The term consisting of the δ-functions results in a cosine.
Therefore we still have to calculate

φ(x) =
1

2π

∫ ∞
−∞

1

2π

λ(EB , E)eipx

E −
√
m2 + p2

dp =
λ(EB , E)

4π2

∫ ∞
−∞

eipx

E −
√
m2 + p2

dp . (3.48)

This is a laborious integral which is handled in more detail in appendix A.3. Here we just give the result
for the even wave function for the scattering state

Ψek(x) =
A(k)

2π

[
cos(kx) + λ(EB , E)

(√
k2 +m2

k
sin(k|x|)− 1

π

∫ ∞
m

√
(µ2 − 1)e−m|x|µ

α2 + µ2 − 1
dµ

)]
. (3.49)

3.2.3 Reflection and transmission coefficients

According to the non-relativistic procedure, the particle starts on the negative x-axis and moves toward
the δ-peak. So the wave function can be parametrised the following form

Ψ(x) =

{
eikx +R(k)e−ikx + λ(EB , E)C(k)χ(x) if x < 0

T (k)eikx + λ(EB , E)C(k)χ(x) if x > 0
. (3.50)

R(k) and T (k) are the reflection respectively transmission coefficients that we are looking for. The
function χ(x) has no direct impact on the reflective or transmissive behaviour of the particle.
Let us start with the case x > 0. We are looking for a linear combination of the even and odd states (of
the same energy) such that it can be written as the wave function above. We have

Ψk(x) = A(k)

[
cos(kx) +

λ(EB , E)E

k
sin(kx)− λ(EB , E)χ(x)

]
+B(k) sin(kx) (3.51)
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Figure 3.2: Example for the unbound, even wave function with m = 1, EB = 0.5 and E = 2. In contrast
to the non-relativistic results, the particle ”feels” the potential not just at x = 0 but also from a distance.
This can be explained by the form of the Schrödinger equation in position space: If we Taylor expand the
square root, in the relativistic case the terms of high order do not disappear. Since high order derivatives
can not be considered as point-like operations anymore, the particle is influenced also away from the
origin.

with

χ(x) =
1

π

∫ ∞
m

√
(µ2 − 1)e−m|x|µ

α2 + µ2 − 1
dµ . (3.52)

Now we rewrite the sine and cosine functions in terms of eikx and e−ikx and we recapitulate

Ψk(x) = A(k)

[
1

2

(
1 +

λ(EB , E)E

ik
+
B(k)

iA(k)

)
eikx +

1

2

(
1− λ(EB , E)E

ik
− B(k)

iA(k)

)
e−ikx − λ(EB , E)χ(x)

]
(3.53)

where the e−ikx-term has to vanish. This means

1− λ(EB , E)E

ik
− B(k)

iA(k)
= 0 =⇒ B(k) = A(k)

(
i− λ(EB , E)E

k

)
. (3.54)

So eq.(3.53) becomes

A(k)eikx −A(k)λ(EB , E)χ(x) = T (k)eikx + C(k)λ(EB , E)χ(x) . (3.55)

When we compare the coefficients, we obtain

A(k) = T (k) , C(k) = −A(k) . (3.56)

With this result we consider the case x < 0. The only difference is the expression sin(k|x|) which now is
written as sin(k(−x)) such that for negative x we still obtain the sine of a positive value of x. Again we
replace the trigonometric functions by exponential terms and obtain

Ψk(x) = A(k)

[
1

2

(
1− λ(EB , E)E

ik
+
B(k)

iA(k)

)
eikx +

1

2

(
1 +

λ(EB , E)E

ik
− B(k)

iA(k)

)
e−ikx − λ(EB , E)χ(x)

]
.

(3.57)

When we replace B(k) in eq.(3.54) it results in

Ψk(x) = A(k)

(
1− λ(EB , E)E

ik

)
eikx +A(k)

λ(EB , E)E

ik
e−ikx −A(k)λ(EB , E)χ(x) . (3.58)
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We compare the pre-factors with the actual wave function in (3.50) and obtain the following conditions

A(k)

(
1− λ(EB , E)E

ik

)
= 1 =⇒ A(k) =

ik

ik − λ(EB , E)E
= T (k) ,

R(k) = A(k)
λ(EB , E)E

ik
=

λ(EB , E)E

ik − λ(EB , E)E
,

B(k) = A(k)

(
i− λ(EB , E)E

ik

)
= i . (3.59)

In a final step we rewrite E =
√
m2 + k2 and expand the fractions by −i

R(k) =
−i
√
k2 +m2λ(EB , E)

k + i
√
k2 +m2λ(EB , E)

(3.60)

T (k) =
k

k + i
√
k2 +m2λ(EB , E)

. (3.61)

We can check easily that
T (k)−R(k) = 1 (3.62)

and
|R(k)|2 + |T (k)|2 = 1 . (3.63)

In the non-relativistic limit we write E =
√
m2 + k2 ≈ m and λ(EB , E) → λ(EB). This gives us the

same results for T (k) and R(k) as with the non-relativistic calculations in eq.(2.26) and eq.(2.27).

3.3 Orthogonality

Finally we check whether the obtained wave functions are orthogonal. Like in the non-relativistic case
we consider the orthogonality in each case in the more favourable space.
One directly sees that the scalar product of the odd unbound state with the bound and the even unbound
state is zero. Hence we are integrating an odd function (the product of an even and an odd function is
again an odd function) from −∞ to ∞ and this is zero. Therefore we must have a closer look only at

〈ΨB(x)|Ψek(x)〉 . (3.64)

It is much easier to deal with this scalar product in momentum space. Then the wave functions have the
following form

Ψ̃B(p) =
A

EB −
√
m2 + p2

(3.65)

and

Ψ̃ek(p) =
1

2
(δ(p− k) + δ(p+ k)) +

1

2π

λ(EB , E)

E −
√
m2 + p2

. (3.66)

We determine

〈Ψ̃B(p)|Ψ̃ek(p)〉 =

∫ ∞
−∞

A

(
1
2 (δ(p− k) + δ(p+ k)) + 1

2π

λ(EB , E)

E −
√
m2 + p2

)
(
EB −

√
m2 + p2

) dp , (3.67)

where the integration can be split in the individual summands. The two integrals with the δ-function
can be calculated easily and result in (with the definition E =

√
m2 + k2)

〈Ψ̃B(p)|Ψ̃ek(p)〉 =
A

EB − E
+
Aλ(EB , E)

2π

∫ ∞
−∞

1(
EB −

√
m2 + p2

)(
E −

√
m2 + p2

)dp . (3.68)

With the help of partial fraction decomposition this is equal to

〈Ψ̃B(p)|Ψ̃ek(p)〉 =
A

EB − E
+
Aλ(EB , E)

EB − E

[
1

2π

∫ ∞
−∞

1

E −
√
m2 + p2

dp− 1

2π

∫ ∞
−∞

1

EB −
√
m2 + p2

dp

]
,

(3.69)
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but this can also be written as

A

EB − E
+
Aλ(EB , E)

EB − E
[I(E)− I(EB)] . (3.70)

When we remember, that λ(EB , E) =
1

I(EB)− I(E)
, we obtain

A

EB − E
+

A

(EB − E)

I(E)− I(EB)

(I(EB)− I(E))
=

A

EB − E
+

−A
EB − E

= 0 . (3.71)

So all obtained wave functions are orthogonal.

3.4 Asymptotic freedom

It is worth to pay some more attention to the renormalised coupling constant. In the non-relativistic case
we obtained the relation

EB = −λ
2m

2
⇒ λ(EB) = ±

√
−2EB
m

. (3.72)

In the relativistic case we obtain

λ(EB , E) =
−π

EB√
m2−E2

B

(
π
2 + arcsin

(
EB

m

))
+ E√

E2−m2
tanh−1

(√
E2−m2

E

) . (3.73)

We want to check if this will result in the expression in the non-relativistic limit by expanding λ(EB , E)
for EB = m and E = m

λ(EB , E) −→ λ(EB) ≈
√
−2m

m

√
EB −m−

4

mπ
(EB −m) +O(

√
(EB −m)

3
) . (3.74)

Only taking the first term and understanding the remaining difference between EB and m as the non-
relativistic binding energy, we obtain exactly the expected result.
The renormalised coupling constant in eq.(3.46), which occurs in the even wave function of an unbound
particle, does not only depend on EB but also on the particle’s energy E. This is a very interesting and
non-intuitive result. In the non-relativistic case, assuming that a binding energy is given or measured, we
can calculate the non-relativistic coupling constant, which remains the same as well for unbound particles
in the same potential. In the relativistic case this changes. λ does not have the same value for particles
with different energies. It changes continuously with E, in this context we speak about a running coupling
constant.
The gap eq.(3.4) for the bound case includes an integral which actually diverges. We worked with it in
such a way that we were finally able to describe and ”control” this divergence. In our further work, we
had the situation that another integration occurred with the same diverging behaviour such that they
cancelled out (fortunately). But this does not change the fact, that the gap equation diverges. Actually,
what we observe is the difference of two integrals, which has physical relevance. As a consequence, an
additional parameter E appears.

3.5 β-function

At the end of this bachelor thesis, we introduce the concept of the β-function. It is defined as follows

β(λ(EB , E), E) = E
∂|λ(EB , E)|

∂E
. (3.75)

We multiply it with E to keep β(λ(EB , E)) dimensionless. This function describes the behaviour of the
renormalised coupling constant for a changing energy. The calculation is long but straightforward

E
∂

∂E

 −π
EB√
m2−E2

B

(
π
2 + arcsin

(
EB

m

))
+ E√

E2−m2
tanh−1

(√
E2−m2

E

)


=
−λ(EB , E)2

π

m2 tanh−1
(√

E2−m2

E

)
+ E
√
E2 −m2

(E2 −m2)
3
2

 . (3.76)
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Figure 3.3: The running coupling constant λ(EB , E) with m = 1, EB = 0.9 for an energy range E =
1, ..., 105. Especially for small E we can notice a fast changing λ(EB , E). This reduces for large energies

but it is all the same still evident. For E →∞, λ(EB , E)→ 0 because
√
E2−m2

E → 1 and tanh−1(1) =∞.

This is the final result but we can transform it in a more convenient form. We solve eq.(3.46) for tanh−1

and we obtain

tanh−1

(√
E2 −m2

E

)
=
−
√
E2 −m2

E

(
π

λ(EB , E)
− π

λ(EB)

)
. (3.77)

Then the β-function can be written as follows

β(λ(EB , E), E) =
−λ(EB , E)2

π
− λ(EB , E)2

ζ2

1− ζ2

(
1

λ(EB , E)
− 1

λ(EB)
+

1

π

)
. (3.78)

We used ζ = m
E = α−1 to simplify the equation.

Figure 3.4: The β-function for m = 1 and EB = 0.99. It is very interesting that in this case the function
has a minimum for |λ(EB , E)| ≈ 0.134. It would be very interesting to examine this behaviour in more
detail, but this would exceed this thesis. For small λ (this means for large energies E) the β-function
behaves proportional to −λ2. This is because for E →∞ ζ → 0. So only the first term of the β-function
in eq.(3.78) remains.
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Figure 3.5: The β-function for m = 1 and EB = 0.5.

Figure 3.6: The β-function for m = 1 and EB = 0. We can observe the same behaviour for small
|λ(EB , E)| as above, but the lower energy effect (as in the case EB = 0.99 and slightly for EB = 0.5, too)
disappears. One should also consider the change of the scales.
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Chapter 4

Conclusion

The aim of this thesis was the solution of the Schrödinger equation√
m2 − ∂2

∂x2
Ψ(x) + λδ(x)Ψ(x) = EΨ(x) . (4.1)

The physics behind this equation is very interesting and it can be called an in-between of non-relativistic
quantum mechanics and quantum field theory. The Hamiltonian, its derivation and the wave function are
well-known from quantum mechanics. However to handle this problem, I worked with a method which
is commonly used in quantum field theory, the dimensional regularisation.
As a result, I obtained the wave function of the bound and unbound states in position space. Here
something new occurred: A wave function which has a pole. This is no actual problem, because it is
still square integrable. Furthermore, I examined the properties of the renormalised coupling constant
λ(EB , E) which is asymptotically free, a characteristic that occurs mainly in quantum field theory. Fi-
nally, I calculated the β-function which has a special behaviour for EB ≈ m. However, due to lack of
time, I did not examine it furthermore.
It is also interesting to consider the solution of this problem in the context of Leutwyler’s classical no
interaction theorem. It is possible that there is a quantum mechanical loop-hole: the δ-function potential.

If I had more time, I could expand this investigation to the strongly bound case (this means EB < 0)
and the ultra-strongly bound case (EB < −m). Another situation, worth to consider, is the massless
case m = 0. These questions have been studied in [2].
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Appendix A

Mathematical remarks

Here we take a more detailed look at certain integrals which are too long to be presented in the main
part of this thesis. We assume the residue theorem as proven [10]∮

γ

f(z)dz = 2πi

n∑
k=1

η(γ, zk)Res(f, zk) , (A.1)

where zk are the poles of f(z) and η(γ, zk) is the number of turns in each case.

A.1
∫∞
−∞

eipx

E − p2

2m

dp

When we analyse the function, we realize that there are two poles, namely on the real axis at p = ±
√

2Em.
We exclude E and obtain∫ ∞

−∞

eipx

E − p2

2m

dp =
1

E

∫ ∞
−∞

eipx

1− p2

2mE

dp

{
p =
√

2mE q

dp =
√

2mE dq

⇒
√

2mE

E

∫ ∞
−∞

eix
√
2mEq

1− q2
dq

α=
√
2mE

=
α

E

∫ ∞
−∞

eixαq

1− q2
dq . (A.2)

We neglect the pre-factor. As a further step expand the function in the complex plane q → z. This is
allowed, because we deal with ”nice” functions such as the exponential function and polynomials. The
integrand has now two poles on the real axis at z = ±1. We use a concrete integration path which
excludes them (see fig.(A.1)).
With the residual theorem we then obtain ∫

γ

eiαxz

1− z2
dz = 0 . (A.3)

We examine each of the six parts individually. We begin with the semi-circle of radius R and show that
it disappears for R→∞∫

6

eiαxz

1− z2
dz ≤

∣∣∣∣∫
6

eiαxz

1− z2
dz

∣∣∣∣ ≤ ∫
6

∣∣∣∣ eiαxz1− z2

∣∣∣∣ |dz| = ∫
6

∣∣eiαxz∣∣
|1− z2|

|dz|

=

∫
6

1

|1− z2|
|dz| ≤ sup

|z|=R

(
1

1− z2

)
πR =

πR

1−R2

R→∞−→ 0 . (A.4)

The other integration path is on the real axis, where we exclude the two poles. We parametrise these
exclusions as semi-circles with radius ε and finally take the limit ε→ 0. What remains is the integration
over the real axis (except for the two divergences)∫

2

eiαxz

1− z2
dz

{
z → −1− εe−it

dz = dz
dt dt = iεeit

⇒
∫ π

0

eiαx(−1−εe
−it)(iεe−it)

1− (−1− εe−it)2
dt = e−iαx

∫ π

0

e−iαxεe
−it

iεe−it

−2εe−it − (εe−it)
2 dt . (A.5)
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Figure A.1: The path in te complex plane.

Now we take the limit ε→ 0. Without a strictly mathematical treatment, we can assume that the limit
and the integration can be exchanged

e−iαx lim
ε→0

∫ π

0

iεe−ite−iαxεe
−it

−2εe−it − (εe−it)
2 dt = e−iαx

∫ π

0

lim
ε→0

iεe−ite−iαxεe
−it

−2εe−it − (εe−it)
2 dt

= e−iαx
∫ π

0

lim
ε→0

ie−ite−iαzεe
−it

−2e−it − εe−2it
dt = e−iαx

∫ π

0

ie−it

−2e−it
dt = π

e−iαx

2i
. (A.6)

We proceed in exactly the same way for the integration path 4 with a slightly different parametrisation∫
4

eiαxz

1− z2
dz

{
z → 1− εe−it

dz = dz
dt dt = iεeit

⇒ lim
ε→0

∫ π

0

eiαx(1−εe
−it) (iεe−it)

1− (1− εe−it)2
dt = eiαx

∫ π

0

lim
ε→0

ieiαxεe
−it

e−it

2e−it − εe−2it
dt

= eiαx
∫ π

0

ie−it

2e−it
dt = −π e

iαx

2i
. (A.7)

Using eq.(A.1), we obtain∫
γ

eiαxz

1− z2
dz =

∫
1

...dz +

∫
2

...dz +

∫
3

...dz +

∫
4

...dz +

∫
5

...dz +

∫
6

...dz = 0

⇒
∫
1

+

∫
3

+

∫
5

=

∫ ∞
−∞

eiαxq

1− q2
dq = π

eiαx

2i
− π e

−iαx

2i
= π sin(αx) . (A.8)

Finally we have ∫ ∞
−∞

eipx

E − p2

2m

dp =

√
2mE

E
π sin(

√
2mE|x|) . (A.9)

The reason why we can also write |x| instead of x is the following: If we take a negative value for x, the
integral that we want to calculate is not actually the reverse Fourier transform because the exponent is
negative for p > 0. So we have to parametrise p → −p what gives us a factor −1. So this is −π sin(αx)
for x < 0. We will use the same argument in the other calculations as well.

A.2 A′

2π

∫∞
−∞

eipx

EB−
√
m2+p2

dp

Again we use the residue theorem. We have a pole at z =
√
α2
B − 1. Because αB < 1, the pole is on the

imaginary axis

Res

(
eimxz

αB −
√

1 + z2
, z =

√
α2
B − 1

)
=

−αB√
α2
B − 1

e−m
√

1−α2
B |x| . (A.10)
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With the integration path described in fig.(A.2) we write

Figure A.2: Integration path to determine the relativistic bound state.

A′

2π

∫
γ

eimxz

αB −
√

1 + z2
dz =

−iAαB√
α2
B − 1

e−m
√

1−α2
B |x| . (A.11)

The reason why we can not simply cross the imaginary axis is the discontinuous behaviour of the square
root of an imaginary number. The quarter-circle paths disappear for R→∞ with the same argument as
before. We have a closer look at the integrals 3 to 5. We must consider the cut carefully. Therefore we
go along the axis at the distance ε and finally take the limit ε→ 0,∫

3

eimxz

αB −
√

1 + z2
dz

{
z = iµ+ ε

dz = dz
dµdµ = idµ

=⇒
∫ m

R

eimx(iµ+ε)i

αB −
√

1 + (iµ+ ε)2
dµ

ε→0
=

∫ m

∞

e−mxµi

αB −
√

1− µ2
dµ . (A.12)

Now consider the integral path of a semi-circle with central point at z = im and radius ε∫
4

eimxz

αB −
√

1 + z2
dz

{
z = im+ εe−it

dz = −iεe−itdt

=⇒
∫ π

0

−iεe−iteimx(im+εe−it)

αB −
√

1 + (im+ εe−it)
2
dt ≤ |ε|

∫ π

0

|e−iteimx(im+εe−it)|

|αB −
√

1 + (im+ εe−it)
2|
dt

≤ |ε|
∫ π

0

e−mx(m−sin(t))

|αB −
√

1 + (im+ εe−it)
2|
dt . (A.13)

If we take the limit ε→ 0, this integral disappears.
Finally we go upwards on the other side of the imaginary axis. We use another parametrisation and
obtain (be aware of the opposite sign before the square root)∫

5

eimxz

αB +
√

1 + z2
dz

{
z = iµ− ε
dz = idµ

=⇒
∫ R

m

eimx(iµ+ε)i

αB +
√

1 + (iµ− ε)2
dµ =

∫ ∞
m

e−mxµi

αB +
√

1− µ2
dµ . (A.14)
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We solve eq.(A.11) for the integral path 1 and we obtain (with the use of the rule for exchanging the
integration limits that causes a change of sign)

A

2π

∫ ∞
−∞

eipx

EB −
√
m2 + p2

dp =

−iAαB√
α2
B − 1

e−m
√

1−α2
B |x| − A

2π

(∫ m

∞

e−mxµi

αB −
√

1− µ2
dµ+

∫ ∞
m

e−mxµi

αB +
√

1− µ2
dµ

)

=
−AαB√
1− α2

B

e−m
√

1−α2
B |x| − A

2π

∫ ∞
m

−2i
√

(1− µ2)e−m|x|µ

α2
B − (1− µ2)

dµ

=
−AαB√
1− α2

B

e−m
√

1−α2
B |x| − A

π

∫ ∞
m

√
(µ2 − 1)e−m|x|µ

α2
B + µ2 − 1

dµ . (A.15)

One might complain that there is the wrong sign. However we know that the physical properties of a
quantum mechanical system are invariant under a phase shift, so we can comprehend this as a shifting
with the angle π with no further consequences.

−Ψ(x) = e±iπΨ(x) (A.16)

A.3
∫∞
−∞

eipx

E −
√
m2 + p2

dp

Compared to the bound state, we have two poles on the real axis at x = ±
√
E2 −m2. We exclude them

by integrating around them with a semi-circle of radius ε. So we have no residues inside and we can write∫
γ

eipx

E −
√
m2 + p2

dp = 0 . (A.17)

Therefore we must only calculate two other integrals, namely 7 and 9

Figure A.3: The integration path we take to solve this integral.

∫
7

eipx

E −
√
m2 + p2

dp

{
p = −

√
E2 −m2 − εe−it

dp = iεe−it

⇒ e−i
√
E2−m2x

∫ π

0

iεeixεe
−it

e−it

E −
√
E2 + 2ε

√
E2 −m2e−it + (εe−it)

dt . (A.18)
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We insert the Taylor series for the square root√
E2 + 2ε

√
E2 −m2e−it + (εe−it)

ε=0∼= E +

√
E2 −m2

E
e−itε+O(ε2) (A.19)

and obtain for ε→ 0

⇒ e−i
√
E2−m2x

∫ π

0

iεe−it

E − E −
√
E2−m2

E εe−it
dt =

−iπE√
E2 −m2

e−i
√
E2−m2x . (A.20)

A fully analogous approach (with a slightly different parametrisation) leads to∫
9

eipx

E −
√
m2 + p2

dp =
iπE√
E2 −m2

ei
√
E2−m2x . (A.21)

Together with the integral along the cut, which gives exactly the same result as in the bound state case
right before (simply with α instead of αB), and with k =

√
E2 −m2 we obtain

1

2π

∫ ∞
−∞

eipx

E −
√
m2 + p2

dp =
E

k
sin(k|x|)− 1

π

∫ ∞
m

√
(µ2 − 1)e−m|x|µ

α2 + µ2 − 1
dµ . (A.22)
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