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Abstract

In this thesis, the antiferromagnetic Heisenberg model and some of its extensions are
studied. We are interested in the spontaneous symmetry breaking of the SU(2) spin
symmetry and its physical consequences. In our numerical work we calculate the low-energy
effective field theory parameters and compare them to other numerical and analytical work.
In the extended models we are interested in the breakdown of antiferromagnetism, i.e. where
the SU(2) spin symmetry is restored, and its implications. We investigate the nature of
these phase transitions and also other types of order such as the valence bond solid (VBS)
order.

In the second part of this thesis we address the sign problem of frustrated antiferro-
magnets and present a new method which substantially improves the efficiency of these
calculations. We can perform simulations on lattices with more than 1000 spins at moder-
ate temperature, which is something previously impossible on systems with a sign problem.
Also we extend this method to the calculation of the real-time evolution of quantum spin
systems.

In the last part we measure the two-point correlation function of a single hole doped
into an antiferromagnet and calculate its dispersion relation for different lattice geometries.
Depending on the chosen couplings, different dispersion relations emerge for the same model
which can be described with different low-energy effective field theories.
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Truth is ever to be found in simplicity,
and not in the multiplicity and
confusion of things.

Isaac Newton

I took physics because it was
interesting, and it excited me — not
to buy me a job

MacGyver
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Introduction

High-Temperature Superconductivity

Since the discovery of high-temperature superconductivity (high Tc) in 1986 by G. Bednorz
and K. Müller [1], there has been a lot of research in the condensed matter physics of
high Tc materials. Ceramic materials which are electric insulators turn upon doping of
a few percent of rare earth materials into conductors and even become superconducting
at much higher temperature than ordinary superconductors whose phase transitions are
around 4-16K. As of 2006, the highest-temperature superconductor at normal pressure is
Hg12Tl3Ba30Ca30Cu45O125 with Tc=138 K [2].

Despite extensive research, no fundamental theory has yet been found which accurately
describes the mechanism that causes superconductivity in such materials. For ordinary
low-temperature superconductors the Barden-Cooper-Schrieffer (BCS) theory describes su-
perconductivity very accurately by the Cooper-pair formation of two electrons bound by
phonon exchange [3]. However, this theory cannot explain high Tc phenomena. Hence, this
is an active topic of current research which probably will continue to puzzle and fascinate
researchers in the future.

There are now many known high Tc materials with various geometrical lattice struc-
tures. Many of them are quasi-two-dimensional, i.e. the couplings in a plane are much
stronger than the coupling between different planes. For the investigation of the low-
energy physics of these materials it is thus sufficient to consider two-dimensional models.
There are many different quasi two-dimensional high Tc materials. Well-known materials
with a square lattice structure are the cuprates such as La2−xSrxCuO4 and YBa2Cu3O7−x

(YBCO).
Another superconducting material is NaxCoO2·yH2O with the underlying spin 1

2
cobalt

sites that are on a triangular lattice. The spin- and charge-ordering tendencies observed in
[4–6] may suggest that the unhydrated parent compound NaxCoO2 can be described by the
t-J model on a half-filled honeycomb lattice. Hence, the physics of these material depends
on the geometrical lattice structure and it is interesting to investigate models such as the
spin 1

2
Heisenberg antiferromagnet or the t-J model on these different geometries [7, 8].

The undoped precursors of high Tc materials are antiferromagnetically ordered. Because
first principles calculations of doped materials are extremely hard, it is interesting to first
investigate these precursors and the breakdown of the antiferromagnetism. Also in the
superconducting phase, antiferromagnetism is ultimately destroyed via doping [8, 9].

These precursors can be described by a low-energy effective field theory in analogy to

1
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chiral perturbation theory for the pseudo-Goldstone pions in Quantum Chromodynamics
(QCD) [10–15]. Such effective field theories for the undoped precursors of high Tc materi-
als, two-dimensional antiferromagnets, have been developed on the different lattices both
for hole- and for electron-doped cases [16–26]. In QCD, the physics at low energies is dom-
inated by the spontaneously broken SU(2)L⊗SU(2)R chiral flavour symmetry for massless
up and down quarks, which breaks to the unbroken subgroup SU(2)L=R. As a result, QCD
displays three Goldstone bosons π+, π−, and π0. In an antiferromagnet on the square or
honeycomb lattice at zero temperature, the global SU(2)s spin rotation symmetry spon-
taneously breaks down to the unbroken subgroup U(1)s. This is because the expectation
value of the staggered magnetisation becomes non-zero and spontaneously chooses a direc-
tion. As a result, two massless Goldstone bosons, the spinwaves or magnons emerge. The
parameters of the low-energy effective field theory describing the magnon physics and the
propagation of doped holes and electrons are not determined by the effective theory itself,
but have to be determined externally. This can be done by performing first principles
microscopic calculations, such as Monte Carlo simulations, which will be presented in this
thesis to high accuracy.

As discussed further below, we cannot arbitrarily dope fermions in computer simulations
due to the sign problem. However, we can simulate the propagation of a single fermion
in an antiferromagnet. By calculating the correlation function of a single fermion we can
extract the single-fermion dispersion relation. Interestingly, depending on the choice of
the coupling and hopping constants in the microscopic model, three qualitatively distinct
dispersion relations were measured. Due to the different locations of the minima, the low-
energy physics governed by excitations around these minima is also distinctively different
which leads to different low-energy effective field theories.

Many-Body Problems

By investigating microscopic models of condensed matter systems, we deal with a many-
body problem. Even the very simplest of such models can produce rich macroscopic phe-
nomena, once a large number of particles is involved. This is a huge theoretical challenge,
because macroscopic materials always contain a gigantic number of particles and reliable
first-principles microscopic calculations should at least involve a sufficiently large number
of particles in order to extract the long-range physics [27].

A method that has proved very successful to solve many-body problems is the Monte
Carlo method. Using Monte Carlo simulations, thermal averages of bosonic systems can
be computed with a numerical effort that scales polynomially with the number of particles
involved. Thus it is possible to directly compute macroscopic observables in microscopic
models.

Still the efficiency of concrete Monte Carlo algorithms is an important subject, because
only by using specific methods one can go to sufficiently large lattices and extrapolate
reliably to infinite size boxes. This can be seen in the example of the Ising model, where
today’s most efficient algorithms implemented on computers thirty years ago would be
faster than the algorithms of thirty years ago implemented on today’s computers. This is
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quite remarkable, noting that the performance speed of computers has grown exponentially
over time. According to Moore’s law the number of transistors that can be placed inexpen-
sively on an integrated circuit has increased exponentially, doubling approximately every
two years [28]. The exponential growth of computer capacity is thus by far outgrown by
the improvement gained by new algorithms. Hence, it is important research to find better
algorithms which provide tools to investigate the physics of strongly correlated materials.

Monte Carlo simulations are based on the idea of importance sampling where a partition
function is not analytically calculated, but rather configurations are generated with a
probability proportional to their Boltzmann weight. Thus the important configurations
are sampled more often. Using that idea, a set of configurations is sampled where every
new configuration is generated out of the previous one leading to a so-called Markov chain.

Early simulations were performed with Metropolis-type algorithms which suffer from
critical slowing down [29]. Metropolis algorithms usually perform only local updates and
thus the autocorrelation times tend to be very large. Improved Metropolis algorithms such
as hybrid Monte Carlo are still widely used in the particle physics community where for
most problems no cluster-type algorithms could be constructed yet. A major breakthrough
was achieved by Swendsen and Wang in 1987 with the first cluster algorithm for the Ising
and Potts model which performs non-local updates [30]. This method was generalised by
Wolff to classical O(N) models [31]. Cluster algorithms for quantum systems were first
developed in [32] using a block-spin scheme efficient only in one dimension and then for
vertex models using the loop-algorithm in [33]. The first application to quantum spins was
reported in [34].

As mentioned above, Monte Carlo simulations can be used to perform simulations
of antiferromagnets in order to calculate the low-energy effective parameters. Also it
is very interesting to use these methods to study phase transitions. In this thesis we
investigate a Heisenberg antiferromagnet with spatially anisotropic couplings that lead to
dimensional crossover from a two-dimensional Heisenberg antiferromagnet to decoupled
spin chains. Such phenomena are very interesting because the restoration of the spin
symmetry and the dimensional crossover happen at the same point. Also we consider a
Heisenberg antiferromagnet with an additional four-spin interaction, the J-Q model first
proposed in [35], where for sufficiently large Q the spin symmetry is restored. However, the
lattice symmetry is spontaneously broken and a valence bond solid (VBS) phase emerges.
In contradiction to the Ginzburg-Landau-Wilson paradigm some experts expect an exotic
second order phase transition, a deconfined quantum critical point, as described in [36].
We thus investigate this transition using quantum Monte Carlo and come to the conclusion
that it is weakly first order.

The above discussed simulations were all done on bipartite lattices. On lattice ge-
ometries such as the square and the honeycomb lattice, the ground state of the classical
Heisenberg antiferromagnet is the classical Néel state. In the quantum case the spins also
show long-range antiferromagnetism. However, on non-bipartite lattices the advantage of
Monte Carlo is lost because a sign problem arises. The sign problem is a computational
problem arising in a path integral formulation of quantum systems. Caused by geometrical
frustration of the antiferromagnetism or the interchange of fermions, contributions to the
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path integral can be negative and can thus no longer be interpreted as probabilities, which
is the principle Monte Carlo is based upon. This can be dealt with by treating the sign as
part of the observables. However, the statistical errors then grow exponentially with the
number of particles and thus the advantage of Monte Carlo is lost.

On lattices such as the triangular or the kagomé lattice, antiferromagnets are geomet-
rically frustrated. For a classical Heisenberg antiferromagnet on the triangular lattice, the
ground state has coplanar order. However, this is not clear yet for the quantum Heisenberg
antiferromagnet, although coplanar order is also expected. On the kagomé lattice the case
is more difficult. The classical ground state is highly degenerate and for the quantum case
some experts expect a quantum spin liquid [37,38]. A spin liquid is a state where there is
no symmetry breaking and thus no ordering even at zero temperature.

For certain models the sign problem could be solved by cancelling all negative with cer-
tain positive contributions to the partition function using the meron-cluster algorithm [39].
However, this cannot be achieved in general. Since many of the interesting problems in con-
densed matter physics, e.g. systems with fermions, suffer from the sign problem, progress
in that direction is indeed needed if one wants to perform first principles microscopic cal-
culations in order to get further fundamental insight into the models used to describe these
condensed matter systems.

In this work we show how to improve the measurement of the sign for frustrated quan-
tum antiferromagnets. With the nested cluster algorithm we have performed calculations of
very large systems which were previously impossible. However, the method is restricted to
moderate temperatures [40]. Improving such methods in order to reach low temperatures
is the subject of on-going research.

Interestingly enough that method can also be used to simulate the real-time evolution
of a quantum spin system, but unfortunately it has not been very efficient.

Thesis Layout

This thesis is organised as follows. In part I we investigate certain variants of the Heisen-
berg model on bipartite lattices, calculate their low-energy effective parameters and study
restoration of the spin symmetry for some cases.

In part II we present our new method to deal with frustrated antiferromagnets and the
results we could achieve as well as the extension of this method to the real-time evolution
of quantum systems.

Finally, in part III we discuss the calculation of the single-hole dispersion relation of
antiferromagnets on the square and on the honeycomb lattice.



Chapter 1

The Quantum Heisenberg Model

The quantum Heisenberg model is a microscopic model for magnetism in spin systems. It
describes particles of a certain spin localised on a lattice. The model is defined by the
Hamiltonian

H = J
∑

〈xy〉

~Sx · ~Sy, (1.1)

where J is the exchange coupling constant and 〈xy〉 are neighbouring lattice sites. The
resulting partition function takes the form

Z = Tr exp(−βH), (1.2)

where β denotes the inverse temperature. Depending on the sign of J the model is either
ferromagnetic when J < 0 or antiferromagnetic when J > 0. In the following we will only
consider the antiferromagnetic spin 1

2
Heisenberg model in two dimensions, and in part I

of this thesis only on bipartite lattice geometries.

1.1 Bipartite Lattice Geometries

On a bipartite lattice every site can be attributed to one of two sublattices A and B, where
every site on A has only neighbours on B and vice versa, as shown in figure 1.1. Interesting
examples are the spin chain, the square lattice, or the honeycomb lattice. On some of these
lattices we will investigate the physics of the Heisenberg model in the following chapters.

The classical ground state of an antiferromagnet on a bipartite lattice is the classical
Néel state. The classical Néel state is realised when all spins on sublattice A point in one
direction and all spins on sublattice B point exactly in the opposite direction. For example
on the antiferromagnetic Ising model all spins on sublattice A take the value +1 and all
spins on the sublattice B take the value −1 or vice versa. In the case of the classical
Heisenberg antiferromagnet the spins on the sublattice A point in the direction ~e and all
spins on the sublattice B point in the direction −~e.

5
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Figure 1.1: Two examples of two-dimensional bipartite lattices with sublattices A and B:
a) the square lattice and b) the honeycomb lattice.

1.2 The SU(2)s Spin Symmetry

The spin operators

~Sx =
1

2

(
σ1

x, σ
2
x, σ

3
x

)
, (1.3)

where σi
x are the Pauli matrices, obey the standard commutation relations

[Si
x, S

j
y] = iδxyεijkS

k
x . (1.4)

It is interesting to note that the Hamiltonian is invariant under global SU(2)s spin

rotations, because the scalar product ~Sx · ~Sy does not change under SU(2)s rotations.
Introducing the operator of the total spin

~S =
∑

x

~Sx, (1.5)

this symmetry follows from

[H, ~S] = 0. (1.6)

In two dimensions at zero temperature, this global symmetry is spontaneously broken on
the square and the honeycomb lattice. This cannot be seen directly by inspecting the
Hamiltonian, because spontaneous symmetry breaking is a complicated dynamical effect.
The relevant order parameter is the staggered magnetisation

~Ms =
∑

x

~Sx(−1)x, (−1)x = 1 for x ∈ A, (−1)x = −1 for x ∈ B, (1.7)

which in the infinite volume limit takes a non-zero expectation value. In a finite volume
V and at finite inverse temperature β, spontaneous symmetry breaking manifests itself by
the staggered susceptibility χs, which grows linearly with βV .
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1.3 Observables

Thermal expectation values of observables are formally computed as

〈O〉 =
1

Z
Tr [O exp(−βH)] . (1.8)

As we are going to investigate the quantum Heisenberg antiferromagnet on bipartite lat-
tices, relevant observables are the staggered magnetisation as defined in eq. (1.7), and the
staggered susceptibility

χs =
1

V

∫ β

0

dt 〈M3
s (0)M3

s (t)〉 =
1

V

∫ β

0

dt
1

Z
Tr[M3

s (0)M3
s (t) exp(−βH)] (1.9)

with V being the spatial volume. Another relevant quantity is the uniform susceptibility

χu =
1

V

∫ β

0

dt 〈M3(0)M3(t)〉 =
1

V

∫ β

0

dt
1

Z
Tr[M3(0)M3(t) exp(−βH)]. (1.10)

Here M3 =
∑

x S
3
x is the uniform magnetisation. Both χs and χu can be efficiently mea-

sured using the algorithms introduced in the next chapter.

1.4 Spontaneous Symmetry Breaking

The two-dimensional quantum Heisenberg antiferromagnet on the square or honeycomb
lattice undergoes a second order phase transition at zero temperature in the infinite volume
limit. This can be observed by the order parameter, the staggered magnetisation ~Ms, which
takes non-zero expectation value. This is a consequence of the Merwin-Wagner theorem,
stating that there is no spontaneous symmetry breaking of continuous symmetries at finite
temperature in systems with sufficiently short-range interactions in two dimensions [41].
However, in a finite volume at non-zero temperature, which is the standard situation in a
computer simulation, the SU(2)s spin symmetry is not broken. This can be observed by
at the staggered magnetisation taking an expectation value equals to zero.

However, at low temperature one already observes very long (but not infinite) antifer-
romagnetic order. The range of the correlations is measured by the correlation function

〈S3
xS

3
y〉 ∝ exp

(
−|x− y|

ξ

)
, (1.11)

whose exponential decay is characterised by the correlation length ξ. The correlation length

ξ = exp(2πβρs) (1.12)

diverges in the β → ∞ limit. The correlation length ξ is not to be confused with the length
scale ξ in the low-energy effective field theory introduced in chapter 3.

The consequence of the spontaneous symmetry breaking of the SU(2)s spin symmetry
to its subgroup U(1)s, at zero temperature in the infinite volume limit, are two massless
Goldstone modes known as spinwaves or magnons. This leads to interesting low-energy
physics which will be discussed in more detail in chapter 3.





Chapter 2

Cluster Algorithms for the

Heisenberg Model

In this chapters we will introduce the main numerical methods we will be using in the first
part of this thesis. Namely the loop-cluster algorithm to simulate microscopic quantum
spin models, i.e. in particular the spin 1

2
Heisenberg antiferromagnet. For further reading

we refer to [42, 43].

2.1 Discrete-time Cluster Algorithm

In order to simulate the quantum Heisenberg model one can rewrite the partition function
as a sum over all states |n〉 in a chosen basis, usually in the basis of spins quantised in the
z-direction.

Following Suzuki-Trotter, in discrete time one decomposes the Hamiltonian H into
different parts H1, . . . , HN where the terms contributing to of Hi commute with each
other [44]. In one dimension this implies the following splitting into two parts,

H = H1 +H2, H1 = J
∑

x∈(2m)

~Sx · ~Sx+1̂, H2 = J
∑

x∈(2m+1)

~Sx · ~Sx+1̂, (2.1)

while in two dimensions on a square lattice four parts are needed, e.g.

H1 =
∑

x∈(2m,n)

hx,1, H2 =
∑

x∈(m,2n)

hx,2,

H3 =
∑

x∈(2m+1,n)

hx,1, H4 =
∑

x∈(m,2n+1)

hx,2, (2.2)

where m, n ∈ N and hx,µ = J ~Sx · ~Sx+µ̂. For other lattice geometries, other similar
decompositions can be chosen.

Using a decomposition H =
∑

k Hk, the partition function then takes the form

Z = Tr exp(−β
∑

k

Hk) =
∑

n

〈n| exp(−β
∑

k

Hk)|n〉. (2.3)

9
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We rewrite the partition function, by introducing complete sets of states
∑

n |n〉〈n| = 1
and obtain a path integral

Z =
∑

n1,...,nkM

〈n1| exp(−εH1)|n2〉 . . . 〈nk| exp(−εHk)|nk+1〉〈nk+1| . . .

. . . |nkM−1〉〈nkM | exp(−εHk)|n1〉 + O(ε2), (2.4)

where ε = β/M . The inverse temperature β can be interpreted as the extent of an addi-
tional Euclidean time dimension. We thus obtain a d + 1 dimensional space-time lattice.
The Euclidean time direction consists of kM discrete steps. Using this technique one
should keep in mind, that one has to perform the following calculations at different ε in
order to take the ε → 0 limit. The spin chain with the decomposition described in eq.
(2.1), is shown in figure 2.1, where the interaction is located on the shaded plaquettes.

������������������������

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

β = εM ε

x

Figure 2.1: Suzuki-Trotter decomposition in one dimension with a spin-configuration:
crosses and circles represent the two spin states. Here the interaction resides on the shaded
plaquettes.

Because in each time-step each spin interacts with only one neighbour, it is sufficient to
consider a two-spin Hamiltonian which for the quantum Heisenberg antiferromagnet takes
the form

h =
J

4




1 0 0 0
0 −1 2 0
0 2 −1 0
0 0 0 1


 (2.5)

with the resulting transfer matrix

T = exp (−εh) = e−εJ/4




e−εJ/2 0 0 0
0 cosh(εJ/2) − sinh(εJ/2) 0
0 − sinh(εJ/2) cosh(εJ/2) 0
0 0 0 e−εJ/4


 , (2.6)
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defining the transition amplitudes in the basis {| ↑↑〉,| ↑↓〉,| ↓↑〉,| ↓↓〉}. The off-diagonal
negative elements generally lead to a sign problem. However, since on a bipartite lattice
there is always an even number of such transitions, the resulting weight is always positive.

Starting from a configuration as shown in figure 2.1, one proposes plaquette break-ups,
which represent constraints that bind certain spins together, making sure that only non-
zero matrix elements are generated. As there is spin conservation in the basis chosen here,
only the break-ups presented in figure 2.2 are allowed. These break-ups decompose the
transfer matrix as

T = A




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 +B




0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0


+ C




1 0 0 0
0 0 −1 0
0 −1 0 0
0 0 0 1


 . (2.7)

For a Heisenberg antiferromagnet one obtains A = cosh(εJ/2), B = sinh(εJ/2), and C = 0.

A B C

Figure 2.2: Plaquette break-ups in the Quantum Heisenberg Model.

The partition function can thus be written in terms of the break-ups

Z =
∑

[s]

ANABNB , (2.8)

where NA (NB) is the number of A-type (B-type) break-ups.

2.1.1 The Monte Carlo Method

Quantum many-body problems are among the hardest problems in theoretical physics,
because the configuration-space grows exponentially with the number of particles N in-
volved. Consequently, it is extremely hard to perform first principles calculations of such
systems [27].

That is where the Monte Carlo method enters the stage, with the idea of importance
sampling. The partition function described as the sum of configurations in the path integral
in eq. (2.3) which can be expressed in terms of the break-ups in eq. (2.8) can now be
sampled with the Monte Carlo method. In other words, one generates configurations [s] in
the partition function

Z =
∑

[s]

exp(−S[s]), (2.9)
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with their Boltzmann weight exp(−S[s]), where S[s] is the Euclidean action of the config-
uration in the path integral representation. The configurations [s] are generated according
to their Boltzmann weight with the probability

p[s] =
1

Z
exp(−S[s]). (2.10)

One generates a set of configurations, a so-called Markov chain

[s(1)] → [s(2)] → · · · → [s(n)], (2.11)

where the configuration [s(i+1)] is generated out of [s(i). In this chain one should find [s]
in the n→ ∞ limit with probability p[s]. Observables can be measured by averaging over
the set of configurations generated in the Markow chain

〈O〉 = lim
n→∞

1

n

n∑

i=1

O[s(i)]. (2.12)

Due to importance sampling one can perform phase space integrals for many-particle
problems, that scale only polynomially with the number of particles N , although the
configuration space grows exponentially with N . In order to generate configurations with
the correct probability, one has to ensure that the matrix of the transition probabilites
w([s] → [s′]) has eigenvalue 1 for a stationary probability distribution with the eigenvector
p in equilibrium, i.e. ∑

[s]

w([s] → [s′])p[s] = p[s′]. (2.13)

A sufficient but not necessary condition to achieve this is the detailed balance condition

p[s]

p[s′]

=
w([s] → [s′])

w([s] → [s′])
. (2.14)

Here w([s] → [s′]) denotes the probability to go from [s] to [s′], which, of course, has to be
properly normalised, i.e.

∑
[s′] w([s] → [s′]) = 1.

There are different ways to construct algorithms that obey detailed balance. One simple
method is the Metropolis algorithm [29], where a new configuration [s′] is proposed and
accepted with the probability

w([s] → [s′]) = min [1, exp (−(S[s] − S[s′])] . (2.15)

And other very simple, but less efficient method, because configurations are more often
rejected, is the heat-bath algorithm where new configurations are accepted with the prob-
ability

w([s] → [s′]) =
exp(−S[s′])

exp(−S[s]) + exp(−S[s′])
. (2.16)
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Furthermore, to achieve an algorithm that correctly samples the whole partition func-
tion, we demand ergodicity, i.e.

wn([s] → [s′]) > 0, for all [s], [s′], with n <∞, (2.17)

which is the condition, that every configuration in the partition function must be possible
to be generated by the algorithm with non-zero probability.

Monte Carlo algorithms, such as the Metropolis algorithm, generate configurations out
of each other. Thus the configurations in the Markov chain are usually not statistically
independent. The time it takes to reach a statistically independent configuration is the
autocorrelation time τ :

〈O(t)O(t+ ∆t)〉 − 〈O(t)〉2 ∝ exp(−∆t/τ). (2.18)

Simple Metropolis-type algorithms suffer from critical slowing down, i.e. with increasing
correlation length ξ at a second order phase transition, the autocorrelation time grows with
the power of a factor z

τ ∝ ξz, (2.19)

where z is typically around 2. Thus, in practice such calculations are often still limited to
a small number of particles.

With the invention of cluster algorithms for classical and quantum spin systems, the
factor z has been reduced to z < 1 and in some cases even to z ≈ 0 [30, 31, 33].

The calculations performed in this thesis are all performed at a finite volume V and
at finite inverse temperature β from which one extrapolates to infinity in both space and
time. This is the usual case in a computer simulation. Also one usually imposes periodic
boundary conditions on finite-size boxes, e.g. on a two-dimensional square lattice of spatial
size V = L2. There exists an infinite volume algorithm, which works at L = ∞ and (or)
β = ∞ when the correlation length is finite [45] (which is obviously not the case for the
Heisenberg antiferromagnet at β = ∞). Also there exists a ground state projector Monte
Carlo algorithm where one approaches the ground state instead of sampling a thermal bath
by acting with the Hamiltonian a trial initial state [46].

2.1.2 Cluster Updates

The procedure is thus to completely fill the system with the break-ups described above.
Because on the plaquettes each site is connected with another one via the chosen break-
ups, the bonds form closed loops also known as clusters. Now one collectively changes up-
to down-spins and vice versa on each cluster. This collective change of a whole cluster is
denoted as cluster-flip. Each cluster is flipped with probability p = 1

2
.

This procedure is known as the multi-cluster algorithm. There also exists a single-
cluster variant of this procedure, where one randomly starts at a site on the space-time
lattice and only builds the cluster attached to that site. When the loop is closed, the
cluster is flipped with probability p = 1.
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2.1.3 Detailed Balance, Ergodicity, and the Reference Configu-

ration

Detailed balance is easy to show on a single plaquette S[s(x, t), s(x+ µ̂, t), s(x, t+1), s(x+
µ̂, t+1)], where s(x, t) is a spin at the space-time point (x, t) (this is not to be confused with
the Euclidean action S[s] of a configuration [s]). Only in the configurations S[↑, ↓, ↑, ↓] or
S[↓, ↑, ↓, ↑] one can choose between the A and B break-up. In the multi-cluster mode the
fraction of transition probabilities for the transition from S[↑, ↓, ↑, ↓] to S[↑, ↑, ↑, ↑] is

w(S[↑↓↑↓] → S[↑↑↑↑])
w(S[↑↑↑↑] → S[↑↓↑↓]) =

1
2

1
2

c−s
c

1
2

1
2

=
c− s

c
=
p↑↑↑↑
p↑↓↑↓

. (2.20)

Thus detailed balance is satisfied for the transitions between S[↑↓↑↓] and S[↑↑↑↑]. For the
other cases this can be shown in the same way.

The concept of a reference configuration will help us to show ergodicity. For an anti-
ferromagnet, there is the classical Néel state. Now because the cluster algorithm connects
neighbouring spins only when they are antiparallel, on a bipartite lattice it is always possi-
ble to get to the classical Néel state from any chosen configuration within one multi-cluster
update. Thus we call this classical ground state a reference configuration. Within one
multi-cluster update one can get from any configuration to the reference configuration.
Hence, by going through the reference configuration with two such updates any allowed
configuration can be reached from any other configuration with non-zero probability. Thus
ergodicity is shown. When the rules of a cluster algorithm are based on a reference configu-
ration, the cluster size will not grow larger than the physical correlation length, because the
clusters can only grow within ordered regions. This prevents the clusters from becoming
inefficient due to too large clusters.

2.1.4 Efficiency

The above procedure performs non-local updates. The autocorrelation time is very small,
as it has been tested in simulations. Usually very few updates suffice for completely
uncorrelated measurements [47].

2.1.5 Measuring Susceptibilities

Both the staggered and the uniform susceptibilities can be efficiently measured by con-
structing improved estimators using features of the clusters. In discrete time eq. (1.9)
takes the form

χs =
1

V

β

kM

〈
kM∑

i=0

M3
s (0)M3

s (i)

〉
=

1

V
(
β

kM
)2 1

β

〈
kM∑

i=0

kM∑

j=0

M3
s (i)M3

s (j)

〉

=
β

V (kM)2

〈(
kM∑

i=0

M3
s

)2〉
=

β

V (kM)2

〈
(Ms)

2
〉
. (2.21)
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WhileM3
s (i) is the staggered magnetisation operator at a certain time-slice, Ms =

∑kM
i=0M

3
s (i)

is the staggered magnetisation summed over Euclidean time The staggered magnetisation
can now be written in terms of the cluster decomposition Ms =

∑
iM

Ci
s , where each cluster

Ci carries a staggered magnetisation MCi
s = ±|Ci| which is a multiple of the cluster size

|Ci|. The staggered susceptibility then takes the form

χs =
β

V (kM)2

〈
∑

i

MCi
s

〉2

=
β

V (kM)2

∑

i

〈
(MCi

s )2
〉

=
β

V (kM)2

∑

i

〈|Ci|2〉, (2.22)

because by multiplying out the sum, all mixed terms MCi
s M

Cj
s with i 6= j cancel.

In the single-cluster mode a similar formula can be derived. Because clusters are then
selected in proportion to their size with probability pi = |Ci|/V kM , the improved estimator
for the staggered susceptibility now takes the form

χs =
β

kM

〈
∑

i

|Ci|
|Ci|
V kM

〉
=

β

kM
〈|C|〉 . (2.23)

Similarly, in the multi-cluster mode the uniform susceptibility

χu =
β

V
〈W 2

t 〉 =
β

V

〈
∑

i

Wt(Ci)
2

〉
(2.24)

is given in terms of the temporal winding number Wt =
∑

C Wi(C), which is the sum of
winding numbers Wt(C) of the loop-cluster C around the Euclidean time direction. In the
same way spatial winding numbers are defined as Wi =

∑
C Wi(C).

Again, in the single-cluster mode the uniform susceptibility is given by

χu =
β

V

〈
∑

i

Wt(Ci)
2 |Ci|
V kM

V kM

|Ci|

〉
= βkM

〈
Wt(C)2

|C|

〉
. (2.25)

2.1.6 Continuous-time Limit

The continuous-time limit can be taken by performing at least three simulations for the
same space-time volume at different small ε and fit the calculated averages of an observable
〈O〉 to

〈O(ε)〉 = 〈O〉 + aε2, (2.26)

using 〈O〉 and a as fit parameters. The chosen ε have to be already sufficiently small in
order to justify neglecting higher order terms. We usually choose ε ≤ 0.1.

2.2 Continuous-time Cluster Algorithm

The above procedure has the disadvantage that in order to perform the continuous-time
limit several simulations at different ε are needed because the brute-force limit, i.e. ε → 0,
is not possible due to a diverging number of time-slices kM .
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The solution is thus not to consider infinitesimal transition probabilities, but to store
sporadic transition times in continuous time and update those directly [48]. In the discrete
time formulation, for two antiparallel spins, constantly propagating over the time interval
∆τ , the probability to introduce the transition-type break-up is

p =
∆τ

ε
tanh

(
εJ

2

)
. (2.27)

Now taking the limit ε → 0, we get

p = lim
ε→0

∆τ

ε
tanh

(
εJ

2

)
=

∆τJ

2
. (2.28)

The advantage is, that there is no continuous-time limit to be performed. Also memory
space is saved, as the spin configuration only has to be recorded once in the path integral.
In addition one stores the position of the transitions-type break-ups and whether they keep
or change the the orientation of the spins.

The rest of the algorithm, i.e. the loop update, works exactly as in the discrete-time
algorithm.

We can interpret the hopping of a spin as a decay process in imaginary Euclidean time,
as a sampling of a time-ordered perturbation expansion. One splits the Hamiltonian into
a diagonal part H0 and an off-diagonal part V [42, 49]. The off-diagonal part V is treated
as a perturbation. In the interaction representation the time-dependent perturbation is
V (τ) = exp(τH0)V exp(−τH0) and can be written as

Z = Tr

[
exp(−βH0)T exp

(
−
∫ β

0

dτV (τ)

)]
. (2.29)

By expanding the exponential we get

Z = Tr

[
exp(−βH0)

(
1 −

∫ β

0

dτV (τ) +
1

2

∫ β

0

dτ1

∫ β

τ1

dτ2V (τ1)V (τ2) + . . .

)]
. (2.30)

By viewing the partition function in this way one can already see a connection to the
stochastic series expansion (SSE) discussed in section 2.3 which is also a perturbation
expansion. Where the continuous-time path-integral is a perturbation expansion in the
off-diagonal terms, SSE is a perturbation expansion in all terms of the Hamiltonian.

2.2.1 Measuring Susceptibilities

Again the staggered and the uniform susceptibilities can be efficiently measured by using
improved estimators. In the multi-cluster version of the algorithm the staggered suscepti-
bility is given in terms of the space-time cluster size |C|, i.e.

χs =
1

βV

〈
∑

C
|C|2
〉
, (2.31)



2.3 Stochastic Series Expansion 17

and the uniform susceptibility is given by

χu =
β

V
〈W 2

t 〉 =
β

V

〈
∑

C
Wt(C)2

〉
. (2.32)

2.3 Stochastic Series Expansion

Stochastic series expansion (SSE) is a similar method based on a high temperature expan-
sion [50]. The partition function Z is then rewritten as

Z = Tr exp(−βH) =

∞∑

n=0

(−β)n

n!
Tr(Hn)

=

∞∑

n=0

βn

n!

∑

|α〉

∑

(b1...bn)

〈α|
n∏

i=1

(−Hbi
)|α〉, (2.33)

where bi denotes all possible bonds, i.e. all pairs 〈xy〉 of neighbouring spins.

In order to get positive weights, all Hbi
should be negative. For the diagonal entries in

the Hamiltonian this can easily be achieved by an energy-shift Es

Hbi
=




J
4
−Es 0 0 0
0 −J

4
−Es

J
2

0
0 J

2
−J

4
−Es 0

0 0 0 J
4
− Es


 . (2.34)

A good choice of Es is Es = J
4
. The off-diagonal matrix elements are potentially dangerous

and will cause a sign problem on frustrated lattices. On bipartite lattices there is always
an even number of such matrix elements and there is no sign problem.

In SSE one samples an operator string of variable length n. For convenience one can
replace this with an operator string of fixed length Λ, by adding extra identity operators

Z =
∞∑

n=0

∑

|α〉

∑

(b1...bn)

(Λ − n)!βn

Λ!
〈α|

n∏

i=1

(−Hbi
)|α〉. (2.35)

This is usually easier to realise in a computer, because one does not have to update the
length of the operator string. Furthermore, showing ergodicity is not as straightforward
to show as in the case of the fixed length operator string as long as Λ is bigger than
the number of non-unit-matrix operators, this cut-off does not alter any results and if n
approaches Λ one can always increase Λ, which is a procedure usually performed during
the thermalisation of the simulation.

The update of the system works in two steps:
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1. insert and remove operators. As a replacement of a unit operator we propose with
probability

P1→Hd
bi

= min

(
1,
βNb〈α|Hd

bi
|α〉

Λ − n

)
(2.36)

a diagonal operator, where Nb is the number of bonds. In place of a diagonal operator
we propose a unit operator with probability

PHd
bi
→1 = min

(
1,

Λ − n+ 1

βNb〈α|Hd
bi
|α〉

)
. (2.37)

2. Perform a loop update as above.

It is striking how similar the continuous time path integral formulation and SSE are.
That is no coincidence. There exists an exact mapping between one and the other by
integrating out the transition times while keeping the time ordering of the transitions
fixed.

2.3.1 Measuring Susceptibilities

Again the uniform susceptibility can be measured using the temporal winding numbers of
the individual loops [51]:

χu =
β

V
〈W 2

t 〉 =
β

V

〈
∑

C
Wt(C)2

〉
. (2.38)

The staggered susceptibility

χs =
1

V

∫ β

0

dt′〈M3
s (0)M3

s (t′)〉, (2.39)

which is an integral over imaginary time, can be calculated in the following way

χs =
1

Z

1

V

∫ β

0

dt′Tr
[
M3

s exp(−(β − t′)H)M3
s exp(−t′H)

]

=
1

Z

1

V

∫ β

0

∞∑

m=0

∞∑

k=0

(t′ − β)m

m!

(−t′)k

k!
Tr
[
M3

sH
mM3

sH
k
]

=
1

Z

1

V

β

m+ k + 1

∞∑

m=0

∞∑

k=0

(−β)m+k

(m+ k)!
Tr
[
M3

sH
mM3

sH
k
]
. (2.40)
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Now we use n = m+ k and thus obtain

χs =
1

Z

β

V

1

n+ 1

∞∑

n=0

n∑

k=0

(−β)n

n!
Tr[M3

sH
n−kM3

sH
k]

=
1

Z

β

V

1

n+ 1

∞∑

n=0

(−β)n

n!

{
n∑

k=1

Tr[M3
sH

n−kM3
sH

k] + Tr[M3
sM

3
sH

n]

}

=
β

V

1

n + 1

[〈
∑

i

M3
s0M

3
si

〉
+
〈
M3

s0M
3
s0

〉
]

=
β

V

1

(n+ 1)

[
1

n

〈
∑

i,j

M3
siM

3
sj

〉
+

1

n

〈
∑

i

M3
siM

3
si

〉]

=
β

V

1

(n+ 1)n

[〈
(

n∑

i=1

Msi)
2

〉
+

〈
n∑

i=1

M2
si

〉]
, (2.41)

where M3
si and M3

sj are the staggered magnetisations at the operators i and j with an
operator string of length n.





Chapter 3

Low-Energy Magnon Effective Field

Theory

As an underlying microscopic system we consider the quantum Heisenberg model

H = J
∑

〈xy〉

~Sx · ~Sy −
∑

x

~Ms · ~Bs (3.1)

with an external staggered magnetic field ~Bs. In the infinite volume limit at zero temper-
ature and with ~Bs = 0, ~Ms develops a non-zero vacuum expectation value signalling the
spontaneous breakdown of the SU(2)s spin symmetry to its U(1)s subgroup.

The low-energy physics of two-dimensional antiferromagnets on bipartite lattices is
governed by the spontaneous symmetry breaking of the global SU(2)s spin symmetry to
U(1)s at zero temperature. This means that the staggered magnetisation

~Ms =
∑

x

~Sx(−1)x, (−1)x = 1 for all x ∈ A, (−1)x = −1 for all x ∈ B (3.2)

spontaneously chooses a direction with non-zero expectation value of ~Ms. What remains of
the SU(2)s spin rotation symmetry is U(1)s which are rotations around the direction of ~Ms.
As a result there are two massless Goldstone bosons — the antiferromagnetic spinwaves or
magnons — described by fields in the coset space SU(2)s/U(1)s. The low-energy magnon
physics is described by an effective field theory, the (2 + 1)-d O(3)-invariant non-linear
σ-model.

3.1 Leading Order Action

In analogy to chiral perturbation theory for the pseudo-Goldstone bosons in QCD — the
pions — a systematic low-energy effective field theory for magnons was developed in [17–21].
The local staggered magnetisation of an antiferromagnet is described as a unit-vector field

~e(x) = (~e1(x), ~e2(x), ~e3(x)) , ~e(x)2 = 1. (3.3)

21
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Here, x = (x1, x2, t) denotes a point in (2 + 1)-d space-time.
The effective action is constructed by writing down all possible terms consisting of the

field ~e and its derivatives up to a certain order that are invariant under the symmetries of
the system (the SU(2)s spin symmetry, time reversal T and discrete lattice symmetries).
Because the magnons have a relativistic spectrum, spatial and temporal derivatives are
counted in the same way and thus no term with only one derivative is allowed.

To leading order, the Euclidean magnon effective action takes the form

S[~e] =

∫
d2x dt

ρs

2

[(
∂i~e · ∂i~e+

1

c2
∂t~e · ∂t~e

)
−Ms~e · ~Bs

]
. (3.4)

The low-energy constants ρs, c, and Ms are not determined by the effective field theory,
but have to be determined externally. In our case we will determine them by performing
Monte Carlo simulations of the underlying microscopic system. The low-energy constant
Ms in the term of the external staggered magnetic field is the same as in the definition of
the staggered susceptibility in eq. (3.7). In the further discussion we will remove the term

Ms~e · ~Bs from the action, because we will work without an external staggered magnetic
field, still keeping in mind that Ms takes non-zero value due to spontaneous symmetry
breaking which is the reason why it appears in the definition of the staggered susceptibility
in eq. (3.7).

The spatial directions are labeled with i ∈ {1, 2} and the index t denotes the Euclidean
time-direction. This Lagrangian is the same to leading order irrespective of the underlying
lattice structure for two-dimensional bipartite lattices, provided that there are appropriate
discrete lattice symmetries and SU(2)s breaks to U(1)s. The low-energy parameter ρs is
the spin-stiffness whereas c is the spinwave velocity. At low energies the antiferromagnet
has a relativistic spectrum. Hence, by introducing x0 = ct the action takes the manifestly
Lorentz-invariant form

S[~e] =

∫
d2x dx0

[ρs

2c
∂µ~e · ∂µ~e

]
. (3.5)

The ratio ξ = c/(2πρs) defines a characteristic length scale which diverges when antiferro-
magnetism disappears at a second order phase transition at zero temperature. This not to
be confused with the physical correlation length ξ introduced in chapter 1.

3.2 Calculations at Finite Volume and Temperature

Hasenfratz and Niedermayer have performed very detailed calculations of a variety of
physical quantities including the next-to-next-to-leading order (NNLO) of the systematic
low-energy expansion [19–21]. In particular, the results from computer simulations to the
finite volume and non-zero temperature can be fitted to their calculations at finite volume
and non-zero temperature. Thus we have a way to extract the infinite volume low-energy
effective field theory constants from finite-size simulations. Depending on the size of the
spatial extension L of a quadratic periodic spatial volume and the inverse temperature β,
different space-time geometries can be distinguished. A cubical space-time volume where
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L ≈ βc, a cylindrical volume where L ≪ βc and a slab geometry where L ≫ βc. The
aspect ratio of the space-time box is characterised by

l =

(
βc

L

)1/3

. (3.6)

In the cubical regime the volume- and temperature-dependence of the staggered magneti-
sation is given by

χs =
M2

sL
2β

3

{
1 + 2

c

ρsLl
β1(l) +

(
c

ρsLl

)2 [
β1(l)

2 + 3β2(l)
]
+ ...

}
, (3.7)

where Ms is the staggered magnetisation density. The uniform susceptibility takes the
form

χu =
2ρs

3c2

{
1 +

1

3

c

ρsLl
β̃1(l) +

1

3

(
c

ρsLl

)2 [
β̃2(l) −

1

3
β̃1(l)

2 − 6ψ(l)

]
+ ...

}
. (3.8)

The functions βi(l), β̃i(l), and ψ(l) are shape coefficients of the space-time box defined
in [21].

In order to extract the low-energy constants ρs, c, and the staggered magnetisation
Ms, one can perform a series of simulations with increasing L and β and simultaneously
fit the obtained data to eqs. (3.7) and (3.8), using ρs, c, and Ms as fit parameters. In
the cubical regime l is tuned to l ≈ 1. In order to find the cubical regime on can measure
winding numbers. If the expectation values of the square of the spatial and of the temporal
winding numbers are approximately equal, i.e. 〈W 2

i 〉 ≈ 〈W 2
t 〉, then L ≈ βc and thus we

are in the cubical regime.
If L is large, it is sufficient to fit to eqs. (3.7) and (3.8) because the neglected subleading

corrections are of the order O(Ll)−3 and can thus be neglected.
In the very low temperature limit, one enters the cylindrical regime of space-time vol-

umes with βc≫ L. In this case, the staggered magnetisation vector ~Ms acts as a quantum
rotor and, correspondingly, the low-energy end of the spectrum takes the form

ES =
S(S + 1)

2Θ
. (3.9)

Here S ∈ {0, 1, 2, ...} is the spin and Θ is the moment of inertia of the quantum rotor which
is given by [21]

Θ =
ρsL

2

c2

[
1 +

3.900265c

4πρsL
+O

(
1

L2

)]
. (3.10)

The partition function of the (2S+1)-fold degenerate rotor spectrum is given by

Z =
∞∑

S=0

(2S + 1) exp (−βES) . (3.11)
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The probability distribution of the uniform magnetisation M3 = S3 is then given by

p(M3) =
1

Z

∑

S≥|M3|
exp (−βES) . (3.12)

3.3 Low-Energy Constants for the Square Lattice

The parameters ρs, Ms, and c of a spin 1
2

Heisenberg antiferromagnet on a square lattice
have been extracted in [46–48,52]. In a recent study [53] , these low-energy parameters are
discussed in more detail and are further determined to higher precision with the resulting
low-energy constants

Ms = 0.30743(1)/a2, ρs = 0.1808(4)J, c = 1.6585(10)Ja. (3.13)



Chapter 4

Effective Field Theory and

Simulation of the Spin 1
2 Heisenberg

Model on the Honeycomb Lattice

Like the square lattice, the honeycomb lattice is a two-dimensional bipartite lattice with
appropriate discrete lattice symmetries such that at zero temperature SU(2)s breaks down
to U(1)s. Thus we expect similar low-energy physics although the symmetries are not
exactly the same. The work presented in this chapter has been published in [7].

4.1 Simulation Set-up on a Honeycomb Lattice

In order to simulate the Heisenberg antiferromagnet on a honeycomb lattice, we put it
into a rectangular box with periodic boundary conditions. The honeycomb lattice shown
in figure 4.1a contains 3 × 3 elementary cells shown in 4.1b. The lattice spacing a is the
distance between two neighbouring sites.

If one simulates using the discrete time algorithm, three Suzuki-Trotter decomposition
steps are required, i.e. H = H1+H2+H3. Here H1 contains all bonds in the (1, 0) direction,

H2 contains the interactions on the bonds in the (1
2
,
√

3
2

) direction, and H3 contains the

bonds in the (−1
2
,
√

3
2

) direction on a lattice as shown in figure 4.1.

4.2 Magnon Effective Theory

As on the square lattice, on the honeycomb lattice there is spontaneous symmetry breaking
at zero temperature, where the staggered magnetisation spontaneously chooses a direction
and takes a non-zero expectation value. Thus the same methods as described in chapter
3 can be applied here. The discrete lattice symmetries are not the same, but to leading
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√
3a

3a

a

a

Figure 4.1: a) The periodic honeycomb lattice consisting of two triangular sublattices A
and B, which are depicted by solid and open circles, respectively. The dashed rectangle is
an elementary cell for building a periodic honeycomb lattice covering a rectangular area.
b) Elementary cell of a honeycomb lattice which has the size 3a×

√
3a.

order the Euclidean magnon low-energy effective action takes the same form

S[~e] =

∫
d2x dt

ρs

2

(
∂i~e · ∂i~e+

1

c2
∂t~e · ∂t~e

)
. (4.1)

This effective action has been derived in the same way as described in chapter 3. Again all
terms with up to two derivatives were constructed and checked whether they are invariant
under the symmetries of the quantum Heisenberg antiferromagnet on the honeycomb lat-
tice. Although the lowest-order action is the same as on the square lattice, higher-order
terms are affected by the lattice symmetries. The symmetries of the honeycomb lattice are
discussed in chapter 11.

We again perform simulations of a finite-size space-time box and fit our data to eqs. (3.7)
and (3.8), derived in the cubical regime. The aspect ratio of the spatially quadratic space-
time box is characterised by l = (βc/L)1/3, with which one distinguishes cubical space-time
volumes with L ≈ βc from cylindrical ones with βc≫ L and slab geometries with βc≪ L.

Because we work in the cubical regime we have to make sure that Lx ≈ Ly ≈ βc.
This can be determined by the condition that the spatial and temporal winding numbers
should be approximately equal 〈W 2

1 〉 ≈ 〈W 2
2 〉 ≈ 〈W 2

t 〉 (which implies βc ≈ L). Because
the effective field theory calculations were done on a spatially exactly quadratic lattice
we tried to approach this as closely as possible. However, it is obviously not possible to
construct an exact square, because it is built out of 3a×

√
3a size unit cells shown in figure

4.1b. Hence, we simulated different lattices close to a square and then performed a linear
interpolation to a perfect square shape. For example, we simulated an 11× 19 elementary
cell (= 33a×32.91a) and a 11×20 elementary cell lattice (= 33a×34.64a) and performed
a linear interpolation to an exact 33a× 33a lattice (which would correspond to 11× 19.05
unit cells).

Instead of considering the staggered magnetisation density Ms of eqs. (3.7) and (3.8),
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βJ N1 N2 NSpin χsJa 〈W 2
t 〉

24 11 19 836 575.14(82) 7.828(15)
25 11 19 836 597.58(85) 7.494(15)
26 11 19 836 620.91(85) 7.177(15)
34 15 26 1560 1450(3) 10.113(20)
35 15 26 1560 1496(3) 9.797(21)
36 15 26 1560 1532(3) 9.491(22)
44 19 33 2508 2936(5) 12.411(25)
45 19 33 2508 3001(5) 12.145(25)
46 19 33 2508 3061(5) 11.848(26)
48 22 38 3344 4220(6) 15.137(28)
49 22 38 3344 4308(7) 14.796(26)
50 22 38 3344 4392(7) 14.495(28)
59 26 45 4680 7151(11) 17.123(29)
60 26 45 4680 7286(11) 16.838(29)
61 26 45 4680 7401(12) 16.557(31)

Table 4.1: Some numerical data for the staggered susceptibility χs and the temporal winding
number squared 〈W 2

t 〉 obtained with the loop-cluster algorithm. N1 and N2 count the number
of copies of elementary rectangles in the 1- and 2-direction and NSpin = 4N1N2 is the
corresponding number of spins.

we choose to quote the staggered magnetisation per spin M̃s , which is related to Ms by

M̃s =
3
√

3

4
Msa

2. (4.2)

The reason is that we want to be able to compare the results to the calculations done on
the square lattice. Thus it is better to compare the staggered magnetisation per spin, than
the staggered magnetisation density, because on the honeycomb lattice there are less spins
per volume than on the square lattice.

4.3 Determination of the Low-Energy Parameters of

the Magnon Effective Theory

Some numerical data from our simulations are listed in table 4.3. By fitting χs and χu

simultaneously to eq. (3.7) and eq. (3.8), we find

M̃s = 0.2688(3), ρs = 0.102(2)J, c = 1.297(16)Ja (4.3)

with χ2/d.o.f. ≈ 1.05 as shown in figures 4.2a and 4.2b. The low-energy constants ρs

and c are determined with high accuracy (at the percent level) and the error of M̃s is
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Figure 4.2: a) Fit of the finite-size and finite-temperature effects of the staggered suscep-
tibility χs to results of the effective theory in the cubical regime. b) Fit of the finite-size
and finite-temperature effects of the temporal winding number squared 〈W 2

t 〉 to the results
of the effective theory in the cubical regime.

even at the permille level. The value of c obtained here is consistent with the one of a
spinwave expansion study [54]. The above value of M̃s is larger than the one of a previous
spinwave expansion [55] but consistent with that of a series expansion study [56] (within
the comparably large 4 percent error of that study). It is only slightly larger than the

value obtained in a previous Monte Carlo calculation M̃s = 0.2677(6) [57]. We want to
point out that our results are obtained by fitting more than 80 numerical data points
to two analytic predictions with only 3 unknown parameters. If M̃s is fixed to 0.2677,
the quality of our fit downgrades to χ2/d.o.f. ≈ 3.0. The reduction of M̃s = 0.2688(3)
and ρs = 0.102(2)J on the honeycomb lattice compared to those on the square lattice

(M̃s = 0.3074(4), ρs = 0.186(4)J [47, 48]) indicates larger quantum fluctuations on the
honeycomb lattice. This is expected since the coordination number of the honeycomb
lattice is smaller than the one of the square lattice.

4.3.1 Effective Theory Predictions in the Cylindrical Regime

Having determined the values of the low-energy parameters M̃s, ρs, and c from the cubical
space-time volume regime, we can test the effective theory in the cylindrical regime. Figure
4.3 shows a comparison of the effective theory prediction for the probability distribution
p(M3) of eq. (3.12) with Monte Carlo data. The observed excellent agreement — which
does not involve any adjustable parameters — confirms the quantitative correctness of the
effective theory.
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Figure 4.3: Comparison of the effective theory prediction for the probability distribution
p(M3) of eq. (3.12) with Monte Carlo data on an N1 × N2 = 11 × 19 honeycomb lattice
with NSpin = 836 at βJ = 60. The open circles are the Monte Carlo data while the histogram
is the effective theory prediction.

4.3.2 Outlook on the t-J Model for Fermion Doping

Because the t-J model at half-filling is equivalent to the Heisenberg model one can ask
what happens when one moves away from half-filling by doping the system with holes.
This can be done to some extent numerically and there is also an effective field theory that
describes this system. This question plays a major role in part III of this thesis and is
discussed, in particular, for the honeycomb lattice in chapter 11.





Chapter 5

The Heisenberg Model on a Square

Lattice with Spatially Anisotropic

Couplings

Heisenberg models with spatially anisotropic couplings have been intensively studied [58–
62]. Recently, these models have drawn a lot of theoretical attention, because numerical
evidence indicates that the anisotropic Heisenberg model with staggered anisotropic ar-
rangement of the antiferromagnetic couplings may belong to a new universality class, in
contradiction to the O(3) universality predictions.

Since the anisotropy of the spin stiffness ρs in the spin 1
2

Heisenberg model with spatially
anisotropic couplings J1 and J2 has not been studied in detail before from first principles
Monte Carlo calculations, we perform such simulations to extract the low-energy effective
theory parameters ρs1 and ρs2, the staggered magnetisation density Ms, the spinwave
velocity c and the ground state energy density e0.

The work presented in this chapter has been published in [8].

5.1 Spatially Anisotropic Heisenberg Model

The Hamiltonian of the two-dimensional spatially anisotropic spin 1
2

Heisenberg model, as
depicted in figure 5.1 is defined as

H =
∑

x

[
J1
~Sx · ~Sx+1̂ + J2

~Sx · ~Sx+2̂

]
, (5.1)

where 1̂ and 2̂ are the two unit-vectors in the x- and y-direction. By setting J1 > 0 and
J2 > 0, the system is antiferromagnetic.

In order to perform Monte Carlo simulations, we put the system in a space-time box of
size L1 ×L2 ×β. Observables of interest are the staggered and the uniform susceptibilities
introduced in chapter 2.
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J

J

2

1

Figure 5.1: The anisotropic Heisenberg model investigated in this study. J1 and J2 are the
antiferromagnetic couplings in the 1- and 2-directions, respectively.

5.2 Low-Energy Effective Theory for Magnons

Again as discussed in chapter 3, due to the spontaneous symmetry breaking of the SU(2)s

spin symmetry to a U(1)s subgroup, the low-energy physics is governed by two massless
Goldstone bosons, the magnons. To leading order the effective action takes the form

S[~e ] =

∫ L1

0

dx1

∫ L2

0

dx2

∫ β

0

dt
(ρs1

2
∂1~e · ∂1~e+

ρs2

2
∂2~e · ∂2~e+

ρs

2c2
∂t~e · ∂t~e

)
, (5.2)

where the index i labels the spatial directions and t refers to the Euclidean time-direction.
The parameters ρs =

√
ρs1ρs2, ρs1 and ρs2 are the spin stiffnesses in the temporal and

spatial directions and c is the spinwave velocity. Because we want to fit our Monte Carlo
data to the predictions of eqs. (3.7) and (3.8) as well as to the calculation of the internal
energy density [21]

e = e0 −
1

3βL2

{
1 + l

d

dl
β0(l)

c

ρsLl

[
β1(l) − l

d

dl
β1(l)

]
+O

(
1

L2

)}
, (5.3)

— all derived in the cubical regime characterised by the condition βc ≈ L — we have
to rescale our anisotropic lattice to a square lattice (the parameter e0 is the ground state
energy density). We thus rescale x′1 = (ρs2/ρs1)

1/4x1 and x′2 = (ρs1/ρs2)
1/4x2 and the action

then takes the form

S[~e ] =

∫ L′
1

0

dx′1

∫ L′
2

0

dx′2

∫ β

0

dt
ρs

2

(
∂′i~e · ∂′i~e+

1

c2
∂t~e · ∂t~e

)
. (5.4)

Additionally requiring L′
1 = L′

2 = L, it obeys the condition of a square shape, with
L′

1 = (ρs2/ρs1)
1/4L1 and L′

2 = (ρs1/ρs2)
1/4L2.

5.3 Determination of the Low-Energy Parameters

In order to determine the low-energy constants of the anisotropic Heisenberg model given in
eq. (5.2), we have performed simulations within the range 0.05 ≤ J2/J1 ≤ 1.0. The cubical
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Figure 5.2: The J2/J1-dependence of the spin stiffnesses ρs1 and ρs2 in units of J1 of the
anisotropic Heisenberg model. While the solid circles and squares are the Monte Carlo
results of ρs1 and ρs2, respectively, the up and down triangles are the series expansion
results of [63] for ρs1 and ρs2, respectively. The solid lines are added to guide the eye.

regime is determined by the condition that the spatial and temporal winding numbers
have to be approximately equal 〈W 2

1 〉 ≈ 〈W 2
2 〉 ≈ 〈W 2

t 〉 (which implies βc ≈ L). Notice
that since J2 ≤ J1 in our simulations, one must increase the lattice size L1 in order to
fulfil the condition 〈W 2

1 〉 = 〈W 2
2 〉 because eqs. (5.3), (3.7), and (3.8) are obtained for a

(2 + 1)-dimensional box with equal extent in the two spatial directions. Therefore, an
interpolation of the data points is required in order to be able to use eqs. (5.3), (3.7), and
(3.8). The low-energy parameters are extracted by fitting the Monte Carlo data to the
effective field theory predictions. Figure 5.2 shows ρs1 and ρs2, obtained from the fits, as
functions of the ratio of the antiferromagnetic couplings, J2/J1. The values of ρs1 (ρs2)
obtained here agree quantitatively with those obtained using the series expansion in [63] at
J2/J1 = 0.8 and 0.6 (0.8, 0.6, 0.4, and 0.2). At J2/J1 = 0.4, the value we obtained for ρs1

is only slightly below the corresponding series expansion result in [63]. However, sizeable
deviations begin to show up for stronger anisotropies. Further, we have not observed the
saturation of ρs1 to a one-dimensional limit, namely 0.25J1 as suggested in [63], even at
J2/J1 as small as 0.05. In particular, ρs1 decreases slightly as one moves from J2/J1 = 0.1
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Figure 5.3: a) The J2/J1-dependence of the staggered magnetisation density Ms [1/a2]
of the anisotropic Heisenberg model. b) The J2/J1-dependence of the spinwave velocity
c [J1a] and c) minus the ground state energy density e0 [J1/a

2] (right) of the anisotropic
Heisenberg model. The solid lines are added to guide the eye.

to J2/J1 = 0.05, although they still agree within statistical errors. Of course, one cannot
rule out that the anisotropies in J2/J1 considered here are still too far away from the regime
where this particular Heisenberg model can be effectively described by its one-dimensional
limit.

On the other hand, the Heisenberg model considered here and its one-dimensional
limit are two rather different systems as there is spontaneous symmetry breaking in two-
dimensional, but not in one-dimensional systems. We can only approach the limit from one
side, i.e. from the two-dimensional Heisenberg antiferromagnet with spatially anisotropic
couplings, where there is spontaneous symmetry breaking at zero temperature.

Once J2/J1 is truly zero, the system is no longer two-dimensional, but consists of
decoupled Haldane spin chains. In one dimension there is no symmetry breaking even
though the correlation length diverges.

Thus, the low-temperature behaviour of χu in the one-dimensional system is known to
be completely different from that of the two-dimensional system [21,64].

Although intuitively one might expect a continuous transition of ρs1, one cannot rule
out an unexpected behaviour of ρs1 as one moves from this Heisenberg model toward its
limit in one dimension. In particular, since earlier studies indicate that long-range order
already sets in even for infinitesimally small values of J2/J1 [59, 60, 65–67], it would be
interesting to consider even stronger anisotropies J2/J1 than those used in this study to
see how ρs1 approaches its one-dimensional limit.

In addition to the J2/J1-dependence of the spin stiffnesses ρs1 and ρs2, we have cal-
culated the staggered magnetisation density Ms, the spinwave velocity c, as well as the
ground state energy density e0 as functions of J2/J1 (figure 5.3a, 5.3b, and 5.3c). The
ground state energy density e0 smoothly approaches the value of 1/4 − log(2) in one di-
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mension known from the Bethe ansatz. The values we obtained for Ms agree with earlier
results in [60], but have much smaller errors at strong anisotropies. Further, one also
clearly observes a decrease of Ms toward stronger anisotropy in J2/J1 which in turn is an
indication of the weakening of antiferromagnetism.

5.4 Restoration of the SU(2)s Spin Symmetry

In the limit J2/J1 → 0, the anisotropic Heisenberg antiferromagnet turns into decoupled
spin chains, thus a set of one-dimensional Heisenberg antiferromagnets or Haldane spin
chains. In one dimension there is no spontaneous symmetry breaking, thus the SU(2)s spin
symmetry is restored. One could expected this transition to be in the O(3) universality
class, because it is a transition between a broken SU(2)s spin symmetry and the restored
full SU(2)s spin symmetry. However, because there is not just a phase transition, but also
a dimensional cross-over this not clear at all.

In the vicinity of the phase transition the low-energy parameters are expected to scale
as

ρs

c
∝
(
J2

J1

)ν

, Ms ∝
(
J2

J1

)β

, (5.5)

with the universal critical exponents ν and β (β is not to be confused with the inverse
temperature). For the 3-d O(3) universality class we know the values

ν = 0.7112(5), β = 0.3691(3) (5.6)

from [68].
In order to perform a good fit one has to be sufficiently close to the transition. Usually

for a parameter k with a critical value of kc one requires

|k − kc|
kc

≪ kc. (5.7)

In our case, the dimensional cross-over respectively the phase transition happens exactly
at J2/J1 = 0. Already for infinitesimal J2/J1 the system is two-dimensional with a sponta-
neous symmetry breaking at zero temperature. Thus a condition such as eq. (5.7) cannot
be met and it is not clear how to judge whether one is sufficiently close to the transition.

We think that the data presented above is not sufficiently close to perform a completely
reliable fit of ν and β. In order to go to smaller J2/J1 one would have to work on much larger
lattices, in order to still match the condition of a cubical space-time box. Nevertheless we
perform a fit with the available data, for all J2/J1 ≤ 0.2 shown in figure 5.4, and with a
conservative error estimate we obtain

ν = 0.47(2), β = 0.40(2). (5.8)

A possible systematic deviation due to not being sufficiently close to J2/J1 = 0 is not
included, because that is very hard to estimate. Interestingly enough, the fitted values
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Figure 5.4: Fits of the scaling parameters ν and β to the low-energy constants ρs and Ms.

deviate significantly from the values of the O(3) universality class. The fit is good with
χ2/d.o.f. < 1.0.

The transition described here could belong to a new universality class. However, in order
to make such a statement with certainty one should generate data at much smaller values
of J2/J1. Such dimensional crossover phenomena seem to be much harder to investigate
numerically than one may naively expect.

5.5 Usage of the ALPS Library

While all other codes of the simulations performed in this thesis were written by the author,
the simulations in this chapter were performed with the ALPS project (Algorithms and
Libraries for Physics Simulations) codes. The ALPS project is an open source effort aiming
at providing high-end simulation codes for strongly correlated quantum mechanical systems
as well as C++ libraries for simplifying the development of such code [69].

This was very convenient, because it is very easy to simulate a variety spin models
on various lattice geometries just by editing some configuration files without any further
programming. The codes are open source and can be used by any physicists who do not
want to develop and debug their own code and just want to generate physical data.

Codes and tutorials can all be freely downloaded at http://alps.comp-phys.org.



Chapter 6

The Heisenberg Antiferromagnet

with Additional Four-spin Interaction

It is interesting to consider extensions of the Heisenberg model and observe how the physics
changes. One such extension we will consider here. The work presented in this chapter
has been published in [9].

6.1 Extended Heisenberg Model

The Heisenberg model can be modified by adding terms to the Hamiltonian. As originally
proposed in [35], we consider the Heisenberg Hamiltonian with an additional four-spin
coupling Q

H = J
∑

x,i

~Sx · ~Sx+î −Q
∑

x

[
(~Sx · ~Sx+1̂ −

1

4
)(~Sx+2̂ · ~Sx+1̂+2̂ −

1

4
)

+(~Sx · ~Sx+2̂ −
1

4
)(~Sx+1̂ · ~Sx+1̂+2̂ −

1

4
)

]
, (6.1)

thus leading to the so-called J-Q-model.
If Q is large, the antiferromagnetic order will be destroyed which is particularly inter-

esting, because by doping holes into a t-J model (which corresponds to the Heisenberg
model at half-filling), antiferromagnetism is also destroyed. Hence, we will investigate the
weakening of the antiferromagnet, again using chiral perturbation theory [20, 21].

Furthermore, we will have a close look at the phase transition to the valence bond solid
(VBS) phase, which was the reason to propose this model in the first place. It has been
claimed that the phase transition is second order, concluding that the transition belongs to
a new universality class that is inconsistent with the Ginzburg-Landau-Wilson paradigm.
As argued below, we find that the phase transition is weakly first order.

Finally, we will investigate some of the properties of the VBS phase.
The details of the implementation of the loop-cluster algorithm used in this study are

explained in appendix A.

37
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6.2 Deconfined Quantum Criticality

A quantum critical point is a phase transition due to quantum fluctuations at zero tem-
perature, separating two competing types of order. A deconfined quantum critical point
is a continuous transition from one type of order to an other, i.e. an exotic second order
phase transition as argued in [36]. In our special case it is the transition from the an-
tiferromagnetic order that breaks the spin symmetry, to the VBS order that breaks the
lattice symmetry. Usually, one would expect a discontinuous jump from one type of order
to the other which is thus a first order phase transition. Deconfined quantum criticality is
in contradiction to the Ginzburg-Landau-Wilson paradigm, and if it exists, it would open
the door to a new class of phase transitions previously unknown.

It has been argued that the discussed transition is related to the deconfinement of
spinons, — quasi-particles caused by topological defects — thus the term deconfined quan-
tum criticality.

In the quest for systems where deconfined quantum criticality occurs, the model we
study here is one proposition. Although the conclusion of the original work on the J-Q
model in [35] is a second order phase transition that confirms deconfined quantum critical-
ity, other work confirms our conclusion of a weak first-order phase transition [70]. Hence,
finding deconfined quantum criticality an actual physical system is rather non-trivial. For
example, numerical simulations of microscopic models separating a valence bond soldid
(VBS) order and a superfluid phase found a weak first order phase transition [71, 72]. In
an other a detailed study of an other transition between VBS order and superfluidity has
been shown to be first order in [73]. Also a study of a Higgs transition in several three-
dimensional lattice realizations of the noncompact CP1 model claim to show a generic line
of second-order Higgs transitions, thus a deconfined quantum critical point [74]. This was
also shown to be first order in [75] using the flowgram method [73].

There is newer work that extends the J-Q model with six-spin interactions and extends
the symmetry from SU(2) to SU(N), i.e. in particular SU(3) and SU(4) [76]. Their works
claims to confirm the observation of deconfined quantum criticality.

6.3 Weakening of Antiferromagnetism

As the additional four-spin interaction Q is increased, antiferromagnetism is weakened.
In the antiferromagnetic region of the J-Q-model, low-energy effective field theory can be
applied as described in chapter 3. In order to observe the weakening of antiferromagnetism
we extract the low-energy parameters as described in section 3.2.

6.3.1 Determination of the Low-Energy Parameters

In practice we have performed simulations for a variety of lattice sizes L/a ranging from
24 to 112 at inverse temperatures between βJ = 10 and 20. Just as the ordinary two-
spin coupling J , the four-spin coupling Q can also be treated with an efficient loop-cluster
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Q/J βJ L/a χsJa 〈W 2
t 〉

0.1 20 34 743.0(1.8) 8.285(26)
0.1 20 36 829(2) 9.312(25)
0.5 16 42 625.1(1.6) 7.561(20)
0.5 16 44 683(2) 8.310(20)
1 12 42 333.7(1.3) 5.361(20)
1 12 46 396.3(1.5) 6.434(22)
2 12 66 470.8(1.6) 5.598(20)
2 12 68 497.7(1.6) 5.960(22)
3 10 78 383.8(1.2) 5.310(21)
3 10 82 420.8(1.2) 5.914(22)
4 10 94 415.9(1.5) 5.011(23)
4 10 96 431.4(1.5) 5.229(26)

Table 6.1: Some numerical data for the staggered susceptibility and the temporal winding
number squared 〈W 2

t 〉 obtained with the loop-cluster algorithm.

algorithm. All simulations described in this section have been performed with a discrete-
time loop algorithm at three different lattice spacings in time, which allows a reliable
extrapolation to the continuum limit. Details concerning the algorithm can be found in
Appendix A. Some numerical data (extrapolated to the time-continuum limit) are listed
in table 6.1. The simultaneous fits to eqs. (3.7) and (3.8), for fixed J and Q, are very
good with χ2/d.o.f ranging from 0.5 to 2.0. Typical fits are shown in figures 6.1. The
corresponding results are summarized in table 6.3.1 and illustrated in figures 6.2 and 6.3.
A substantial weakening of antiferromagnetism can be observed. In particular, going from
Q = 0 to Q = 4J , the staggered magnetisation Ms decreases by a factor of about 3, while
the correlation length ξ = c/(2πρs) increases by a factor of about 5. Interestingly, in units

Q/J Msa
2 ρs/J c/(Ja2) ξ/a

0 0.3074(4) 0.186(4) 1.68(1) 1.44(3)
0.1 0.2909(6) 0.183(6) 1.88(3) 1.64(3)
0.5 0.2383(7) 0.182(6) 2.73(4) 2.39(4)
1 0.1965(7) 0.194(7) 3.90(6) 3.19(5)
2 0.149(1) 0.194(9) 5.98(14) 4.91(12)
3 0.122(1) 0.192(8) 7.97(16) 6.60(14)
4 0.106(1) 0.218(13) 10.50(31) 7.67(26)

Table 6.2: Results for the low-energy parameters Ms, ρs, and c as well as the length scale
ξ = c/(2πρs) obtained from fitting χs and χu to the analytic expressions of eqs. (3.7) and
(3.8) from the magnon effective theory.
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of J , the spin stiffness ρs is more or less constant. The increase of ξ with Q is thus due to an
increase of the spinwave velocity c (in units of Ja). When antiferromagnetism disappears
at a second order phase transition, the correlation length ξ diverges. This is possible only
if ρs goes to zero at the transition. Since the system interacts locally, any excitation travels
with a finite speed and hence c cannot go to infinity. If ρs stays finite, then this points to
a first order phase transition. Further evidence for this type of transition will be presented
in the next section.

6.4 Phase Transition between Antiferromagnetism and

VBS order

As seen in the previous section, the antiferromagnet is substantially weakened by the four-
spin coupling Q. This manifests itself in the decrease of the staggered magnetisation Ms

and the increase of the length scale ξ. The low-energy effective theory is valid as long
as the higher order terms are suppressed, which is the case as long as L ≫ ξ. Because
we cannot simulate arbitrarily large lattices, in practice this limits us to ξ ≈ 10a which
corresponds to Q/J ≈ 5. The length scale ξ diverges when one approaches a second order
phase transition, thus the systematic low-energy effective theory is no longer applicable at
such a transition. Different methods are thus needed to investigate the phase transition.
In this section we will use both finite-size scaling and the so-called flowgram method [73].

6.4.1 Finite-Size Effects of 〈W 2
i 〉 near the Transition

In order to find the location of the phase transition, a natural approach is to investigate
the J/Q-dependence of the spatial winding number squared 〈W 2

i 〉. It should also reveal
something about the nature of the phase transition, because for sufficiently large volumes
the different curves should all intersect at the critical coupling. Such an analysis has been
performed in [77] and our Monte Carlo data is consistent with their study. We show a
fit to their data for moderate volumes L/a = 32, 40, and 48 near the transition using the
finite-size scaling ansatz

〈W 2
i 〉 = f

(
J − Jc

Jc
L1/ν

)
= A+B

J − Jc

Jc
L1/ν + O

((
J − Jc

Jc

)2
)

(6.2)

in figure 6.4a. It is a good fit with χ2/d.o.f. ≈ 2 under the assumption that the transition
is second order. The three finite volume curves indeed intersect in one point at Jc/Q =
0.0375(5), and no additive sub-leading correction CL−ω to eq. (6.2) is needed. This is in
agreement with the result in [35], which is obtained on smaller volumes L/a = 16, ..., 32,
which do require the inclusion of a sub-leading term. The fit in that study led to ω ≈ 2,
implying that the corrections are suppressed for larger volumes.

However, by including the above data at L/a = 64 in the fit of eq. (6.2), the quality of
fit is worse with χ2/d.o.f. ≈ 8 as one sees in figure 6.4b. The L/a = 64 curve does not pass
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through the same point as the smaller volume curves. The conclusion of that study is that
this should be attributed to sub-leading terms and that there is a quantum critical point
somewhere in the interval 0.038 < J/Q < 0.040. A fit with the inclusion of an additional
sub-leading term CL−ω is possible, but the exponent is not well determined by the data.
In order to get a stable fit we fixed ω to various values in the range of 0.01 ≤ ω ≤ 2.5
and got more or less the same quality of fit. However, the value of the critical coupling
Jc differs. As an example we fixed ω = 2 as suggested in [35], and as a result we obtain
Jc/Q = 0.0404(4) and ν = 0.62(2), which is illustrated in figure 6.4b. However, by fixing
ω = 0.01 we obtain Jc/Q = 0.0438(7) and ν = 0.62(2).

At last, we consider only the large volumes L/a = 40, 48, and 64. Then it is possible
again to perform a four-parameter fit, displayed in figure 6.4c. The quality of this fit —
with χ2/d.o.f. ≈ 3.5 is not as good as before and yields Jc/Q = 0.0398(6). In particular,
it is inconsistent with the moderate volume data fit. Even larger volume data would be
necessary to find out whether the curves will continue to intersect in the same point.

In a nutshell, the data at the moderate volumes L/a = 32, 40, and 48 can be fit
to eq. (6.2) with a good quality. But once we include L/a = 64 a good fit with four
parameters can no longer be done. This data can be fit with six parameters using sub-
leading corrections. However, since sub-leading terms were not needed to fit the moderate
volume data, it is very strange that corrections are needed at larger volumes. We interpret
this unusual behaviour as an indication that the phase transition is weakly first order.

A further observation that casts to doubt on the second order nature of the transition is
a non-monotonic behaviour of the spatial winding numbers 〈W 2

i 〉 near the transition, which
is shown in figure 6.5. This kind of behaviour is usually seen at a first order phase transition.
As an example, in the VBS phase near the transition, antiferromagnetic domains can still
exist. For small volumes, domains of the antiferromagnetic phase lead to an increase of
〈W 2

i 〉 with L, whereas for larger volumes, 〈W 2
i 〉 will decrease with L because the VBS phase

begins to dominate. Such a competition can lead to non-monotonic behaviour. Thus we
think that the data in [35] and [77] do not contain sufficient evidence for a second order
phase transition and thus for a deconfined quantum critical point. Due to our limited
computational power, we could not perform an analysis at substantially larger volumes.

6.4.2 Application of the Flowgram Method

In order to be able to discuss the nature of the phase transition more profoundly, we turn
to an alternative method of analysing phase transitions.

The flogram method is useful for distinguishing weakly first order from second order
phase transitions [73]. Its idea is to define a volume-dependent pseudo-critical point which
ultimately leads to the correct infinite-size critical point. By following observables on the
trajectory of the pseudo-critical point, one can make a prediction about the order of the
phase transition.

For our system, the flowgram method can be implemented in the following way. We
work on lattices of increasing size L at the inverse temperature given by βQ = L/a. First
each individual spin configuration in the path integral is associated with either the anti-
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Figure 6.5: Non-monotonic volume-dependence of 〈W 2
i 〉 at J/Q = 0.038 near the critical

coupling that may indicate a weak first order phase transition.

ferromagnetic or the VBS phase according to the following criterion. If all three winding
numbers W1, W2, and Wt are equal to zero, the configuration is associated with the VBS
phase and otherwise with the antiferromagnetic phase. This criterion is natural, because
in the infinite volume limit there is no winding in the VBS phase, whereas in an antifer-
romagnet there is always some winding. The volume-dependent pseudo-critical coupling
Jc(L) is then defined where both phases have equal weight. In the infinite-volume limit,
this pseudo-critical coupling indeed leads to the true location of the phase transition Jc.
The large volume limit is now approached by simulating systems at the pseudo-critical
coupling Jc(L) for increasing values of L. Using the sum of the spatial and temporal wind-
ing numbers squared W 2 = W 2

1 + W 2
2 + W 2

t , the quantity 〈W 2〉(Jc(L)) is then evaluated
at the pseudo-critical coupling Jc(L). If the phase-transition is second order, 〈W 2〉(Jc(L))
will approach a constant for large L since ρs then vanishes, i.e. ξ = c/(2πρs) diverges at
the phase transition. On the other hand, if the phase-transition is first order, with 50
percent probability, the system will show the characteristics of the antiferromagnet. Thus,
for L ≫ ξ the quantity 〈W 2〉(Jc(L)) grows linearly with L. As will be shown below, for
48a ≤ L we indeed observe this behaviour.

We have implemented the Ferrenberg-Swendsen re-weighting method [78] in order to
accurately locate the pseudo-critical coupling. Unlike in the rest of this thesis, the simula-
tions in this subsection have only been performed at two (instead of three) lattice spacings
in discrete time. Both lattice spacings are close to the continuum limit and give consistent
results. Instead of extrapolating to the continuum limit (which is less reliable with two



46 6. The Heisenberg Antiferromagnet with Additional Four-spin Interaction

10 20 30 40 50 60 70 80 90

L/a

3.1

3.2

3.3

3.4

3.5

<
  W

2  >

Figure 6.6: The sum of spatial and temporal winding numbers squared 〈W 2〉(Jc(L)) evalu-
ated at the pseudo-critical coupling Jc(L) for increasing lattice size L.

than with three lattice spacings), in this subsection we quote our results at the smaller
lattice spacing εQ = 0.05. A calculation using the continuous-time algorithm should not
deviate from our results.

The values of 〈W 2〉 at the pseudo-critical coupling Jc(L), which we use to determine
the order of the phase transition, are shown in figure 6.6. For moderate volumes up to
L = 48a the curve seems to level off, which is the characteristic of a second order phase
transition. As we have seen before, the moderate volume date for the spatial susceptibility
are consistent with the finite-size scaling behaviour of a second order phase transition.
However, for larger volumes the curve rises linearly, thus indicating a weak first order
phase transition. Of course, still at finite volume, one can never completely rule out that
the curve might flatten off at even larger volumes. However, this is rather unlikely and
leads to the conclusion that our results cast serious doubt on the picture of deconfined
quantum criticality painted in earlier studies of this model.

Based on the conclusion above, we want to determine the value of the critical coupling
Jc. The values of the pseudo-critical coupling Jc(L) are shown in table 6.3. It is non-trivial
to extract the infinite volume critical coupling Jc = Jc(→ ∞) with the data for Jc(L) alone.
For this reason we define another pseudo-critical coupling J ′

c(L), which also extrapolates
to the correct limit, i.e. J ′

c(L→ ∞) = Jc. In this case we work at the inverse temperature
given by βQ = L/4a, i.e. in a slab geometry. Irrespective of the spatial winding numbers,
if the temporal winding number Wt is zero, the configuration is now associated with the
VBS phase and otherwise with the antiferromagnet. As before we again define the volume-
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L/a 24 32 48 64 80 96

Jc(L)/Q 0.0311(4) 0.0316(3) 0.0337(4) 0.0364(3) 0.0384(3) —
J ′

c(L)/Q 0.115(2) 0.0871(4) 0.0632(4) 0.0544(5) 0.0477(4) 0.0445(4)

Table 6.3: Values of the volume-dependent pseudo-critical couplings Jc(L) and J ′
c(L) ob-

tained with the Ferrenberg-Swendsen re-weighting method.
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Figure 6.7: Fit of the pseudo-critical couplings Jc(L) (lower curve) and J ′
c(L) (upper curve)

shown as functions of a/L.

dependent pseudo-critical coupling J ′
c(L) where both phases have equal weight. The values

of J ′
c(L) (again quoted at εQ = 0.05) are also listed in table 6.3. Following finite-size scaling

theory for first order phase transitions, using βL2 ∝ L3, both finite-volume pseudo-critical
couplings should approach their common infinite volume limit Jc as

Jc(L) = Jc + C
logL/a

L3
, J ′

c(L) = Jc + C ′ logL/a

L3
. (6.3)

The two pseudo-critical couplings indeed converge to the same limit. The fit of both Jc

and J ′
c to eq. (6.3), shown in figure 6.7, has χ2/d.o.f ≈ 1.15 and yields the infinite volume

critical coupling Jc = 0.0396(6). It should be noted again that only the large-volume
data show the characteristic behaviour of a first order phase transition. The definition
of J ′

c is less natural than the one of Jc(L), because it ignores the spatial winding when
configurations are associated with either of the two phases. This can be seen in the fact
that J ′

c(L) approaches the infinite-volume critical point in a slower fashion than Jc(L).
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Figure 6.8: Columnar (a) and plaquette (b) type of VBS order. The solid bonds indicate
groups of spins that preferentially form singlets.

Consequently, the ultimate large-volume physics is more easily visible using the pseudo-
critical coupling Jc(L). For example the linear increase of 〈W 2〉(Jc(L)) with L, as shown in
figure 6.6, which sets in around L ≈ 50a, is not yet present in 〈W 2〉(J ′

c(L)), and is expected
to set in only on larger volumes.

6.5 The Valence Bond Solid Phase

As we have seen, with increasing Q the antiferromagnet is ultimately destroyed at a weak
first order phase transition. Because the transition is very weak, at small volumes it can
hardly be distinguished from a second order transition which gives rise to an approximate
U(1) symmetry, dynamically emerging as an enhancement of the 90 degrees rotation sym-
metry of the square lattice. This emergent U(1) symmetry makes it difficult to identify
the nature of the valence bond solid, as described below.

We speak of a valence bond solid (VBS) phase when the SU(2)s spin symmetry is
restored and instead certain lattice symmetries are broken (i.e. translational invariance,
rotation symmetry). In the VBS phase spins form singlets with one of their neighbours
and are ordered in a certain way. There are two types of VBS order: columnar and
plaquette order as shown in figure 6.8.

A natural order parameter that signals a VBS state is

Di =
∑

x

(−1)xi/a~Sx · ~Sx+î. (6.4)

If either D1 or D2 has a non-vanishing expectation value we have evidence for the columnar
order. When a linear combination D1 ± D2 has a non-zero expectation value we observe
plaquette-type VBS order.

In our numerical simulations it is easier to consider an alternative pair of order param-
eters. We count the number of transitions — i.e. whenever two antiparallel neighbouring
spins exchange their position, which we call a flip — in the configurations contributing to
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Figure 6.9: Probability distribution p(D̃1, D̃2) obtained on a 962 lattice at βQ = 30 and
Q/J = ∞. The observed U(1) rotation symmetry implies that we cannot identify the nature
of the VBS phase as either columnar or plaquette order.

the path integral. We define the order parameter D̃i as the difference between the number
of spin flips on nearest-neighbour bonds in the i-direction with an even and an odd value of
xi/a. It should be noted that such flips can be due to both the standard two-spin coupling
of strength J and the four-spin coupling of strength Q. The corresponding probability
distribution p(D̃1, D̃2) is thus useful for investigating the nature of the VBS state.

6.6 Probability Distribution of the VBS Order Pa-

rameter

In order to investigate the VBS order in the best possible manner, we go as far into the
VBS phase as possible. Assuming that no further phase transition takes place we work at
Q/J = ∞, i.e. we put J = 0.

The probability distribution p(D1, D2) has been determined by Sandvik on a 322 lattice
at very low temperature and it shows a perfect U(1) symmetry [35]. Using the loop-cluster
algorithm described in appendix A we were able to go to larger lattices, calculating the
non-standard VBS order parameter p(D̃1, D̃2) on lattices up to 962 at βQ = 30. We do
not see any deviation from the U(1) symmetry and can thus not identify the nature of the
VBS order as shown in figure 6.9.

In a recent work, where the interaction is extended with six-spin interactions and the
symmetry is extended to SU(3) and SU(4), the transition from the emergent U(1) sym-
metry at the phase transition to the expected Z4 symmetry is observed [76].

The loop-cluster algorithm described above is very efficient at small Q/J with very
short auto-correlation times, because it is designed to efficiently update long-range spin
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Figure 6.10: The staggered susceptibility χs in the VBS phase increases with increasing
space-time volume until it levels off around L/a ≈ 50 for βQ = 50.

correlations, which means that it is ideally fitted to calculate antiferromagnetic physics.
However, it is not efficient in shuffling transitions from even to odd bonds and thus it is
not perfectly suited for a simulation in the VBS phase.

6.7 Antiferromagnetic Correlations in the VBS phase

In order to show that antiferromagnetism is indeed completely gone in the VBS phase we
again set Q/J = ∞. As shown in figure 6.10, at βQ = 50 the staggered susceptibility
increases with increasing volume until it levels off at around L ≈ 50a. This shows that
long-, but not infinite-range antiferromagnetic order survives deep in the VBS phase, but
that antiferromagnetism is indeed destroyed. Again, our calculation shows that it would
be desirable to go to even bigger lattices to unambiguously identify the ultimate infinite-
volume behaviour.
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Chapter 7

Candidate Ground States on

Frustrated Lattices

The ground states of multi-particle quantum systems ground states are often not known
analytically. For example, in order to extract the ground state of a Heisenberg antiferro-
magnet on a large lattice, one would have to diagonalise a matrix of size 2N × 2N , where
N is the number of sites. This is practically impossible. Thus making reliable statements
about the ground state is a rather non-trivial task.

7.1 Antiferromagnet on a Square Lattice

As the square lattice is a bipartite lattice, the classical ground state is the classical Néel
order as already mentioned in chapter 1. The classical Néel state is realised when all spins
on sublattice A point in one direction and all spins on sublattice B point exactly in the
opposite direction. In the case of the classical Heisenberg antiferromagnet the spins on the
sublattice A point in the direction ~e and all spins on the sublattice B point in the direction
−~e.

However, in the quantum Heisenberg antiferromagnet, the classical Néel state is no
energy eigenstate. It is know from numerical simulations that even a spin 1

2
Heisenberg

antiferromagnet, where quantum fluctuations are strongest, has a second order phase tran-
sition at zero temperature, where the system shows long-range antiferromagnetic order [47].

7.2 Candidate Ground State on a Triangular Lattice

In contrast to bipartite lattices, the triangular lattice cannot be divided into two, but three
sublattices A, B, and C as shown in figure 7.1.

On a triangular lattice antiferromagnetism is frustrated, because it is not possible to
realise a state, where the spins on all pairs of neighbouring sites are antiparallel. For a
classical antiferromagnet the ground state shows coplanar order, as it is illustrated in figure

53



54 7. Candidate Ground States on Frustrated Lattices

7.1, where nearest-neighbour spins enclose an angle of 120 degrees also called 120 ◦ Néel
order.

In the case of the quantum Heisenberg antiferromagnet one still expects coplanar or-
dering as there is some evidence for this from quantum Monte Carlo and exact diagonali-
sation [79].

7.2.1 Coplanar Order Parameter

In order to detect antiferromagnetic order on a bipartite lattice, we measure the stag-
gered susceptibility χs which is proportional to the average of the square of the staggered
magnetisation

~Ms =
∑

x

~Sx(−1)lx =
∑

x

~Sxe
2πi lx

2 lx = 0 for all x ∈ A, lx = 1 for all x ∈ B. (7.1)

In the same way we define a coplanar magnetisation

~̃
Mc =

∑

x

~Sxe
2πi lx

3 , lx = 0 for all x ∈ A, lx = 1 for all x ∈ B, lx = 2 for all x ∈ C.

(7.2)

Because
~̃
M c is complex we can individually look at the real part

ℜ
(
M̃3

c

)
= MA − 1

2
MB − 1

2
MC (7.3)

and the imaginary part of the three-component of the coplanar magnetisation

ℑ
(
M̃3

c

)
=

√
3

2
MB −

√
3

2
MC , (7.4)

where MA, MB, and MC are the three-components of the magnetisations of the sublattices
A, B, and C. It is convenient to use the imaginary part of the coplanar magnetisation to
redefine the coplanar magnetisation as

Mc
.
= MB −MC , (7.5)

which is what we are going to measure in the simulations. Using the improved estimator of
the cluster algorithm in the continuous-time path integral picture, we define the coplanar
susceptibility as

χc =
1

β 2
3
V

〈(
MC

B −MC
C

)2〉
, (7.6)

where V is the number of spins. The factor of 2
3

arises because we consider only two of
the three sublattices. By symmetry considerations it is obvious that the sublattices can be
exchanged and thus

χc =
1

β 2
3
V

〈(
MC

B −MC
C

)2〉
=

1

β 2
3
V

〈(
MC

A −MC
B

)2〉
=

1

β 2
3
V

〈(
MC

A −MC
C

)2
.
〉

(7.7)
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7.3 Frustrated Square Lattice

By introducing a diagonal coupling J ′ to the usual coupling J = Jxy (the coupling in the
x- and y-directions) in the Hamiltonian

H = Jxy

∑

x,µ̂

~Sx · ~Sx+µ̂ + J ′
∑

x

~Sx · ~Sx+1̂+2̂, (7.8)

antiferromagnetism is also frustrated. One can now continuously interpolate between a
square lattice and a triangular lattice with 0 ≤ J ′/Jxy ≤ 1. In the limit J ′ = 0 it
corresponds to the square lattice and antiferromagnetism is not frustrated. In the limit
J ′ = Jxy the system is fully frustrated and corresponds to the triangular lattice. These two
limits with their corresponding sublattices are shown in figure 7.2. One can also consider
the limit Jxy = 0 which corresponds to decoupled spin chains.

7.4 Candidate Ground State on a Kagomé Lattice

On the kagomé lattice it is also possible to identify three sublattices A, B, and C. However,
other than in the case of the triangular lattice this is not unambiguous. On the hexagons
or on any other closed curve containing only two of the three sublattices, as shown in
figure 7.3, one can exchange the sublattice classification and one still has a valid choice of
sublattices. If one now puts a coplanar state on these sublattices, it is obvious that such a
classical ground state is highly degenerate. This is why some experts expect a spin liquid,
i.e. no spontaneous symmetry breaking, on the kagomé lattice [37, 38].

A spin liquid is a system where no ordering takes place. There is no spontaneous
symmetry breaking of either the internal SU(2)s spin symmetry of of a lattice symmetry,
not even at zero temperature.
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Figure 7.1: Triangular lattice with coplanar order. The arrows show the coplanar order of
the spins that enclose 120 degree angles with their neighbours in the internal spin space.
Also the three sublattices are denoted with A, B, and C.
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Figure 7.2: The frustrated square lattice It corresponds to a triangular lattice with Jxy = J ′

and a square lattice with J ′ = 0. The different sublattices are used to define the corre-
sponding susceptibilities χs and χc which are sensitive to antiferromagnetic and coplanar
order.
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Figure 7.3: Kagomé lattice with one choice of three sublattices A, B, C. In contrast to the
triangular lattice there is a large ambiguity in the choice of the sublattices.





Chapter 8

Nested Cluster Algorithm

First principles quantum Monte Carlo simulations on frustrated spin systems are very hard
to perform and suffer especially from the sign problem which we will discuss below. In this
chapter we present a new method, that does not solve the problem completely, but pushes
the possible calculable system sizes quite a bit further and also gives us some insight into
the nature of such systems and their computational challenges. The work presented in this
chapter has been published in [40].

8.1 The Sign Problem

The Monte Carlo method is based on the idea of interpreting the Boltzmann weight
exp(−S[s]) of a configuration [s] as a probability

p[s] =
1

Z
exp(−S[s]). (8.1)

With this idea in mind, one can generate a Markov chain, as discussed in chapter 2, i.e. a
set of configurations [s], sampled according to their probabilities p[s]

[s(1)] → [s(2)] → · · · → [s(N)]. (8.2)

With such a set of configurations, generated by a Monte Carlo algorithm one can calculate
observables as

〈O〉 =
1

Z

∑

[s]

O[s] exp(−S[s]) = lim
N→∞

1

N

N∑

i=1

O[s(i)], (8.3)

where the configuration [s] appears in the mean according to its Boltzmann weight. In
this way most of the time one generates the important configurations, i.e. those with large
Boltzmann weight. Hence, this method is known as importance sampling.

The whole scheme, of course, only works for positive exp(−S[s]). In a classical model
this is always the case. However, in a quantum system there can be negative or even
complex contributions to the partition function (which is still positive), because we now
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sample a path integral which may have contributions from in general complex transition
amplitudes. Of course, if one was in an energy eigenstate basis, the Boltzmann weights
exp(−βEi) would be positive. However, if we knew the energy eigenstates, then we would
not need to sample a path integral in the first place. Thus for quantum systems interpreting
Boltzmann weights as probabilities often fails.

This problem can be circumvented by interpreting the sign as an observable in a mod-
ified partition function

Z+ =
∑

[s]

| exp(−S[s])|. (8.4)

Observables with respect to Z+ are related to the observables in the original partition
function Z as

〈O〉 =
〈OSign〉+
〈Sign〉+

, (8.5)

with

〈Sign〉+ =
1

Z+

∑

[s]

Sign[s]| exp(−S[s])| =
Z

Z+
∼ exp(−∆fβV ) (8.6)

and Sign[s] = sign(exp(−S[s])). Here V is the spatial volume and ∆f is the difference of
the free energy densities of the original ensemble Z and the simulated ensemble Z+. The
expectation value of the sign is exponentially small in the space-time volume βV . We can
estimate the statistical error of the average sign in an ideal simulation which generates N
statistically independent configurations as

σSign

〈Sign〉 =

√
〈Sign2〉 − 〈Sign〉2√
N − 1〈Sign〉

∼= exp(∆fβV )√
N − 1

. (8.7)

Here we have used Sign2 = 1. In order to estimate the average 〈Sign〉 with sufficient
accuracy, one needs on the order of N = exp(2∆fβV ) measurements [80]. For large
space-time volumes this is practically impossible.

8.1.1 NP-Completeness

The advantage of Monte Carlo simulations is that thermal averages can be computed in
a time that scales polynomially with the particle number N , although the configuration
space grows exponentially with N (of course, this is only valid if the autocorrelation time
also only grows polynomially with N). However, as soon as a sign problem arises, i.e. when
negative Boltzmann weights are present, the statistical error grows exponentially with N
and thus defeats the advantage of the Monte Carlo method.

In [27] it was shown, that the calculation of thermal averages of particular quantum
statistical system with Monte Carlo is NP-hard. Thus discussing the theory of the NP

(non-deterministic polynomial) complexity class provides us with with some insight on the
chances of solving the sign problem.
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A non-deterministic polynomial (NP)-complete decision problem could be solved in
polynomial time on a hypothetical non-deterministic Turing machine for which no polyno-
mial algorithm is known on a classical deterministic Turing machine (i.e. a common com-
puter). In contrast to a deterministic Turing machine, the hypothetical non-deterministic
computer has a set of rules that prescribes more than one action for a given situation, e.g.
in case of an if-statement it could follow both branches, but without merging them again.
This is equivalent to having exponentially many deterministic Turing machines without
any communication in between.

When a problem is NP-hard, any problem in NP can be mapped onto it with poly-
nomial complexity. Thus, if one can solve a NP-hard problem in polynomial time then
any problem in NP could be solved in polynomial time, which would imply NP=P. As
there has not been found any polynomial time solution for any NP-complete problem,
it is generally believed that NP 6=P. However, since there is no theoretical proof yet this
remains an open question and is one of the millennium problems of mathematics for which
the Clay Mathematics Institute has offered a one million dollar prize [81].

Thus, if NP 6=P as it is generally believed, there cannot exist a general polynomial
time solution to the sign problem. Still there are solutions to the sign problem for specific
systems, but this must be due to the physics of these specific quantum systems which can
be described in an essentially bosonic way [27]. One such solution is the meron-cluster
algorithm.

8.2 Meron-Cluster Algorithm

The meron-cluster algorithms solves the sign problem e.g. for spinless fermions, a modified
Hubbard model, as well as the the 2d O(3) model at non-zero Θ-vacuum angle or chemical
potential [39, 80, 82, 83].

In a nutshell, using the meron-concept one rewrites the partition function in terms
of clusters in a way that the sign factorises to the clusters. The clusters then are either
merons, i.e. they change the sign under a spin flip, or non-merons, i.e. they leave the
sign unchanged. By ensuring that only non-merons are generated and are always positive
one can sample the partition function without any negative contribution to the partition
function. Thus if the meron-concept is applicable, the sign problem for such a system is
solved.

This approach solves the problem in two steps. The first step consists of analytically
rewriting the partition function, using new variables such that it is possible to exactly
cancel all negative weight configurations with configurations of positive weights. This
group of configurations then does not contribute to the partition function. The remaining
configurations are guaranteed to be positive.

Thus, with the new variables, one effectively obtains Boltzmann weights with Sign = 0, 1.
At this stage, despite the fact that all negative signs have been eliminated, only one half of
the sign problem has been solved since an algorithm that naively generates configurations
with Sign = 0 or 1 generates an exponentially large number of zero weight configurations.
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Thus, it is important to introduce a second step in which one avoids configurations that
have been cancelled analytically. In practice it is often useful to allow these zero-weight
configurations to occur in a controlled manner since these configurations may contribute
to some observables such as n-point functions. In a numerical algorithm a local Metropolis
decision ensures that contributions of 0 and 1 occur with similar probabilities.

In practice it is not possible to construct a meron-cluster algorithm unless two condi-
tions are satisfied. First, it was never possible to construct such an algorithm — or at
least not one that is efficient — without a reference configuration as discussed in chapter
2, which can always be reached from any configuration within one step. Second, it must
be possible to factorise the sign to the clusters which will either have a positive sign or
change it under cluster flip. Thus the clusters have to be independent.

These are rather strong conditions which could be satisfied for some specific models as
mentioned above, but the meron-concept cannot be generally applied.

8.2.1 Fermionic Sign Problem

The fermion sign problem arises from the interchange of indistinguishable fermions in the
path integral which gives rise to a negative sign. This sign can be calculated by examining
the world-lines of the fermions in the path integral and calculating the permutation sign
of the configuration. The fermion permutation sign is a global feature of a configuration.
This is in general a problem, because sign-changes cannot be calculated locally. In some
cases the sign can be associated to clusters using the meron-cluster algorithm [82].

8.2.2 Sign Problem for Frustrated Lattice Geometries

In a ferromagnetic system, the classical ground state is an eigenstate of the quantum system
no matter on what geometry it is applied. For antiferromagnets, the classical ground state
is no energy eigenstate of the quantum spin systems. However, on bipartite systems such as
the square or the honeycomb lattice, there is still long-range antiferromagnetic order, that
can be used as a reference configuration on which a cluster algorithm can be based upon.
This reference configuration can be reached from any configuration within one cluster
update. Furthermore, the bipartite geometry guarantees that no sign problem arises.

On a non-bipartite lattice, i.e. for frustrated antiferromagnets, even the classical ground
state is often not known analytically, or at least provides serious algorithmic problems
already at the classical level.

A triangular lattice can be divided into three separate sublattices as shown in chap-
ter 7. Ignoring one of the three sublattices, the spins on the other other two can align
antiparallely, but it is never possible to antiparallely align all neighbouring spins with an
antiferromagnetic coupling between all three sublattices.

In case of an antiferromagnet, where the transfer matrix takes the form shown in
eq. (2.6), the off-diagonal entries are negative. On a bipartite lattice there can only be an
even number of such transitions, i.e. neighbouring up- and down-spins that exchange their
position. However, on frustrated geometries, there can be an odd number of spin flips,
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resulting in a configuration with a negative sign. This is shown in figure 8.1, where a single
up-spin hops around a triangle in a background of down-spins.

Figure 8.1: An up-spin on a triangular lattice hops around an elementary triangle in a
background of down-spins, generating three transitions which gives rise to a negative sign.

8.3 Nested Cluster Algorithm

The idea behind the nested cluster algorithm is to perform inner Monte Carlo simulations
within outer Monte Carlo simulation. In the algorithm discussed below, the clusters are
independent, but we cannot use a meron-cluster algorithm. The clusters do not change
sign under cluster flip and non-meron clusters can be negative because there is no reference
configuration. Thus we perform in one step a global Monte Carlo update on a configuration
and in a second step independently perform Monte Carlo updates on each cluster in a
configuration which we call inner Monte Carlo. Why this is possible and how it improves
the measurements will be discussed in this section.

The nested cluster algorithm does not completely solve the sign problem for frustrated
antiferromagnets, but it improves the numerical estimates of the sign and thus the calcula-
tion of observables in such systems. Especially for large volumes at moderate temperatures,
simulations can now be performed that were previously impossible. The algorithm is gen-
erally applicable to frustrated quantum spin systems irrespective of the specific underlying
geometry.

While previously the number of updates should be proportional to exp(2∆fβV ), now
only a number of updates proportional to exp(2∆f |Cmax|) is sufficient. In other words, the
sign problem, previously exponentially bad in the space-time volume, is brought down to
the size of the largest cluster |Cmax| in the system. The cluster size |C| can be interpreted
as some correlation length. The usual spin-spin correlation length is smaller than these
clusters. We think that the cluster size has a physical meaning which is probably a measure
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of quantum entanglement. The above mentioned improvement of the measurement of the
sign makes sense, because the sign problem in a system larger than the correlation length
should not get worse. However, as suspected, as the correlation length increases with the
inverse temperature β the algorithm becomes less efficient and ultimately the improvement
of the nested algorithm is lost with growing cluster size.

8.3.1 Making the Cluster Algorithm Ergodic

Using the standard antiferromagnetic loop-cluster algorithm described in chapter 2, one
faces the problem that the algorithm is no longer ergodic. The system is either in a
positive or negative configuration and the standard loop algorithm does not move between
them. This problem could be solved by using the worm or directed loop algorithm [84–86].
However, the worm or directed loop algorithm, unlike the nested algorithm, does not
improve the measurement of the sign.

When we developed the nested cluster algorithm, we first performed an analytic calcula-
tion, using a basis change and some further steps explained in detail in appendix B. These
steps involve interesting thoughts, worth considering, but are not necessary to explain how
the algorithm works.

The first step towards the nested cluster algorithm is to integrate out the spins on a
given cluster configuration. There is a second approach to this problem discussed in 8.3.4.
Every cluster has two orientations and thus a cluster configuration [C] represents 2N [C]

configurations. Considering all these possibilities at once, one can assign a factor of 2 to
each cluster and one then obtains a representation of the partition function, completely
expressed in terms of clusters instead of spins

Z =
∑

[C]

2N [C]ANABNB . (8.8)

Here A and B are the weights of the two break-ups from figure 2.2 and [C] are the cluster
configurations. Because there is no concrete spin-configuration any more, the break-ups A
and B can now always be proposed. Going from a configuration [C] to [C]′, the Metropolis
accept-reject probabilities are given by

p[C]→[C′] = min

{
1,

2N [C′]AN ′

ABN ′

B

2N [C]ANABNB

}
. (8.9)

These updates can now change the sign and efficiently update the whole partition function.
Such updates are shown in figure 8.2.

These changes of plaquettes and thus the cluster configuration are of three types, as
can be seen in figure 8.2:

1. The two bonds belong to different clusters C1 and C2 and will belong to the same
cluster C afterwards (figure 8.2a).
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2. The two bonds belong to the same cluster C and will be in two different clusters C1

and C2 afterwards (figure 8.2b).

3. The two bonds belong to the same cluster C and will remain in the same cluster
(figure 8.2c). This only happens when the two bonds of the cluster have a parallel
orientation as shown with the arrow in the picture below. We call such rewirings of
clusters internal updates, which we will explore further below.

Only the third type of change of the configuration will change the sign as shown further
below.

C1 C2

C

C C1

C2

CC

C

CCC

Figure 8.2: Three types of rewiring clusters, where C1 and C2 are two independent clusters
and C is one single cluster. In case of two lines within the same cluster, they have a certain
orientation (which could also be inverted) denoted by the arrows.

8.3.2 Factorisation of the Sign

Transition plaquettes carry a negative sign. This sign can be distributed onto the two bonds
of the break-up in the following independent way. We assign to a cluster an orientation by
following it one way around. This is equivalent to decorating the cluster with spins. Of
course, the clusters can have two orientations. However, as the sign does not change under
cluster-flip, one of the two orientations can be chosen arbitrarily. Transition plaquettes
are those where both bonds point in the same direction. We then assign a factor of i to
sideways bonds travelling in one direction, and we assign a factor of −1 to bonds travelling
in the opposite direction as shown in figure 8.3. In this way the correct factors of +1 and
−1 are reproduced. Under cluster-flip, the orientations change and thus i-factors turn into
factors of −i and vice versa. In this way the sign of a configuration factorises over the
clusters

Sign =
∏

i

Sign[Ci]. (8.10)

Now it is obvious that the clusters do not change sign under cluster flip, because they
must contain an even number of sideways bonds in order to close and thus their sign is ±1.
Now the cluster flip turns i into −i and vice versa and thus the overall sign of the cluster
remains.
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+1 −1

Figure 8.3: Factorisation of the sign into two i-factors. When bonds are antiparallel, the
resulting factor is +1 and otherwise −1.

The internal update shown in figure 8.2c changes the sign of a cluster from +1 to −1 and
the other way around. By this update, half of the cluster changes its orientation. Because
each half must contain an even number of sideways bonds on such internal plaquettes that
rewiring does not change the sign. However, the introduction or removal of a new transition
plaquette changes the sign of the cluster.

The assigned orientations discussed above are there whether we explicitly assign them or
not. However, as they help us to determine whether an internal update can be performed,
we can either store and update them or measure them within the algorithm.

8.3.3 Improved Measurement of the Sign and the Staggered Sus-

ceptibility

After the updates shown in figure 8.2 have been performed we perform an inner Monte
Carlo sampling by updating only cluster-internal plaquettes, i.e. internal plaquettes where
the bonds travel in the same direction. Each cluster C defines a set ΛC of sites in space-time
contained in the cluster. The inner Monte Carlo procedure generates different realisations
of clusters, that visit all sites in ΛC in different orders with different orientations of the
bonds. These different realisations contribute different values of SignC. In this process,
break-up proposals that lead to a decomposition of ΛC into separate clusters must be
rejected. Thus only rewirings of type 3, as described in subsection 8.3.1, can be applied.
The inner Monte Carlo procedure estimates an average 〈SignC〉i for each set of sites ΛC.
Here, i denotes the improved estimates performed using the inner Monte Carlo updates.
Since the different sets are independent, the improved estimator of the sign is given by

〈Sign〉i =
∏

ΛC

〈SignC〉i. (8.11)

The nesting of such an inner Monte Carlo procedure in the outer Monte Carlo update
described in subsection 8.3.1 achieves exponential error reduction at polynomial cost.
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The number of internal updates has to be fixed for a certain ΛC. For example one can
choose a function of the cluster size |C| to determine the number of internal updates. This
requires some fine-tuning in order to get maximum efficiency which we will further discuss
in section 8.5.

A similar strategy was very successfully applied to the measurement of exponentially
suppressed Wilson loops in lattice gauge theory [87] as well as to quantum impurity models
[88].

Correlation functions and susceptibilities can also be measured with improved estima-
tors. The staggered susceptibility

χs =
〈M2

s Sign〉+
βV 〈Sign〉+

=
〈〈M2

s Sign〉i〉+
βV 〈〈Sign〉i〉+

. (8.12)

is obtained from an improved estimator which is given in terms of the clusters

Ms =
∑

C
MsC (8.13)

as
〈M2

s Sign〉i =
∑

ΛC

〈M2
sCSignC〉i

∏

Λ
C′
6=ΛC

〈SignC′〉i. (8.14)

8.3.4 Nested Cluster Algorithm in the SSE Representation

In SSE representation the nested cluster algorithm can be implemented in the same way
as explained above. However, in practice it is easier to treat some details in a slightly
different fashion.

Once the spins are integrated out, as described in subsection 8.3.1, one has to keep
track of the number of clusters N [C] in the system. Every time a new break-up is proposed
it has to be checked whether N [C] changes. This is an additional effort which can be
omitted. The global updates, i.e. the insertion and removal of operators, can not update
the sign as it is the case when the spins are integrated out. However, this is not a problem
because the internal updates take care of it. So one can keep the spins and still propose
internal updates for operators on bonds, where both spins are parallel, or where there is a
transition. The internal update is now performed by flipping half of the cluster in order to
maintain an allowed configuration, i.e. a configuration with non-zero Boltzmann weight.

8.3.5 Additional Energy Shift

In the SSE representation there are usually only transition operators that connect spins
spatially. Thus we introduce an operator that connects spins forward in time with a higher
energy shift than the usual shift of Es = J

4

−H ′ = −H + Es =




−J
4

+ Es 0 0 0
0 J

4
+ Es −J

2
0

0 −J
2

J
4

+ Es 0
0 0 0 −J

4
+ Es


 . (8.15)
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Hence Es is the weight of a new diagonal operator, which can be interchanged with off-
diagonal operators via internal updates. If Es = 3

4
J is chosen, then internal updates can

always be accepted and do not longer need a Metropolis accept-reject step because both
operators have exactly the same weight. By further increasing Es the probability to have
cluster-internal operators also increases and thus the distribution of the sign (as will be
presented in the below) can be made narrower. However, one has to pay for this by an
additional computational effort, because the operator string will also grow. It is a rather
tricky business to keep the right balance. This fine-tuning will be discussed in section 8.5.

8.4 Results

We considered the Heisenberg antiferromagnet with uniform nearest-neighbour coupling
Jxy = J on the frustrated square lattices illustrated in figure 8.4b. This geometry is further
discussed in chapter 7. The frustrated square lattice has an additional coupling J ′ along

Figure 8.4: Kagomé lattice (left) and frustrated square (or anisotropic triangular) lattice
(right) consisting of three sublattices A,B,C.

the diagonals as described in chapter 7. We have simulated kagomé lattices, as illustrated
in figure 8.4, with up to V ≈ 1000 spins at moderate temperatures with βJ ≈ 1. Figure 8.5
shows the probability distribution of the improved estimator 〈Sign〉i. Although sometimes
it is negative, it still leads to an accurate determination of the average sign. We considered
Mc and χc as defined in eqs. (7.5) and (7.6), which may signal coplanar spin order, as in the
classical ground state on the triangular lattice described in the previous chapter. As shown
in figure 8.6, with increasing volume V both 〈Sign〉+ and 〈M2

c Sign〉+ decrease dramatically
over numerous orders of magnitude, but are still accurately accounted for by the nested
cluster algorithm. For example, with V = 882 spins 〈Sign〉+ = 2.09(8) × 10−14. A brute
force approach would require an astronomical statistics of about 1030 sweeps in order to
achieve a similar precision. Figure 8.7 shows the coplanar susceptibility χc compared to
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the collinear Néel susceptibility χs. On the square lattice, frustration reduces the Néel
order, while (at least for J ′ = J/4) the coplanar order is as weak as on the kagomé lattice
(and practically indistinguishable from it in figure 8.7).

To conclude, in contrast to other Monte Carlo methods, the nested cluster algorithm
is capable of eliminating very severe sign problems for large systems, at least at moderate
temperatures. As we have demonstrated, by studying appropriate susceptibilities one may
obtain valuable insights concerning possible types of order.

8.5 Fine-Tuning of the Nested Cluster-Algorithm

The average sign of cluster 〈SignC〉i calculated by the internal Monte Carlo updates hugely
varies from cluster to cluster. Thus it is important to find a rule that determines the
number of internal updates performed on each cluster. In order to get an error of the order
of 〈SignC〉i one should perform about 〈SignC〉−2

i internal updates. However, in order to
maintain a correct algorithm, the rule should always be the same for a certain set of spins
ΛC defined by the cluster. A good method is to plot the sign of a cluster as a function of
the number of internal plaquettes of a cluster #intC. The sign scales roughly exponentially
with the number of internal plaquettes. This can be fitted with

f(#intC) = exp(−b#intC) (8.16)

to determine the slope b of the exponential. An example for the triangular lattice is shown
in figure 8.8. The number of internal updates u(#intC) as a function of the number of
internal plaquettes can thus be chosen as

u(#intC) = a + exp(2b#intC), (8.17)

where a is a constant chosen to make sure that a minimal internal sampling takes place.
In practice it is also good to choose a maximum of internal updates, because the algorithm
might otherwise be stuck forever in the update of a single cluster. Also the factor of 2
which is necessary to get an error of the order of the average sign was in practice too large
because also it would quickly get the algorithm stuck in the update of a single cluster. We
would rather use

u(#intC) = a+ exp(b#intC). (8.18)

In practice we usually chose a ≈ 10, . . . , 100 and umax ≈ 106, . . . , 107.
Obviously not only the number of internal plaquettes, but also the internal structure

matters whether the average sign is very small. A possibility is thus to measure on which
sublattices the sites on the internal plaquettes lie, i.e. #intA

C , #intB
C , and #intC

C with

#intA
C + #intB

C + #intC
C = 2#intC. (8.19)

If the internal plaquettes are mainly on two sublattices, then not many internal updates
can be performed. We can thus take the geometrical mean of the contribution to the three
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Energy shift c[J ] 〈Sign〉 Computer time[min]

0.75 1.63(2) × 10−2 11
1.75 1.64(1) × 10−2 24
2.75 1.635(6) × 10−2 56
3.75 1.638(5) × 10−2 230

Table 8.1: Average sign and error, as well as time used to generate of the simulations
shown in figure 8.10. In each simulation 106 outer Monte Carlo updates were performed.
The error estimate of the average sign decreases with increasing energy shift, but also the
computer time needed rapidly increases. Also there is no big difference in the error estimate
between an energy shift of 2.75J and 3.75 although the computer time needed is about 4
times longer.

sublattices of the internal plaquettes and redefine #ĩntC as

#ĩntC =
(
#intA

C #intB
C #intC

C
) 1

3 . (8.20)

Furthermore, when we run the algorithm using SSE, the energy shift Es is another
fine-tuning parameter. By increasing Es the probability of internal operators in a cluster
and with it the probability to achieve a good average of the sign increases. This can be
seen in figure 8.9, where at Es = 3

4
J there are a lot of small clusters with a very small

average sign that do not fit the exponential scaling. With an energy shift Es = 7
4
J this fits

much better with an exponential scaling rule.
As a result the histograms become narrower, but also require much more time to gen-

erate. In figure 8.10 histograms for energy-shifts of Es = 3
4
J , Es = 7

4
J , Es = 11

4
J , and

Es = 15
4
J are shown. While the error of the sign decreases with an increasing energy shift,

also the time used to generate these histograms increased substantially as shown in table
8.5 There is obviously a gain in the precision of the error estimate, once the energy shift
is further increased. But with a very large energy shift this is beaten by the increasing
system size and thus much more computer time is needed. A good choice of the energy
shift on the triangular lattice is Es = 2.75J as it can be seen in table 8.5.

On different lattices, the optimal fine-tuning parameters have to be determined indi-
vidually. This is a rather tedious task, but it saves a lot of computer time in productive
simulation.
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Figure 8.8: The sign as a function of the number of internal plaquettes per cluster. The
solid line is a fit of f(#intC) with b = 0.018 to the set of data points. This was done on
a 6 × 6 triangular lattice at β = 1.0. There are 4000 data points. For this measurement a
fixed number of 105 updates was performed on each cluster. This was done in order to get
a good fit for b which could afterwards be used to define the number of internal updates as
a function of the number of internal plaquettes.
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Chapter 9

Nested Cluster Algorithm for

Real-Time Evolution of a Quantum

Spin System

The real-time evolution of a physical system is of central importance in non-equilibrium
physics. For a quantum system one can observe how it equilibrates after a quench. Theo-
retically, this is very challenging, because for large systems it is impossible to perform such
calculations analytically. Also it is an interesting computational problem, because even
numerically this is hard to solve.

As seen above, the simulation of a quantum spin system in thermal equilibrium can
be performed by setting up a path integral, which describes the evolution in an additional
Euclidean time direction of extent β. We have seen that this can lead to a sign problem
for antiferromagnets on frustrated lattices. If one now wants to calculate the real-time
evolution

|Ψ(t)〉 = exp(−iHt)|Ψ(0)〉 (9.1)

of a many-body wave function, such as a quantum Heisenberg antiferromagnet with an
initial state |Ψ(0)〉, one can also set up a path integral in Minkowski time

Z = 〈Ψ(0)| exp(−iHt) exp(iHt)|Ψ(0)〉 = 1 =
∑

[s]

Phase[s]| exp(−S[s])|. (9.2)

Observables at a certain time t can then be measured as

〈O(t)〉 = 〈Ψ(0)| exp(−iHt)O exp(iHt)|Ψ(0)〉. (9.3)

One can also couple such a system to a heat-bath with inverse temperature β

Zβ = Tr [exp(−βH) exp(−iHt) exp(iHt)] =
∑

[s]

Phase[s]| exp(−S[s])|. (9.4)

Observables such as e.g. two-point functions in real-time are thus calculated as

〈cx(0)cy(t)〉β =
1

Zβ
Tr [exp(−βH)cx exp(−iHt)cy exp(iHt)] . (9.5)

75
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The contributions to this path integral are neither guaranteed to be positive nor real.
One way to deal with this is to do the same as one does with a sign problem, by simulat-
ing the absolute values of the Boltzmann weights and treating the phase Phase[s] as an
observable

〈O(t)〉 =
〈O(t)Phase〉+
〈Phase〉+

(9.6)

The averages 〈〉+ are measured using a modified partition function

Z+ =
∑

[s]

| exp(−S[s])|. (9.7)

Thus we are not really sampling a partition function as we do in normal equilibrium
physics simulations. This already gives us a hint that importance sampling might not be
the best method to perform high accuracy calculations. Nevertheless, it is a method that
works and is better than brute force Monte Carlo.

9.1 Factorisation of the Phase

In this section we will explain the method for a spin 1
2

Heisenberg antiferromagnet in the
framework of SSE. The lattice geometry does not matter here.

The path integral now takes the form

Z = 〈Ψ(0)| exp(−iHt) exp(iHt)|Ψ(0)〉

= 〈Ψ(0)|
∞∑

n=0

tn

n!
(−iH)n

∞∑

n=0

tn

n!
(iH)n|Ψ(0)〉. (9.8)

There are two path integrals after each other, one forward and one backward in time.
Forward in time we consider

−iH =
iJ

4




−1 0 0 0
0 1 −2 0
0 −2 1 0
0 0 0 −1


 . (9.9)

We cannot remove the sign of the diagonal elements by an energy shift, because they
are complex. However, it is possible to distribute the phase over the individual bonds
of some operators B and C as shown in figure 9.1 and 9.2. As it is in the case for
frustrated antiferromagnets. Where we have a sign problem in the case of the frustrated
antiferromagnets, we now have a complex action problem. This problem can also not be
solved with the meron-cluster algorithm. The clusters do not change their complex phase
under cluster-flip, because only the B-type bonds change the phase and because in every
cluster there is an even number of such bonds. Thus, the overall complex phase of a cluster
does not change.

In the pure time-evolution without a heat-bath, the initial state Ψ(0) is kept by not
allowing flips of clusters that go through or touch the time-slice at time 0.
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Figure 9.1: Factorisation of the phase of the B-type operators into two phase-factors. The
factors are assigned to the cluster bonds. These bonds change by a factor of −1 under
cluster-flip.

9.2 Internal Cluster Updates

Again internal Monte Carlo updates on the individual clusters can be performed. Here, for
every internal operator, an internal rewiring can be performed as it is illustrated in figure
9.3.

If the system is coupled to a heat-bath, due to the C-type operators shown in figure
9.2, also in the thermal part of the path integral internal updates can be performed as it
is done on the frustrated lattices.

It is not advisable to use an energy shift as we did for SSE in the previous chapter. By
doing so one would not generate unit-matrix operators, but rather operators with a phase
of i or −i. It is best to just interchange them. Thus only the third type of rewiring in
figure 9.3 makes sense in SSE.

9.3 Results for Real-Time Evolution with a Fixed Ini-

tial State

For a Heisenberg antiferromagnet with very few spins we could reproduce the analytically
calculable real-time evolution of an initial classical Néel state. For a 2 × 2 square, where
states are denoted by |s1s2s3s4〉 = |s1s1+1̂s1+2̂s1+1̂+2̂〉, the Néel state | ↑↓↓↑〉 can evolve into
a combination of | ↑↑↓↓〉, | ↑↓↑↓〉, ↑↓↓↑〉, | ↓↑↑↓〉, | ↓↑↓↑〉 and | ↓↓↑↑〉. It is straightforward
to calculate the probabilities

ps1s2s3s4
= |〈Néel| exp(−iHt)|s1s2s3s4〉|2. (9.10)

which are illustrated in figure 9.4. By using our algorithm we can reproduce the analytically
calculated probabilities in figure 9.4 up to t = 1.0/J within a few hours on a single work-
station. This is shown in figure 9.5.
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Figure 9.2: Factorisation of the phase of the C-type operators into two phase-factors. The
factors are assigned to the cluster bonds. These bonds carry the same phase independent
of their orientation and does do not change phase under cluster-flip.
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Figure 9.3: Three possible internal updates and their resulting phase. The second rewiring
goes from 1 to i, because the off-diagonal −1 is cancelled by an other phase, resulting from
flipping half the cluster. Only the third type is used in SSE.

For such a system a histogram of the average 〈Phase〉, which is real and thus rather
an average sign, is illustrated for a 2 × 2 lattice with evolution in time of t = 3.0/J in
figure 9.6a. Because we work with a fixed initial state, there are a lot of clusters in the
system that cannot be flipped and thus internal updates are often rejected. Because of
that there are two additional peaks in the histogram at 1 and −1. This is very bad and one
of the reasons why the nested algorithm does not perform as well as in the case of thermal
averages of frustrated antiferromagnets. Furthermore, there are clusters contributing a
phase of exactly zero and thus quite a lot of generated contributions do not contribute to
the path integral.

One may have expected that our method is not very efficient and the sign problem
is much harder than that of frustrated antiferromagnets. This is due to the fact that
importance sampling of a system which does not have a thermal distribution that can be
interpreted probabilistically, seems not to be the appropriate method.
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Figure 9.4: Probability of states after time t of an initially Néel ordered 2 × 2 square
antiferromagnet from time 0 to π.

9.4 Results for the Real-Time Evolution Coupled to

a Heat-Bath

Similar calculations can be performed for the real-time evolution coupled to a heat-bath.
First of all as shown in figure 9.7 in the distribution of the complex phase the peaks at ±1
start to disappear because the clusters can now be always flipped. But the distribution is
very broad.

Because the initial state is now sampled with a Boltzmann distribution, instead of only
measuring observables at time t we rather measure the correlation of an observable O with
itself in time

〈O(0)O(t)〉 =
Tr[exp(−βH)O exp(−iHt)O exp(iHt)

Tr[exp(−βH)]
. (9.11)

We thus measured the correlation in time of the staggered susceptibility 〈M3
s (0)M3

s (t)〉.
We tested this on a spin chain with two spins where this observable is easily analytically
calculable. Our simulation reproduces the correct result as shown in figure 9.8. On larger
lattices this observable is much harder to calculate. Due to limited computer resources
and the very severe complex action problem we did not further pursue such measurements.
Thus we have not measured anything that cannot be measured otherwise. Still we were
able to show that with the nested algorithm we can in principle perform measurements
of the real-time evolution of quantum spin systems. The complex phases that occur can
be factorised to the clusters and inner Monte Carlo updates can be performed in a very
similar way as in the last chapter.
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Figure 9.6: Distribution of the sign in the simulation of an initially Néel ordered 2 × 2
square antiferromagnet evolving in time from t = 0 to t = 3.0/J . Here, it is only a sign,
because in real-time evolution with a fixed initial state the complex contributions cancel.
The distribution is very narrow around 0, but there are also two peaks at ±1 which are one
of the reasons why the method is not very efficient.
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Figure 9.7: Distribution of the real part of the complex phase ℜ〈Phase〉 in the simulation
of the real-time evolution evolving in time from t = 0 to t = 1.0/J coupled to a heat-bath
with inverse temperature β = 10.0/J on a 6 × 6 lattice on a logarithmic scale from 106
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Simulations of Single Electrons and
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Chapter 10

The t-t′-J Model on the Square

Lattice and its Three Low-Energy

Effective Field Theories

The t-t′-J model is a microscopic model describing holes or electrons with at most one
particle per site. At half-filling, i.e. with one electron on every site, this corresponds to a
spin 1

2
Heisenberg antiferromagnet. At sufficiently large doping, the model is expected to

become superconducting. However, because of the fermion sign problem this is currently
not possible to realise in a computer simulation. Simulations of the single-hole sector can
be performed and used to calculate the single-hole dispersion relation, which is what we
will do in the following chapters.

In the dispersion relation of the t-J model on the square lattice, the shape of the
minima — the so-called pockets — are qualitatively remarkably similar to the hole-pockets
observed with angle resolved photo-emission spectroscopy (ARPES) measurements [89–92].
However, quantitatively the experimentally observed pockets are more elliptical than the
pockets observed in the Monte Carlo simulations of the t-J model. By adding a diagonal
hopping term of strength t′ to the t-J model Hamiltonian, which is thus the t-t′-J model
Hamiltonian, the shape of the pockets can be influenced. By doing so the location of the
minima can be changed.

10.1 Microscopic Formulation

The t-′t-J model is defined by the Hamilton operator

H = P
{
− t
∑

x,i

(c†xcx+î + c†
x+î
cx) − t′

∑

x,s∈{±1}
(c†xcx+1̂+s2̂ + c†

x+1̂+s2̂
cx)

+J
∑

x,i

~Sx · ~Sx+î − µ
∑

x

Qx

}
P, (10.1)
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with

cx =

(
cx↑
cx↓

)
, Sx = c†x

~σ

2
cx, Qx = (c†xcx − 1). (10.2)

There are two hopping terms: The one with strength t describes hopping along the x- and
y-axis and the other with strength t′ describes hopping along the diagonals. The operator
P projects out the configurations with doubly occupied sites. In contrast to the Hubbard
model, the t-t′-J model only allows empty or at most singly occupied sites.

10.2 The Location of the Pockets in the t-t′-J Model

By tuning the parameters t and t′, three distinct locations of the minima — the so-called
pockets — in the dispersion relation of one single charge carrier in t-t′-J model can be
realised. These three locations in the parameter space of t, t′, and J are:

• I: For |t′| ≪ t, pockets at (± π
2a
,± π

2a
) are realised. This corresponds to hole-doped

antiferromagnets.

• II: For t′/t ≪ 0, circular pockets located at (π
a
, 0) and (0, π

a
) are realised, which

correspond to the location of the pockets in electron-doped antiferromagnets, and
are thus called electron-pockets.

• III: For t′/t ≫ 0, it is even possible to observe pockets at (0, 0) and (π
a
, π

a
), which

seem not to correspond to any known real material.

These three possible shapes of the dispersion relation are shown in figure 10.1,

The technique to measure two-point correlation functions described in section 10.6 can
be modified to analytically summing up terms and only afterwards filling in the parameters
t and t′. Thus the whole parameter-space of t and t′ can be simultaneously calculated. The
only disadvantage is that this costs a lot more computer-time and thus one cannot go as far
in Euclidean time as is otherwise possible. It is thus not always completely sure whether
we have yet reached the lowest energy level. The result of this calculation is shown in figure
10.2, where there is quite a large uncertainty concerning the transition lines. Nevertheless,
although the exact transition line is not determined here, there is a clear division of the
parameter space of t, t′, and J into three distinct regions.

If one was able perform calculations of the systems with a finite density of charge
carriers, distinct phases in the t-t′-J model should emerge. The figure presented in 10.2
gives us a first hint how it could look like.

These three regions with their distinct location of the pockets in the dispersion relation
described above lead to three different low-energy effective field theories. The low-energy
effective field theory for the magnons is the same for all three cases in 10.1, but low-energy
behaviour of the fermions is different as discussed below in section 10.4.
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10.3 Magnon Field Transformation Rules

This section is a brief review of the effective theory for magnons and holes in an antifer-
romagnet on the square lattice. We list the symmetry transformation rules for magnon
and hole fields under the various symmetries of the underlying t-J model needed for the
construction of the effective Lagrangian.

As discussed in chapter 3, the staggered magnetisation ~e(x) takes values in the coset
space SU(2)s/U(1)s = S2, with x = (x1, x2, t) denoting a point in (2 + 1)-dimensional
space-time. Using the nonlinear realisation of the global SU(2)s spin symmetry, which is
spontaneously broken to its U(1)s subgroup, this leads to an Abelian “gauge” field v3

µ(x)
and to two vector fields v±µ (x) which are “charged” under U(1)s spin transformations. The
coupling of magnons to holes is realised through a matrix-valued anti-Hermitian field.

For this construction it is convenient to use a CP (1) representation of the magnon fields
~e in terms of 2 × 2 Hermitean projection matrices P (x) with

P (x) =
1

2
(1+ ~e(x) · ~σ) P (x)† = P (x), TrP (x) = 1, P (x)2 = P (x). (10.3)

The spontaneously broken SU(2)s symmetry is nonlinearly realised on the hole fields. The
global SU(2)s symmetry then manifests itself as a local U(1)s symmetry in the unbroken
subgroup and the hole fields couple to the magnon fields via composite vector fields. In or-
der to construct these vector fields one has to diagonalise P (x) by a unitary transformation
u(x) ∈ SU(2) as

u(x)P (x)u(x)† =
1

2
(1+ σ3) =

(
1 0
0 0

)
, u11(x) ≥ 0. (10.4)

In order to make u(x) uniquely defined, we demand that the element u11(x) is real and non-
negative. Under a global SU(2)s transformation g, the diagonalising field u(x) transforms
as

u(x)′ = h(x)u(x)g†, (10.5)

which implicitly and uniquely defines the nonlinear symmetry transformation

h(x) = exp(iα(x)σ3) =

(
exp(iα(x)) 0

0 exp(−iα(x))

)
∈ U(1)s. (10.6)

Under the displacement symmetryDi the staggered magnetisation changes sign, i.e Di~e(x) =
−~e(x), such that one obtains

Diu(x) = τ(x)u(x) (10.7)

with

τ(x) =

(
0 − exp(−iφ(x))

exp(iφ(x)) 0

)
. (10.8)

In order to couple the magnons and charge carriers, one constructs the traceless anti-
Hermitean field

vµ(x) = u(x)∂µu(x)
†, (10.9)
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which transforms under the symmetries inherited from the underlying t-J model as

SU(2)s : vµ(x)′ = h(x)[vµ(x) + ∂µ]h(x)†,

Di : Divµ(x) = τ(x)[vµ(x) + ∂µ]τ(x)†,

D′
i : D′

ivµ(x) = vµ(x)
∗,

O : Ovi(x) = εijvj(Ox),
Ovt(x) = vt(Ox),

R : Rv1(x) = v1(Rx),
Rv2(x) = −v2(Rx),

Rvt(x) = vt(Rx),

T : T vj(x) = Divj(Tx),
Tvt(x) = − Divt(Tx),

T ′ : T ′

vj(x) = D′
ivj(Tx),

T ′

vt(x) = −D′
ivt(Tx). (10.10)

The various symmetries are the SU(2)s spin rotations, the displacement symmetry by one
lattice spacing in the i-direction Di, the symmetry Di combined with the spin rotation iσ2

resulting in D′
i, as well as the 90 degrees rotation O, the reflection at the x1-axis R, time

reversal T , and T combined with the spin rotation iσ2 resulting in T ′ [26] which are given
by

Ox = (−x2, x1, t), Rx = (x1,−x2, t), Tx = (x1, x2,−t). (10.11)

Finally, the field vµ(x) decomposes into the Abelian “gauge” field v3
µ(x) and two

“charged” vector fields v±µ (x), i.e.

vµ(x) = iva
µ(x)σa, v±µ = v1

µ(x) ∓ iv2
µ(x), (10.12)

where ~σ are the Pauli matrices.

The construction presented here is discussed in more detail in [24–26].

10.4 Low-Energy Fermion Field Transformation Rules

For the construction of the fermion fields, it is important to know where the minima of
the fermion dispersion relations are located in the Brillouin zone. There are three known
locations as already discussed in section 10.2 which are displayed in figure 10.1.

10.4.1 Fermion Fields for Hole-doped Systems

Angle resolved photo-emission spectroscopy (ARPES) experiments [89–92] as well as the-
oretical investigations [93–100] show that hole-doped systems have their pockets centered
at (± π

2a
,± π

2a
). First principles microscopic simulations, discussed later in this thesis, do

confirm this. By identifying the proper fields with these positions in momentum space, one
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can construct fermion fields that transform under the various symmetries [24] as

SU(2)s : ψf
±(x)′ = exp(±iα(x))ψf

±(x),

U(1)Q : Qψf
±(x) = exp(iω)ψf

±(x),

Di : Diψf
±(x) = ∓ exp(ikf

i a) exp(∓iϕ(x))ψf
∓(x),

D′
i : D′

iψf
±(x) = ± exp(ikf

i a)ψ
f
∓(x),

O : Oψα
±(x) = ∓ψβ

±(Ox), Oψβ
±(x) = ψα

±(Ox),

R : Rψα
±(x) = ψβ

±(Rx), Rψβ
±(x) = ψα

±(Rx),

T : Tψf
±(x) = ± exp(∓iϕ(Tx))ψf†

± (Tx),
Tψf†

± (x) = ∓ exp(±iϕ(Tx))ψf
±(Tx),

T ′ : T ′

ψf
±(x) = ∓ψf†

± (Tx),
T ′

ψf†
± (x) = ±ψf

±(Tx). (10.13)

Here f ∈ {α, β} are two flavour indices identified with the pockets α = {( π
2a
, π

2a
), (− π

2a
,− π

2a
)}

and β = {( π
2a
,− π

2a
), (− π

2a
, π

2a
)} and the spin-index is s ∈ {+,−}. The vectors kf define the

location of the pockets as

kα =
( π

2a
,
π

2a

)
, kβ =

( π
2a
,− π

2a

)
. (10.14)

Here U(1)Q is the fermion number symmetry of the holes. The action of magnons and
holes must be invariant under these symmetries.

10.4.2 Low-Energy Fermion Fields for Electron-Doped Systems

By using electron-hole duality, we transform the electrons into holes and use the t-t′-J
model to describe those. However, in contrast to holes, electron-doped systems have their
pockets at (π

a
, 0) and (0, π

a
), which is again indicated by ARPES measurements and theoret-

ical investigations [101–107]. After identifying the pockets, under the various symmetries
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the fermion fields transform as [26]

SU(2)s : ψ±(x)′ = exp(±iα(x))ψ±(x),

U(1)Q : Qψ±(x) = exp(iω)ψ±(x),

Di : Diψ±(x) = ∓ exp(ikia) exp(∓iϕ(x))ψ∓(x),

D′
i : D′

iψ±(x) = ± exp(ikia)ψ∓(x),

O : Oψ±(x) = ±ψ±(Ox),

R : Rψ±(x) = ψ±(Rx),

T : Tψ±(x) = exp(∓iϕ(Tx))ψ†
±(Tx),

Tψ†
±(x) = − exp(±iϕ(Tx))ψ±(Tx),

T ′ : T ′

ψ±(x) = −ψ†
±(Tx),

T ′

ψ†
±(x) = ψ±(Tx), (10.15)

where the vector k is defined as
k =

(π
a
, 0
)
. (10.16)

The action of magnons and electrons must be invariant under these symmetries. In this
case, there is no flavour index because the pocket at (π

a
, 0) can be identified with the pocket

at (π
a
, 0) by the (π

a
, π

a
) displacement symmetry.

10.4.3 Transformation Rules for Fermion Fields Located at (0, 0)
and (π

a
, π

a
)

By tuning the parameters of the t-t′-J model it is possible to realise pockets in momentum
space centered at (0, 0) and (π

a
, π

a
) in a Monte Carlo simulation of the microscopic model.

They do not correspond to any known material, but still it is interesting to consider this
case. Indeed, the first fully systematic low-energy effective field theory for magnons and
charge carriers was constructed for this case [25]. One can show that the charge carrier
field ψ±(x) transforms as follows under the various symmetry operations

SU(2)s : ψ±(x)′ = exp(±iα(x))ψ±(x),

U(1)Q : Qψ±(x) = exp(iω)ψ±(x),

D : Dψ±(x) = ∓ exp(∓iϕ(x))ψ∓(x),

D′ : D′

ψ±(x) = ±ψ∓(x),

O : Oψ±(x) = ψ±(Ox),

R : Rψ±(x) = ψ±(Rx),

T : Tψ±(x) = exp(∓iϕ(Tx))ψ†
±(Tx),

Tψ†
±(x) = − exp(±iϕ(Tx))ψ±(Tx),

T ′ : T ′

ψ±(x) = −ψ†
±(Tx),

T ′

ψ†
±(x) = ψ±(Tx). (10.17)
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Again the Lagrangian has to be invariant under these symmetry transformations [25].

10.5 Low-Energy Effective Lagrangian

For all three locations of the pockets, low-energy effective field theories have been con-
structed. It is important to note that the low-energy physics described by the effective
Lagrangians is quite different in each phase. To leading order, the Lagrangian in the pure
magnon sector is the same in all three cases as described in chapter 3, because the pure
magnon sector is the simply the undoped Heisenberg antiferromagnet and thus the pa-
rameters t and t′ do not affect the system. However, the fermion fields are different. We
will briefly describe the leading terms with two fermion fields L2 (containing at most one
temporal or two spatial derivatives) describing the propagation of holes or electrons as well
as their coupling to magnons.

10.5.1 Hole-Doped Antiferromagnet

The dispersion relation of hole-doped antiferromagnets shown in figure 10.2 has its minima
at (± π

2a
,± π

2a
). By constructing an effective field theory one expands around these minima

and must respect their symmetries. For the hole-doped antiferromagnets we obtain

L2 =
∑

f=α,β s=+,−

[
Mψf†

s ψ
f
sDtψ

f
s +

1

2M ′Diψ
f†
s Diψ

f
s

+ σf
1

2M ′′
(
D1ψ

f†
s D2ψ

f
s +D2ψ

f†
s D1ψ

f
s

)
+ Λ

(
ψf†

s v
s
1ψ

f
−s + σfψ

f†
s v

s
2ψ

f
−s

)

+ N1ψ
f†
s v

s
i v

−s
i ψf

s + σfN2

(
ψf†

s v
s
1v

−s
2 + ψf†

s v
s
2v

−s
1 ψf

s

) ]
. (10.18)

Here the fermion-fields carry spin s ∈ {+,−} and flavour f ∈ {α, β}, which corresponds to
two types of hole-pockets α corresponding to {( π

2a
, π

2a
), (− π

2a
,− π

2a
)} and β corresponding

to {( π
2a
,− π

2a
), (− π

2a
, π

2a
)}. The two effective masses M ′ and M ′′ are due to the elliptical

pocket-shapes. The constants M , M ′, and M ′′ have been measured with the method
presented in the next chapter in [108]. Furthermore, Λ is a hole-one-magnon and N1 and
N2 are hole-two-magnon couplings, which all take real values. With the linear coupling Λ
of magnons to the holes it is possible for spiral phases to emerge as discussed in [109]. The
determination of Λ is more complicated and a matter of current research. The sign σf is
+ for f = α and − for f = β. The full construction is discussed in [24].
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10.5.2 Electron-Doped Antiferromagnet

Because upon electron doping the pockets are located in different positions, the low-energy
effective Lagrangian now takes the form [26]

L2 =
∑

s=+,−

[
Mψ†

sψs + ψ†
sDtψs +

1

2M ′Diψ
†
sDiψs +Nψ†

sv
s
i v

−s
i ψs

+ iK
(
D1ψ

†
sv

s
1ψ−s − ψ†

sv
s
1D1ψ−s −D2ψ

†
sv2ψ−s + ψ†

sv
s
2D2ψ−s

) ]
. (10.19)

Here, due to the circular pocket shape there is no M ′′-term. Also there is no Λ-term, i.e.
a weaker magnon-electron coupling, and thus no spiral phases emerge.

10.5.3 Charge Carriers at (0, 0) and (π
a
, π

a
)

The first fully systematic effective field theory for magnons and charge carriers was of this
type [25]. It seems not to correspond to a real material but is still of theoretical interest

L2 =
∑

s=+,−

[
Mψ†

sψs + ψ†
sDtψs +

1

2M ′Diψ
†
sDiψs +Nψ†

sv
s
i v

−s
i ψs + Λψ†

sv
s
tψ−s

+ iK
(
Diψ

†
sv

s
iψ−s − ψ†

sv
s
iDiψ−s

)
+
G

2
ψ†

sψsψ
†
−sψ−s

]
. (10.20)

Again there is no linear magnon-charge-carrier coupling. Thus again the coupling of the
magnons to the charge carriers is weaker than in the case of the hole-doped antiferromag-
nets. The construction is discussed in detail in [25].

10.6 The Two-Point Correlation Function

If we want to calculate the dispersion relation, we have to measure the two-point correlation
function

G(x, t) = 〈c†0,0cx,t〉 =
1

ZQ=0

TrQ=0

[
c†0,0 exp(−tH)cx,t exp (−(β − t)H)

]
. (10.21)

Here Q = 0 denotes measurements at half-filling. We can express this two-point correlation
function as a reweighting of the Boltzmann weights in the Q = 0 sector with the paths of
the created and annihilated charge carrier

G(x, t) =
1

ZQ=0
TrQ=0

[
c†0,0 exp(−tH)cx,t exp (−(β − t)H)

exp(−βH)
exp(−βH)

]

=

〈
c†0,0 exp(−tH)cx,t exp (−(β − t)H)

exp(−βH)

〉

Q=0

. (10.22)
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Thus we do not have to directly simulate a hole-doped antiferromagnet, but can run a
simulation of a Heisenberg antiferromagnet and measure the propagation of doped holes
by calculating a reweighing of the hole-paths inserted into the the configurations of the
undoped Heisenberg antiferromagnet.

This can be done by choosing a hole path according to its weight and by calculating
the ratio to the undoped background. However, this is not very efficient. Rather we simul-
taneously measure all possible hole paths extending from (0, 0) to (x, t). This procedure is
described in detail in [108].

10.7 Fitting Energies in Momentum-Space

The measured correlation functions are then transformed to momentum space using

c†p =
∑

x

c†x exp(ipx), cp =
∑

x

cx exp(−ipx). (10.23)

As the Hamiltonian H is translation invariant, every energy eigenstate can be chosen as
a momentum eigenstate. As c†p raises the momentum km of the energy eigenstate |m〉 by
p, the energy eigenstate |n〉 needs to have the momentum km + p in order to receive a
non-vanishing contribution from 〈m|cp|n〉

G̃(p, t) =
1

ZQ=0

∑

n,m

∣∣〈n|c†p|m〉
∣∣2 exp (−tEm) exp (−(β − t)En)

=

∑
n,m

∣∣〈n|c†p|m〉
∣∣2 exp (−tEm) exp (−(β − t)En)∑

k exp (−βEk)
(10.24)

lim
β→∞

G̃(p, t) =
∑

m

∣∣〈0|c†p|m〉
∣∣2 exp (−t(Em −E0)) . (10.25)

By taking the limit β → ∞, only the contribution from E1−E0 is left. Thus the energy
spectrum can be extracted from the two-point correlation function in momentum space.

In practice one has to be very careful how to fit these correlation functions. Either
one fits G̃(p, t) only at sufficiently large t where all energies except E1 are suppressed with
just one exponential or one fits it to two or more exponentials. Because the errors usually
increase with increasing t the fitting range has to be carefully chosen and affects the result
with a systematic error.

10.8 Fitting Mass Parameters

The mass parameters of the hole-doped system M , M ′, M ′′ in eq. (10.18) can be extracted,
by fitting the dispersion relation around the centers of the pockets to

E(p1, p2) = M +
p2

1 + p2
2

2M ′ +
p1p2

M ′′ . (10.26)
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The determination of the mass parameters M , M ′, andM ′′ has been performed in [108]. To
obtain the mass parameters of the electron-doped system, as well as the mass parameters
in the case where the pockets are centered at (0, 0) and (π

a
, π

a
) — M and M ′ in eqs. (10.19)

and (10.20) — it is sufficient to fit the dispersion relation around the center of the pockets
to

E(p1, p2) = M +
p2

1 + p2
2

2M ′ = M +
|~p|2
2M ′ . (10.27)

We will discuss this calculation specifically for the honeycomb lattice in the next chapter.
The fitting of the mass parameters is a somewhat tricky business, because we fit the

results of a fit. The energies in the dispersion relation are the result of the fits of the two-
point correlation functions. Thus the choice of fitting range of the fit of the exponentials
in section 10.7 also affects the shape of the dispersion relation. Furthermore, also a fitting
range around the center of the pocket has to be chosen and systematically affects the fit.

We thus usually fit both the exponentials and the resulting dispersion relations with
different fitting ranges in order to get a good error estimate that includes the systematics.
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Figure 10.1: The three different dispersion relations measured on a 322 lattice.
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Figure 10.2: The three different dispersion relations in 10.1 in the t/J-t′/J parameter space.
This calculation was performed at low temperature (βJ = 80). The dark area marks the
uncertainty of the region where the transition between the qualitatively different dispersion
relations occur.



Chapter 11

The t-J Model on the Honeycomb

Lattice and its Low-Energy Effective

Field Theory

After simulating the pure magnon sector of a Heisenberg model on the honeycomb lattice
in chapter 4, we are also interested in the single-hole dispersion relation of such a system,
i.e. in the t-J model on the honeycomb lattice.

As we have shown in the last chapter, the single-hole dispersion relation can be calcu-
lated by simulating the one-hole sector of the t-J model and by calculating the relevant
correlation functions. Of course, we can also do this on the honeycomb lattice. The work
presented in this chapter has been published in [7].

11.1 Brillouin Zone of a Honeycomb Lattice

The honeycomb lattice consists of two triangular Bravais sublattices A and B. The Bril-
louin zone of the honeycomb lattice is doubly-covered with two covers A and B. The two
covers correspond to the two triangular Bravais sublattices A and B as shown in figure
4.1a in chapter 4. The Brillouin zone then takes the form shown in figure 11.1.

11.2 Fermion Dispersion Relation for the t-J Model

on the Honeycomb Lattice

It is necessary to distinguish the correlation functions between the sublattices, i.e. AA,
AB, BA, BB. The correlation function between AA sublattices with momentum k takes

97
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Figure 11.1: The momentum space of a honeycomb lattice, which is a doubly-covered Bril-
louin zone dual to the two triangular sublattices A and B.

the form

GAA(k, t) =
1

Z

∑

x,y∈A

Tr
[
c†x(0)cy(t) exp(−βH)

]
exp(−ik(x− y))

∼
∞∑

n=1

Zn(k) exp (−(En(k) − E0)t) , (11.1)

where E0 is the ground state energy of the half-filled system, and

Zn(k) = |〈0|
∑

x∈A

cx exp(ikx)|n〉|2. (11.2)

The factor Z1(k) is known as the quasiparticle weight. In deriving eq. (11.1), we have
inserted a complete set of energy eigenstates 1 =

∑
n |n〉〈n| in the single-hole sector and

taken the limit β → ∞ in the final step. The fermion energy

Eh(k) = E1(k) − E0 (11.3)

corresponding to the momentum k can be extracted by fitting the data to a single- or
a double-exponential. The correlation function between AA sublattices with momentum
k = (2π

3a
, 2π

3
√

3a
) depicted in figure 11.2 has been obtained on a honeycomb lattice with 3456

spins and J/t = 2.0. A single-exponential fit yields Eh(k) = 0.207(9)t while a double-
exponential fit results in Eh(k) = 0.201(5)t. The two fits yield consistent results. In the
same way, we determine the one-hole dispersion relation from the AA correlator for all
momenta k. The single-hole dispersion relation in figure 11.3 has been obtained with the
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Figure 11.3: The dispersion relation Eh(k)/t for a single hole in an antiferromagnet on the
honeycomb lattice.
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same parameters as in figure 11.2. The figure shows that the hole pockets are located
at (±2π

3a
,± 2π

3
√

3a
) and (0,± 4π

3
√

3a
) in the Brillouin zone. The position of the hole pockets

agrees with the position of the Dirac cones obtained from the free fermion theory on the
honeycomb lattice which is relevant for graphene.

11.3 Effective Field Theory for Holes and Magnons

The effective Lagrangian on the honeycomb lattice in [110] was constructed in the same
manner as for the square lattice in [24]. Using the information about the location of
the pockets and based on the symmetry properties of the underlying microscopic theory,
a systematic low-energy effective theory for the t-J model on the honeycomb lattice was
constructed. Here we briefly sketch the principles behind this construction. In the effective
theory, the holes reside in momentum space pockets centred at

kα = (0,
4π

3
√

3a
), kβ = (0,− 4π

3
√

3a
). (11.4)

Here the “flavour” index f = α, β characterises the corresponding hole pocket and the index
s = ± denotes spin parallel (+) or anti-parallel (−) to the local staggered magnetisation.
The magnons are coupled to the holes through a nonlinear realisation of the spontaneously
broken SU(2)s symmetry. The global SU(2)s symmetry then manifests itself as a local
U(1)s symmetry in the unbroken subgroup. This construction again leads to an Abelian
“gauge” field v3

µ(x) and to two vector fields v±µ (x) which are “charged” under U(1)s spin
transformations. The coupling of magnons and holes is realised through v3

µ(x) and v±µ (x).
These fields have a well-defined transformation behaviour under the symmetries which the
effective theory inherits from the underlying microscopic models.

11.3.1 Magnon- and Hole-Field Symmetry-Transformations on a

Honeycomb Lattice

In the same way as shown in chapter 10 these magnon fields vµ have a well-defined trans-
formation behaviour under the symmetries which the effective theory inherits from the
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underlying microscopic t-J model on the honeycomb lattice [110]

SU(2)s : vµ(x)
′ = h(x)(vµ(x) + ∂µ)h(x)†,

Di : Divµ(x) = vµ(x),

O : Ov1(x) = τ(Ox)
(

1
2
v1(Ox) +

√
3

2
v2(Ox)

+ 1
2
∂1 +

√
3

2
∂2

)
τ(Ox)†,

Ov2(x) = τ(Ox)
(
−

√
3

2
v1(Ox) + 1

2
v2(Ox)

−
√

3
2
∂1 + 1

2
∂2

)
τ(Ox)†,

Ovt(x) = τ(Ox)(vt(Ox) + ∂t)τ(Ox)
†,

R : Rv1(x) = v1(Rx),
Rv2(x) = −v2(Rx),

Rvt(x) = vt(Rx),

T : Tvi(x) = τ(Tx)(vi(Tx) + ∂i)τ(Tx)
†,

Tvt(x) = −τ(Tx)(vt(Tx) + ∂t)τ(Tx)
†, (11.5)

where Di, with i ∈ {1, 2}, are the displacements along primitive translation vectors which

are chosen to be a1 = (3
2
a,

√
3

2
a) and a2 = (0,

√
3a), respectively. Here a is the lattice

spacing. Further, O, R, and T in eq. (11.5) represent a 60 degrees spatial rotation around
the center of a hexagon, a spatial reflection with respect to the x-axis, and time reversal,
which are given by

Ox = O(x1, x2, t) = (1
2
x1 −

√
3

2
x2,

√
3

2
x1 + 1

2
x2, t),

Rx = R(x1, x2, t) = (x1,−x2, t),

Tx = T (x1, x2, t) = (x1, x2,−t), (11.6)

respectively.
The hole fields are represented by Grassmann fields ψf

s (x). Under the various symmetry
operations the hole fields transform as [110]

SU(2)s : ψf
±(x)′ = exp(±iα(x))ψf

±(x),

U(1)Q : Qψf
±(x) = exp(iω)ψf

±(x),

Di : Diψf
±(x) = exp(ikf

i ai)ψ
f
±(x),

O : Oψα
±(x) = ∓ exp(∓iϕ(Ox) ± i2π

3
)ψβ

∓(Ox),
Oψβ

±(x) = ∓ exp(∓iϕ(Ox) ∓ i2π
3

)ψα
∓(Ox),

R : Rψα
±(x) = ψβ

±(Rx), Rψβ
±(x) = ψα

±(Rx),

T : Tψα
±(x) = exp(∓iϕ(Tx))ψβ†

± (Tx),
Tψβ

±(x) = exp(∓iϕ(Tx))ψα†
± (Tx),

Tψα†
± (x) = − exp(±iϕ(Tx))ψβ

±(Tx),
Tψβ†

± (x) = − exp(±iϕ(Tx))ψα
±(Tx). (11.7)
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Here U(1)Q is the fermion number symmetry of the holes. Interestingly, in the effective
continuum theory the location of holes in lattice momentum space manifests itself as a
“charge” kf

i under the displacement symmetry Di.

11.3.2 Effective Lagrangian

Based on symmetry considerations, the leading order terms of the effective Lagrangian
were constructed for magnons and holes on the honeycomb lattice in [110]. In analogy to
the Lagrangians in chapter 10, the leading terms with two fermion fields (containing at
most one temporal or two spatial derivatives) are given by

L2 =
∑

f=α,β
s=+,−

[
Mψf†

s ψ
f
s + ψf†

s Dtψ
f
s +

1

2M ′Diψ
f†
s Diψ

f
s + Λψf†

s (isvs
1 + σfv

s
2)ψ

f
−s

+iK
[
(D1 + isσfD2)ψ

f†
s (vs

1 + isσfv
s
2)ψ

f
−s − (vs

1 + isσfv
s
2)ψ

f†
s (D1 + isσfD2)ψ

f
−s

]

σfLψ
f†
s ǫijf

3
ijψ

f
s +N1ψ

f†
s v

s
i v

−s
i ψf

s + isσfN2

(
ψf†

s v
s
1v

−s
2 ψf

s − ψf†
s v

s
2v

−s
1 ψf

s

)]
. (11.8)

Here M is the rest mass and M ′ is the kinetic mass of a hole, while Dµ is a covariant
derivative given by

Dµψ
f
±(x) = [∂µ ± iv3

µ(x)] ψf
±(x) . (11.9)

Eq. (11.8) yields circular hole pockets for small momenta which is indeed confirmed in
figure 11.4.

The low-energy constant M ′ in eq. (11.8) is obtained from the curvature of the disper-
sion Eh(k) near a minimum by fitting the dispersion relation around the circular centers
of the hole-pockets

E(p1, p2) = M +
p2

1 + p2
2

2M ′ = M +
|~p|2
2M ′ . (11.10)

. For example, on a honeycomb lattice with 3456 spins and J/t = 2.0, we find M ′ =
4.1(1)/(ta2).

In figures 11.5 and 11.6, we have plotted the single-hole dispersion as well as the
quasiparticle weight Z1(k) over the irreducible wedge Γ-K-W -Γ of the Brillouin zone for
J/t = 1.0. The resulting bandwidth

∆ = Eh(Γ) − Eh(W ) (11.11)

is in qualitative agreement with exact diagonalisation and series expansion in [111]. While
exact diagonalisation of small systems may suffer from finite size effects, and series expan-
sions may not converge in all regions of parameter space, the Monte Carlo data obtained
with the efficient loop-cluster algorithm do not suffer from systematic uncertainties. In
table 2 we list the kinetic mass M ′ as well as the bandwidth ∆ for a few values of J/t.
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Figure 11.4: Circular hole pockets on the honeycomb lattice. The dot corresponds to the
point Γ and the stars mark the centres of the hole pockets (corresponding to the point W
and its symmetry partners). The parameters are the same as in figure 11.3.
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J/t M ′ta2 ∆/t

2.0 4.1(1) 1.15(3)
1.5 2.9(1) 1.25(3)
1.0 1.9(1) 1.24(4)
0.9 1.8(1) 1.15(6)
0.6 1.5(2) 0.9(1)

Table 11.1: Kinetic mass M ′ as well as the bandwidth ∆ for some values of J/t.
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Figure 11.5: Dispersion relation Eh(k)/t of a single hole for J/t = 1.0 along the irreducible
wedge Γ-W -K-Γ in the first Brillouin zone (see figure 2).
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Figure 11.6: The quasiparticle weight Z1(k) of a single hole for J/t = 1.0 along the irre-
ducible wedge Γ-W -K-Γ in the first Brillouin zone (see figure 2).





Conclusions and Outlook

In this thesis we have approached the quantum Heisenberg model and some of its extensions
with quantum Monte Carlo calculations. In the first part of the thesis we investigated
lattice structures, for which spontaneous symmetry breaking occurs. In these cases a low-
energy effective field theory approach is applicable.

We have simulated on the honeycomb lattice and numerically calculated the low-energy
parameters in the magnon-sector to high precision. This was done by fitting low-energy
effective field theory calculations at finite volume and temperature to Monte Carlo data.

The same kind of calculations were performed for a Heisenberg model with spatially
anisotropic couplings using the loop-cluster algorithm. The corresponding low-energy con-
stants are determined with high precision. Further, the J2/J1-dependence of ρs1 and ρs2

is investigated in detail and our results agree quantitatively with those obtained by series
expansion in the weakly anisotropic regime. In the extreme anisotropic limit, the two-
dimensional system decomposes into decoupled spin chains. Thus, dimensional cross-over
is observed which gives rise to a fascinating phase transition. By fitting our (not unbiased)
data we get a universal scaling behaviour distinct from the O(3) university class. Hence,
this transition could possibly belong to a new university class. Further investigations on
the physics of this phase transition are highly desirable which should give us more insight
on the exact values of the universal scaling parameters and the physics of dimensional
cross-over.

Furthermore, we used these techniques to investigate a spin 1
2

quantum Heisenberg anti-
ferromagnet with an additional four-spin interaction, the J-Q model using the loop-cluster
algorithm. We quantitatively observed the expected weakening of antiferromagnetism as
the coupling of the four-spin interaction Q is increased. Using finite-size scaling and the
flowgram method we investigated the phase transition between the antiferromagnetic and
the valence bond solid (VBS) phase. Unlike previous studies we conclude that the transi-
tion is weakly first order, based on our numerical evidence, thus confirming the Ginzburg-
Landau-Wilson paradigm. It is interesting to ask, why the phase transition separating
antiferromagnetism and the valence bond solid is so weakly first order. There must be a
reason for the long correlation length, around 50 lattice spacings, even if it does not go to
infinity. Also we used quantum Monte Carlo methods to simulate deep in the VBS phase.
As we observed an emerging U(1) symmetry we could not make a clear statement about
the nature of the VBS order. It would be desirable to extend these numerical investiga-
tions to even larger lattices in order to make the statement about the nature of the phase
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transition with more certainty and to see if the emergent U(1) symmetry is due to finite
size effects.

In the second part of the thesis we have investigated the antiferromagnetic Heisenberg
model on frustrated lattices. We have introduced a new method for the simulation of
frustrated spin systems — the nested cluster algorithm — which works for substantially
larger systems than possible before, at least at moderate temperatures. We can measure
the expectation value of the sign, which is exponentially suppressed, with a polynomial time
effort at least down to a certain temperature range with a good error estimate. In contrast
to other Monte Carlo methods, the nested cluster algorithm is capable of eliminating very
severe sign problems for large systems, at least at moderate temperatures. As we have
demonstrated, by studying appropriate susceptibilities one may obtain valuable insights
concerning possible types of order.

In this method, there is a lot of fine-tuning involved. The parameters that tune the
performance of the algorithm have to be determined for each frustrated system individually.
This method has to be refined in order to proceed to lower temperatures. One could
possibly further cut the clusters involved and apply a multi-level scheme. This should
hopefully make the algorithm work at lower temperature than possible today. Also it
would be interesting to use this method on other frustrated system, e.g. spin-glasses to see
how the efficiency of the method depends on the underlying system.

Also we want to understand the physical meaning of the cluster size. We suspect that
they are some measure of quantum entanglement which should be further investigated.

Also the method could be adapted to real-time evolution which, however, turned out
not to be very efficient. Still, we were able to show that with the nested algorithm we can
in principle perform measurements of the real-time evolution of quantum spin systems.
The complex phases that occur can be factorised to the clusters and inner Monte Carlo
updates can be performed in a very similar way as on the frustrated lattices.

In the third part of the thesis we finally considered the t-t′-J model on the square lattice
in the single-hole sector. By tuning the hopping parameters t and t′ the model corresponds
to hole- or electron-doped materials or even to a dispersion relation which seems not to
correspond to any existing material. The phase diagram in terms of these three distinct
phases was determined, while there is some uncertainty in the location of the transition
lines. Further numerical investigations would narrow the uncertainty of these transition
lines. Also it would be interesting to investigate how a further hopping term would change
the dispersion relation.

We also performed the same kind of simulations on the honeycomb lattice to calculate
the single-hole dispersion and extracted the low-energy effective mass parameters. In par-
ticular, we have fitted more than hundred Monte Carlo data obtained at rather different
volumes and temperatures with just four low-energy parameters — Ms, ρs, c, and M ′ —
of the effective theory for the t-J model. These parameters have been determined with
percent and sometimes even with permille accuracy. This should demonstrate convincingly
that the systematic low-energy effective field theory yields quantitatively correct results
for the physics of magnons and holes.

In all three parts there is a lot of on-going research. The search for more numerical
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evidence to investigate and determine exotic phase transitions, the search for more effi-
cient algorithms and the quest of dealing with sign problems, as well as the challenge of
determining further low-energy parameters is a thrilling and challenging subject and we
are looking forward to see and hopefully contribute to progress in this field of numerical
work.
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was a pleasure to work with Florian Kämpfer, Fu-Jiun Jiang, Urs Gerber and Christoph
Hofmann on various subjects where I was glad to be embeded in good teams.

Also many thanks to Esther Fiechter for her professional support. Of course I must
not forget Ottilia Hänni who whose glorious wit made us enjoying academic life live at our
institute.

I would like to thank Markus Moser on whose professional companionship I could always
count on and Allessio Vaghi for the laughter he brought to our office.

In particular I am full of gratitude for the friendship, non-physical discussion, wonderful
musical sessions, and joyful lunch breaks with Stefan Lanz, Lorenzo Mercolli, Christof
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Appendix A

Loop-Cluster Algorithm for the

J-Q-Model

In this Appendix, we will briefly describe the loop cluster algorithm for the J-Q-Model, i.e.
the Heisenberg Model with the additional four-spin interaction Q as described in chapter
6. It follows the same procedure as discussed in chapter 2. We will only discuss the method
in discrete time, but as shown above it can easily be adapted to the continuous-time path
integral formulation or to the stochastic series expansion (SSE).

A.1 12-Step Suzuki-Trotter Decomposition

The simplest possible decomposition of the Hamiltonian 6.1 is

H1 = J
∑

x∈(2m,n)

~Sx · ~Sx+1̂, H2 = J
∑

x∈(m,2n)

~Sx · ~Sx+2̂,

H3 = J
∑

x∈(2m+1,n)

~Sx · ~Sx+1̂, H4 = J
∑

x∈(m,2n+1)

~Sx · ~Sx+2̂,

H5 = −Q
∑

x∈(2m,2n)

(~Sx · ~Sx+1̂ −
1

4
)(~Sx+2̂ · ~Sx+1̂+2̂ −

1

4
),

H6 = −Q
∑

x∈(2m+1,2n)

(~Sx · ~Sx+1̂ −
1

4
)(~Sx+2̂ · ~Sx+1̂+2̂ −

1

4
),

H7 = −Q
∑

x∈(2m,2n+1)

(~Sx · ~Sx+1̂ −
1

4
)(~Sx+2̂ · ~Sx+1̂+2̂ −

1

4
),

H8 = −Q
∑

x∈(2m+1,2n+1)

(~Sx · ~Sx+1̂ −
1

4
)(~Sx+2̂ · ~Sx+1̂+2̂ −

1

4
),

H9 = −Q
∑

x∈(2m,2n)

(~Sx · ~Sx+2̂ −
1

4
)(~Sx+1̂ · ~Sx+1̂+2̂ −

1

4
),
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H10 = −Q
∑

x∈(2m+1,2n)

(~Sx · ~Sx+2̂ −
1

4
)(~Sx+1̂ · ~Sx+1̂+2̂ −

1

4
),

H11 = −Q
∑

x∈(2m,2n+1)

(~Sx · ~Sx+2̂ −
1

4
)(~Sx+1̂ · ~Sx+1̂+2̂ −

1

4
),

H12 = −Q
∑

x∈(2m+1,2n+1)

(~Sx · ~Sx+2̂ −
1

4
)(~Sx+1̂ · ~Sx+1̂+2̂ −

1

4
), (A.1)

where the interactions J and Q are treated separately. Suzuki-Trotter decompositions can
explicitly break lattice symmetries, i.e. reflection and 90 degrees rotation. They are restored
in the continuous time limit, but by choosing an appropriate ordering of the Suzuki-Trotter
decomposition time slices, even in discrete time the lattice symmetries remain intact when
combined with a discrete time translation. A good choice is the order H1, H5, H9, H2,
H10, H6, H3, H8, H12, H4, H11, H7.

The cluster rules for H1, . . . , H4 are the usual antiferromagnetic ones as shown in chap-
ter 2. For the H5, . . . , H12 contributions, bonds have to be set on two plaquettes simul-
taneously. Non-trivial bonds can only be chosen when the spins are antiparallel on both
plaquettes. If that is the case and both spins stay constant in time on both plaquettes
bond A or B is chosen on both plaquettes, with the probabilities

pA =
1

1 + 1
2
exp

(
εQ
2

)
sinh

(
εQ
2

) , pB = 1 − pA. (A.2)

The cluster update is the same as in the usual Heisenberg model. Clusters are collectively
flipped, i.e. the orientation of the spins is inverted .

A.2 4-Step Suzuki-Trotter Decomposition

In order to save CPU time and memory space one can easily treat four spins at once and
one then just needs four time-steps

H1 =
∑

x∈(2m,2n)

hx, H2 =
∑

x∈(2m+1,2n)

hx,

H3 =
∑

x∈(2m,2n+1)

hx, H4 =
∑

x∈(2m+1,2n+1)

hx, (A.3)

with

hx = J
∑

i

~Sx · ~Sx+î −Q
[
(~Sx · ~Sx+1̂ −

1

4
)(~Sx+2̂ · ~Sx+1̂+2̂ −

1

4
)

+(~Sx · ~Sx+2̂ −
1

4
)(~Sx+1̂ · ~Sx+1̂+2̂ −

1

4
)

]
. (A.4)
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yA
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C

D

E

Figure A.1: Break-ups for the JQ-Model in discrete time using a four-step Suzuki-Trotter
decomposition. Straight lines are constraints that bind parallel spins whereas dashed lines
bind antiparallel spins.

One now obtains a 16 × 16 transfer-matrix which can be decomposed into the break-ups
shown in figure A.1. These break-ups have Boltzmann weights
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A = exp

(
−εJ

2

)
,

B =
1

2

(
1 − exp

(
−εJ

2

))
,

C =
1

6
exp

(
−εJ

2

)
+

1

4
exp

(
εQ

2

)
+

1

12
exp

(
3εQ

2
+ εJ

)
− 1

2
,

D =
1

4

(
cosh

(
εJ

2

)
− 1

)
,

E = − 1

12
exp

(
−εJ

2

)
− 1

4
exp

(
εQ

2

)
+

1

12
exp

(
3εQ

2
+ εJ

)
+

1

2
. (A.5)

Updating the configuration works as usual, i.e. on a given cube-configuration all possible
break-ups that fit are chosen according to their Boltzmann weight. In a second step the
usual loop-cluster updates are performed.



Appendix B

Antiferromagnet on a Triangular

Lattice in the Classical Ground State

Basis

Here we present a calculation we have done for an antiferromagnet on a triangular lattice.
We will present it in the framework of SSE. Usually SU(2) spins are quantised along
the z-axis. Choosing different quantisation axes, i.e. setting the system up in a different
basis, does not change the physics. There are many reasons to do that. In particular, the
efficiency of an algorithm may depend on the chosen basis. For example, there could even
be a sign problem in one basis, whereas in another basis there is none.

as discussed in chapter 7, in the case of a triangular lattice we expect coplanar order.
It thus seems natural to quantise the spins on the three sublattices A, B, C separately
along the expected coplanar directions. The system then has a reference configuration
which guarantees an efficient cluster update, because from every configuration we can get
to the reference configuration within one multi-cluster update with non-zero probability.
Also the clusters can only grow within areas of coplanar order. Thus the clusters cannot
grow too large.

B.1 Quantisation in a Coplanar Basis

Let us consider the Hamiltonian on a single bond with spins quantised along the z-axis,
i.e. in the basis {| ↑↑〉, | ↑↓〉, | ↓↑〉, ↓↓〉}, including the energy-shift of −J

4
that is usual in

the SSE representation of a spin 1
2

Heisenberg antiferromagnet

H =
J

2




0 0 0 0
0 −1 1 0
0 1 −1 0
0 0 0 0


 . (B.1)
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We now want to quantise the spins on the sublattice A along the z-axis and rotate the
quantisation axis of the spins on sublattice B around the y-axis by 120 degrees and the
quantisation axis on sublattice C by 240 degrees, following the coplanar order.

When we consider a single bond, connecting the A and B sublattice, we have to rotate
the second spin (the rotation of the other sublattice works in the same way). We can do
this with a unitary transformation

U = exp(
2πi

3
S2

B) = exp(
πi

3
σ2

B) = cos
π

3
1 + i sin

π

3
σ2

B

=
1

2




1
√

3 0 0

−
√

3 1 0 0

0 0 1
√

3

0 0 −
√

3 1


 . (B.2)

The rotated Hamilton operator then takes the form

H ′ =
J

8




−3 −
√

3
√

3 −3

−
√

3 −1 1 −
√

3√
3 1 −1

√
3

−3 −
√

3
√

3 −3


 . (B.3)

The system with this Hamiltonian can be simulated using four non-unit-matrix operators
shown in figure B.1 with the weights B0 = J

4
(2−

√
3), B1 = B2 = J

8
(
√

3− 1), D = J
8
. This

B0 B1 B2 D

Figure B.1: Break-ups of the antiferromagnet in the coplanar basis. Thick lines are con-
straints, that bind parallel spins.

algorithm should run efficiently, because it has a reference configuration in which all spins
are parallel. All clusters can be flipped into the reference configuration within one single
multi-cluster update. However, there are off-diagonal non-negative elements that give rise
to a sign problem.

B.2 How to Deal with the Sign Problem

We can associate an orientation to all bonds on the lattice. We define the forward-
orientation going from A to B to C and backwards as A to C to B. This is shown in
figure B.2.

The negative signs in the path integral arise, when there is a down-spin next to an up-
spin in the forward direction. This means that the signs do not factorise to the clusters.
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A

A

A

A

A

A

B

B

BB

B

C

C

CC

C

Figure B.2: Positive orientation of the bonds on the triangular lattice going from A to B
to C.

It is natural to connect the clusters in these positions where the negative signs arise. In
figure B.3 this reconnection is denoted by dotted lines. Now we integrate out all possible
partitions and orientations of such closed loops. Each straight line contributes a factor of

B0 B1 B2 D

Figure B.3: Reconnecting the partial clusters denoted by dotted lines.

√
J
8
(
√

3− 1) and each dotted line contributes a factor
√

J
8
. Each closed loop now contains

n1 dotted bonds in the forward direction and n2 dotted bonds in the backwards direction.
The resulting sign from integrating out all orientations of the clusters contained in a loop,
that arises from connecting the open clusters, is

sign(n1, n2) = Tr[(1 + iσ2)
n1(1 − iσ2)

n2 ]. (B.4)

To evaluate this expression we use

1 − iσ2 =
1

2

(
1 −i
−i 1

)(
1 + i 0

0 1 − i

)(
1 i
i 1

)
,

1 + iσ2 =
1

2

(
1 −i
−i 1

)(
1 − i 0

0 1 + i

)(
1 i
i 1

)
. (B.5)
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We then obtain

sign(n1, n2) = Tr

[(
1 − i 0

0 1 + i

)n1
(

1 + i 0
0 1 − i

)n2
]

= (1 − i)n1(1 + i)n2 + (1 + i)n1(1 − i)n2

= 2
√

2
n1+n2

cos
[π
4
(n1 − n2)

]
. (B.6)

Next we sum over all possible distributions of connected and disconnected cluster bonds
that form closed loops with N1 forward and N2 backward oriented bonds. The weight of
such a loop is

N1∑

n1=0

N2∑

n2=0

√
J

8

N1+N2 [√
3 − 1

]N1+N2−n1−n2

(
N1

n1

)(
N2

n2

)
sign(n1, n2)

=

√
J

2

N1+N2

2 cos
[π
6
(N1 −N2)

]
. (B.7)

Now each operator-bond carries a factor of
√

J
2
, i.e. each operator has a weight of J

2

as it was the case in the original basis. Each loop carries a factor of 2 which is also the
case when integrating out the spins in the original basis. The cosine factor is the sign of
the loop. It can be easily seen, that |N1 − N2| is always a multiple of six and thus the
sign-factor is indeed ±1.

B.3 Cluster Algorithm with the Spins Integrating out

The new cluster rules are exactly identical to those shown in chapter 8. This is not very
surprising, because by integrating out spins, the information of the quantisation axis is lost
and thus the result should be independent of the chosen basis. Thus the choice of a new
basis did not lead to an improvement in this case. We are thus back to the nested algorithm
where we can improve the error of the average sign, but where we cannot completely solve
the sign problem.

One of the things we learned from this exercise is that a reference configuration is not
enough to solve a sign-problem. In addition to the reference configuration the sign would
have to factorise to the clusters. The spin-spin correlation is of the order of the cluster
size in the coplanar basis. After integrating out the spins the clusters have become bigger.
Thus we think that there is some correlation bigger than the spin-spin correlation which
is probably a measure of quantum entanglement.
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[110] F.-J. Jiang, F. Kämpfer, C. P. Hofmann, and U.-J. Wiese. Europ. Phys. J. B,
69(4):473–482, 2009.
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