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Abstract

This bachelor thesis is an introduction to supersymmetry in one
dimensional quantum mechanics. Beginning with the factoriza-
tion of Hamiltonian we will develop tools to solve energy spectra
for many Hamiltonians in a very simple way. At the end we
will use all the different aspects we looked at to solve the radial
equation of the hydrogen atom.
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Chapter 1

Introduction

Supersymmetry (often abbreviated SUSY) is a mathematical concept which
arose from theoretical arguments and led to an extension of the Standard
Model (SM) as an attempt to unify the forces of nature. It is a symmetry
which relates fermions (half integer spin) and bosons (integer spin) by trans-
forming fundamental particles into superpartners with the same mass and
a difference of 1

2 spin. This symmetry, however, has never been observed
in nature which means that it needs to be broken, if it exists. This would
then allow for the superpartners to be heavier than the corresponding orig-
inal particles. It was out of the search for spontaneuos SUSY breaking that
SUSY for quantum mechanics (SUSY QM) was born. The idea is to study
symmetry breaking in quantum mechanics to get a better understanding
of this process and then draw conclusions for quantum field theory (QFT).
After SUSY was introduced into quantum mechanics people started to real-
ize that this field was interesting by itself and not only as a testing ground
for QFT. It became clear that SUSY QM gives deeper insight into the fac-
torization method introduced by Infeld and Hull [1] and the solvability of
potentials. It even lead to the discovery of new solvable potentials. For
potentials which are not exactly solvable SUSY allows us to develop very
powerful approximation methods such as SUSY WKB which is more precise
than the classical WKB approximation. In 1983 the new concept of shape
invariant potentials (SIP) was introduced by Gendenshtein [2]. It is a re-
lation between two partner potentials, which if it is satisfied, tells us that
the two potentials have the same dependence in the variable and may only
differ in other parameters. For potentials which satisfy this condition we
can solve the energy spectrum as well as the eigenfunctions analytically. We
may also calculate reflection and transmission coefficients algebraically. The
problem of classification of the SIPs has not yet been solved, but there are
already different classes of shape invariant potentials. They are grouped by
the transformation of the parameters such as scaling or translation.
The aim of this thesis is a brief introduction to the SUSY theory for quan-
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2 CHAPTER 1. INTRODUCTION

tum mechanics. This will be illustrated by simple examples and we will
end with the calculation of the energy spectrum of the hydrogen atom. The
spectrum of the hydrogen atom will be calculated using SUSY and the SIP
condition and will serve as a conclusion of the SUSY theory learned in the
first part of the thesis. The information for this Thesis was taken from the
books [3],[4] and papers [5], [6], [7], [8], [9], [10], [11] and [12] as well as from
wikipedia.org and www.sunclipse.org.



Chapter 2

SUSY QM in 1D

2.1 Factorization and partner Hamiltonian

We start with the general Hamiltonian in one dimensional quantum mechan-
ics

H1 = − ~2

2m

d2

dx2
+ V1(x), (2.1)

and try to factorize it. We want to do this so we can reduce the second order
derivative to a derivative of first order to simplify the Schrödinger equation.
To do so, we take a different approach on solving the Schrödinger equa-
tion. Instead of assuming the potential to be given, we define the ground
state wavefunction ψ0 of the Hamiltonian to be nodeless and to vanish at
x = ±∞. We set the ground state energy to zero, which can be done without
loss of generality since we can just shift the potential by a constant value to
obtain this.
The Schrödinger equation for ψ0 reads

0 = − ~2

2m

d2

dx2
ψ0 + V1(x)ψ0. (2.2)

Since the ground state is nodeless, i.e. it is never zero except at x = ±∞,
one can solve the Schrödinger equation for the potential

V1(x) =
~2

2m

ψ′′0(x)

ψ0(x)
. (2.3)

In fact, this means that once we know the ground state we also know the
potential up to a constant.
We now start by factorizing the Hamiltonian as follows:

H = A†A, (2.4)

where

A =
~√
2m

d

dx
+W (x), A† =

−~√
2m

d

dx
+W (x). (2.5)

3



4 CHAPTER 2. SUSY QM IN 1D

W (x) is generally referred to as the superpotential.
The relation between the potential and the superpotential can be found by
inserting the two factors eq.(2.5) in the Hamiltonian

Hψ(x) =

(
−~√
2m

d

dx
+W (x)

)(
~√
2m

d

dx
+W (x)

)
ψ(x)

=− ~2

2m

d2

dx2
ψ(x)− ~√

2m

[
W ′(x)ψ(x) + ψ′(x)W (x)

]
+W (x)

~√
2m

ψ′(x) +W (x)2

=

[
− ~2

2m

d2

dx2
− ~√

2m
W ′(x) +W (x)2

]
ψ(x)

⇒V (x) = W 2 − ~√
2m

W ′(x) (2.6)

which is the well-known Riccati equation. With the potential obtained in
eq.(2.3) we now solve the Riccati equation for the superpotential W (x)
and get

W (x) = − ~√
2m

ψ′0(x)

ψ0(x)
. (2.7)

The solution to the Riccati equation was obtained by recognizing that,
once we satisfy Aψ0(x) = 0, we have a solution H1ψ0(x) = 0 as we proposed
at the beginning. From these arguments we can directly draw the conclusion

Aψ0 =0⇒ ~√
2m

d

dx
ψ0 +W (x)ψ0 = 0, (2.8)

⇒ψ0 = N exp

(
−
√

2m

~

∫ x

W (y)dy

)
. (2.9)

This means that we only need to solve a first order differential equation to
obtain the ground state eigenfunction if the superpotential is known. This
is a great simplification compared to the Schrödinger equation which is a
second order differential equation.
By reversing the order in the factorization we create a new Hamiltonian,
which we refer to as the partner Hamiltonian. The new Hamiltonian is of
the form

H2 = AA†, (2.10)

where A and A† are defined in eq.(2.5). With the same calculations as above
we get the new potential in dependence of the superpotential to be

V2(x) = W 2 +
~√
2m

W ′(x). (2.11)

This potential is the so called supersymmetric partner potential. Let us now
take a closer look at the relations between the two Hamiltonians connected
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through SUSY.
We begin with the relation between the two energy spectra. For the moment

we assume E
(1)
n 6= 0 and look at the case E

(1)
n = 0 later. The energy levels

of the first Hamiltonian can be extracted from the Schrödinger equation

H1ψ
(1)
n (x) = A†Aψ(1)

n (x) = E(1)
n ψ(1)

n (x). (2.12)

For H2 = AA† we take the ansatz ψ
(2)
m (x) = Aψ(1)

n (x):

H2(Aψ(1)
n (x)) = AA†Aψ(1)

n (x) = E(1)
n (Aψ(1)

n (x)). (2.13)

Of course these calculations can also be made for the second Hamiltonian
H2:

H2ψ
(2)
m (x) = AA†ψ(2)

m (x) = E(2)
m ψ(2)

m (x), (2.14)

which implies

H1(A†ψ(2)
m (x)) = A†AA†ψ(2)

m (x) = E(2)
m (A†ψ(2)

m (x)). (2.15)

It follows from these calculations that Aψ(1)
n (x) is, in fact an eigenfunction

of H2 and A†ψ(2)
m (x) respectively an Eigenfunction of H1. And the corre-

sponding energy level is that of the partner Hamiltonian.Therefore we can
conclude, that the partner Hamiltonians have the same spectrum up to pos-
sible zero-modes.
We now compare the Eigenfunctions of the two Hamiltonians. As extracted

from eq.(2.13) ψ
(1)
n is an Eigenfunction of H1 and Aψ(1)

n is an Eigenfunction

of H2 with the same Eigenvalue E
(1)
n . Thus we can identify Aψ(1)

n with an

Eigenfunction ψ
(2)
m = Aψ(1)

n of H2. By normalizing the eigenfunctions we
get:

1 =

∫
ψ∗(2)
m ψ(2)

m =

∫
ψ∗(1)
n A†Aψ(1)

n = E(1)
n

∫
ψ∗(1)
n ψ(1)

n , (2.16)

and therefore

ψ(2)
m =

(
E(1)
n

)− 1
2 Aψ(1)

n (2.17)

is the normalized eigenfunction of H2.

Since Aψ(1)
0 = 0 eq.(2.17) tells us that there is no zero energy ground state

for H2. This fact in combination with the eq.(2.13) and eq.(2.15) gives us
the possibility to identify m with n through m = n − 1. This means that
the lowest energy level of the second Hamiltonian H2 is the same as the first
excited energy level of H1. Concluding our calculations we already have a
few useful relations between the two partners:

E(2)
n = E

(1)
n+1 , (2.18)

ψ(2)
n =

(
E

(1)
n+1

)− 1
2 Aψ(1)

n+1, (2.19)

ψ
(1)
n+1 =

(
E(2)
n

)− 1
2 A†ψ(2)

n (2.20)
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These formulas also lead to the conclusion that

A†ψ(2)
0 = 0⇒ − ~√

2m

d

dx
ψ

(2)
0 +W (x)ψ

(2)
0 = 0, (2.21)

⇒ψ(2)
0 = N exp

(√
2m

~

∫ x

W (y)dy

)
. (2.22)

The relations eq.(2.18) to eq.(2.20) are easily understood by looking at the
following figure:

Figure 2.1: Energy spectrum relations of two partner Hamiltonians

As we see, the operators A and A† relate the energy states of the two Hamil-
tonians, we also see that the spectra are degenerate except for the missing
zero energy level of the second Hamiltonian. We immediately see a similar-
ity to the raising and lowering operators for the harmonic oscillator, except
that in this case we have two different potentials. From the above formu-
las we conclude that as soon as we have an exactly solvable potential with
at least one bound state, supersymmetry allows us to construct a partner
potential with the same spectrum except for the zero energy ground state.
Furthermore the formulas eq.(2.18) to eq.(2.20) give us all important rela-
tions to calculate the eigenfunctions and the energy levels.
Later on we will look at an example for partner Hamiltonians and their
energy spectrum, but let us first take a brief look at two partner potentials
and their shape. It is very interesting to realize that the shape of two part-
ners does not need to be similar and they still have the same spectrum as
explained above. As a simple example we start with the superpotential

W (x) = ax3, (2.23)

which then leads to the two partners

V1(x) = a2x6 − 3ax2, (2.24)

V2(x) = a2x6 + 3ax2. (2.25)

by looking at their graphs we see in fig.(2.2) that they differ a lot in their
shape, since one potential is a double well and the other just a single well.
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However, SUSY tells us that they both have the same energy spectrum
which we will show explicitly in an example later on.

Figure 2.2: Two partner potentials with different shapes

2.2 N=2 SUSY QM algebra

To get a better understanding of the degeneracy of the partner Hamiltonian
spectra let us take a closer look at the underlying algebra. In Quantum Field
Theory (QFT) the SUSY algebra is an extension of the Poincaré algebra. In
our case it just extends the usual symmetries in Quantum Mechanics, this
means that it has two generators (Q,Q† ⇒ N = 2), which relate the two
partner Hamiltonians. This relation between the two partners can also be
interpreted in the sense that the two generators exchange the fermionic and
bosonic degrees of freedom. This is discussed in Supersymmetry in Quantum
Mechanics[3] and will not be discussed further in this thesis since it does
not play an important role in the calculation of the energy spectrum.
In this thesis we only look at one dimensional quantum mechanics with the
Hamiltonian as generator of translations in time.
The SUSY algebra in 1D QM is defined by the following (anti)commutation
relations:

[H,Q] =[H,Q†] = 0, (2.26)

{Q,Q†} =H, (2.27)

{Q,Q} ={Q†,Q†} = 0, (2.28)
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where the SUSY Hamiltonian contains both partner Hamiltonians

H =

(
H1 0
0 H2

)
.

From the factorization eq.(2.4) and eq.(2.10) of the two Hamiltonians we get
for the generators

Q =

(
0 0
A 0

)
,

Q† =

(
0 A†
0 0

)
,

which are often referred to as Supercharges.
As we see, both Q and Q† commute with the SUSY Hamiltonian, this fact
is responsible for the degeneracy of the two spectra.
Let us now take a look at the ground state of H. We start by defining the
ground state

|0〉 = |ψ0〉 =

 ∣∣∣ψ(1)
0

〉∣∣∣ψ(2)
0

〉  , (2.29)

where the vector entries follow from eq.(2.8)

A
∣∣∣ψ(1)

0

〉
= 0⇒

∣∣∣ψ(1)
0

〉
(x) = N exp

(
−
∫ x

W (y)dy

)
(2.30)

A†
∣∣∣ψ(2)

0

〉
= 0⇒

∣∣∣ψ(2)
0

〉
(x) = N exp

(∫ x

W (y)dy

)
, (2.31)

which in the algebraic notation takes the following form

Q |0〉 = Q† |0〉 = 0. (2.32)

With SUSY being unbroken only one of the two ground states is normaliz-
able. By convention we choose the normalizable eigenfunction to correspond
to the first Hamiltonian, therefore we get

|ψ0〉 =

( ∣∣∣ψ(1)
0

〉
0

)
. (2.33)

As already discussed earlier, we see that there is no zero energy ground
state for the partner Hamiltonian. Actually supersymmetry only tells us
that one of the two partners has a zero energy ground state as long as SUSY
is unbroken. It’s just a convention to define H1 to be the one with the zero
energy level. Often in supersymmetry we identify the first Hamiltonian with
a bosonic system and the second Hamiltonian with a fermionic. In this sense,
the supercharges are operators which change bosonic degrees of freedom into
fermionic one and vice versa. This idea is mostly studied in Quantum Field
Theory and is not of bigger importance for the one dimensional quantum
mechanics.
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2.3 SUSY Example

As a simple illustration of supersymmetric partner potentials, let us look at
the infinite square well potential and its SUSY partner.

Visw(x) =

{
0 : 0 ≤ x ≤ a
∞ : else
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Figure 2.3: The infinite square well

The corresponding Hamiltonian

Hisw = − ~2

2m

d2

dx2
+ Visw(x), (2.34)

is solved by the ansatz:

ψ(x) = A · sin(kx), (2.35)

with the restrictions

ψ(0) = ψ(a) = 0. (2.36)

From eq.(2.35) and eq.(2.36) we extract the following eigenfunction

ψisw(x) =

√
2

a
sin
(π
a
x
)
, (2.37)

with its derivate

ψ′isw(x) =

√
2

a

π

a
cos
(π
a
x
)
. (2.38)
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To be able to factorize the Hamiltonian we need the lowest energy of H1 to
be zero. Therefore we shift the potential down by the known ground state
energy

E0 =
π2~2

2ma2
, (2.39)

leading to the shifted potential

Ṽ1(x) = V1(x)− E0. (2.40)

With all conditions satisfied for SUSY and the given ground state eigenfunc-
tion and its derivate we use eq.(2.7) to obtain the superpotential

W (x) = − ~√
2m

π

a

cos
(
π
ax
)

sin
(
π
ax
) = − ~√

2m

π

a
cot
(π
a
x
)
. (2.41)

using eq.(2.11) this leads to the shifted partner potential

Ṽ2(x) =
~2π2

2ma2
·

cos
(
πx
a

)2
+ 1

cos
(
πx
a

)2 − 1
=

~2π2

2ma2

[
2 · cosec2

(πx
a

)
− 1
]
. (2.42)

The shifted Hamiltonian H̃1 = Hisw − E0 has the energy spectrum

Ẽ(1)
n =

n2π2~2

2ma2
n = 0, 1, 2, . . . (2.43)

Here we recognize that the shifted Hamiltonian possesses a zero energy state.
SUSY allows us to immediately calculate the spectrum of the partner po-
tential without even looking at the Schrödinger equation of the partner
Hamiltonian. This is astonishing since the two potentials do not have the
same shape, and do not represent the same quantum mechanical problem.
The only difference in the spectrum is the missing zero energy ground state.
Therefore the shifted second Hamiltonian has the energy spectrum

Ẽ(2)
n =

(n+ 1)2π2~2

2ma2
n = 0, 1, 2, . . . (2.44)

Shifting back to the initial problem leads to the following energy spectra for
the partner Hamiltonians

E(1)
n =

(n+ 1)2π2~2

2ma2
(2.45)

E(2)
n =

(n+ 2)2π2~2

2ma2
n = 0, 1, 2, . . . (2.46)

The eigenfunctions of the infinite square well are easily obtained as explained
in chapter 2.2 in Introduction to Quantum Mechanics [4] and read as follows

ψn(x) =

√
2

a
sin
(nπ
a
x
)
, (2.47)
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which using eq.(2.17), then lead to the eigenfunctions of the new Hamilto-
nian. We see that the lowest energy eigenstate is annihilated by A and all
higher eigenstates lose one node, but the general shape of the eigenfunctions
remains similar.

Figure 2.4: Infinite square well and the partner potential V2(x)

On the left we have the infinite square well and its first three energy eigenval-
ues E0,1,2 with the squared norm of their relating eigenfunctions | ψ0,1,2(x) |2.
On the right we have the same information but for the SUSY partner V2(x).
For simplicity and clarity we set ~ = 2m = 1 and multiplied the eigenfunc-
tions by a factor to make them more visible.
This is a very simple example which shows how easy energy spectra of differ-
ent Hamiltonians can be calculated through supersymmetry. Even though
the second Hamiltonian looks complicated, its spectrum andeigenfunctions
are very easily obtained.

2.4 Broken Supersymmetry

If we have a known potential with at least one bound state, we showed that
it is possible to create a partner potential with the same spectrum. Now let
us consider a different situation where the superpotential is known and from

there we construct two partner potentials. As long as ψ
(1)
0 (x) is normalizable,

supersymmetry is unbroken. For this to be true W (x) needs to be positive
(negative) for large positive (negative) x. This follows directly from eq.(2.9).
If this is not the case, there will be no zero energy ground state for H1 and
we say that supersymmetry is broken. For broken supersymmetry the two
spectra are degenerate and the operators A,A† do not change the number
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of nodes in the eigenfunctions. Therefore we get for the energies

E(2)
n = E(1)

n > 0, (2.48)

and the eigenfunctions

ψ(2)
n =

(
E(1)
n

)− 1
2 Aψ(1)

n , (2.49)

ψ(1)
n =

(
E(2)
n

)− 1
2 A†ψ(2)

n .

(2.50)

A simple way of determining if supersymmetry is broken was introduced by
Edward Witten. He defined the so called Witten index

∆ = Tr(−1)NF , (2.51)

where NF is the fermion number. The fermion number has either the value
0 or 1 and represents the number of fermions in this state. Because of the
Pauli principle there can never be more than one fermion in one state.
Let us look at an example where supersymmetry is broken. Then there are
no zero energy ground states and all the bosonic (Nf = 0) and fermionic
(Nf = 1) states come in pairs with the same energy. These pairs cancel each
other in the contribution to ∆ and therefore we obtain ∆ = 0.
On the contrary, if we assume that there are ground states with zero energy,
then these states contribute to ∆ by

∆ = nB − nF , (2.52)

where nB and nF are the respective number of zero energy ground states.
Therefore it follows that

∆ 6= 0⇒ supersymmetry is unbroken. (2.53)

In one dimensional quantum mechanics it’s even an equality

∆ 6= 0⇔ supersymmetry is unbroken. (2.54)

Because examples for broken supersymmetry are easily constructed and un-
derstood, I will only mention one class of superpotentials which break su-
persymmetry

W (x) = gxn. (2.55)

For n even, supersymmetry will always be broken and for n odd we will find
a normalizable groundstate and hence SUSY is not broken. The proof for
this is very simple and goes as follows.
As discussed above for unbroken SUSY, we need the groundstate to be
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normalizable. However if this is not possible, SUSY is broken. For the
ground state

ψ0(x) = N exp

(
−
√

2m

~

∫ x

W (y)dy

)
, (2.56)

to be normalizable it needs to vanish at ±∞, which will be the case if the
exponent converges to −∞ for x→ ±∞. From these arguments we extract∫ 0

−∞
W (y)dy =∞, (2.57)∫ ∞

0
W (y)dy =∞. (2.58)

Since W (y) is a polynomial potential and the exponent n is even we know
that the potential will be symmetric and the two equations above will never
be satisfied at the same time. This means that SUSY will always be broken
for such potentials.
For n being odd and g being positive the equations eq.(2.57) and eq.(2.58)
will always be satisfied and SUSY unbroken. If g is negative there will also
be a normalizable groundstate because

ψ
(2)
0 (x) = N exp

(√
2m

~

∫ x

W (y)dy

)
, (2.59)

has the opposite sign in the exponent. In this case we just switch the Hamil-
tonians (H1 � H2) because it is a convention to assign the normalizable
ground state to the first Hamiltonian H1.
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2.5 Hierarchy of Hamiltonians

As we learned in section 2.1 SUSY allows us to create partner Hamiltonians
with the same energy spectrum. We did this by shifting the first Hamiltonian
by a constant to get a zero energy ground state, so we could factorize the
Hamiltonian. The idea now is to also shift the new found Hamiltonian by a
constant to get a zero energy ground state for H2 and forget about H1 for the
moment. This then allows us to construct a third partner potential. We then
restart the procedure of shifting the potential by a constant, factorizing the
Hamiltonian and constructing a partner potential. By repeating these steps
we get a chain of partner Hamiltonians with almost the same spectrum.
Because we always lose the ground state when constructing the partner
Hamiltonian the spectrum gets reduced by one energy level in each step.
As we have seen in the last section ,we know the relations between two
partner Hamiltonians, these will also be valid for each Hamiltonian in the
chain, meaning that if we have an exactly solvable Hamiltonian we will be
able to extract the energy spectrum for the whole chain as well as all their
eigenfunctions. Furthermore we can reconstruct all eigenfunctions of the first
Hamiltonian from the knowledge of the ground states of all the Hamiltonians
in the chain. These properties will prove very useful in combination with
the Shape Invariant Potential integrability condition.
Let us begin by repeating the factorization and construction of the first
partner Hamiltonian. Since the first Hamiltonian does not naturally need
to have a zero energy ground state we rewrite the Hamiltonian as follows

H1 = A†1A1 + E
(1)
0 = − ~2

2m

d2

dx2
+ V1(x) (2.60)

and the corresponding potential

V1(x) = W1(x)2 − ~√
2m

W ′1(x) + E
(1)
0 (2.61)

with A and A† as in (2.5) and E
(1)
0 the ground state energy of H1, which

basically is just a shift of the Hamiltonian. As it follows from section 2.1,
we can immediately write down the partner Hamiltonian

H2 = A1A†1 + E
(1)
0 = − ~2

2m

d2

dx2
+ V2(x). (2.62)

with the potential

V2(x) = W1(x)2 +
~√
2m

W ′1(x) + E
(1)
0 ,

⇒ V2(x) = V1(x) +
2~√
2m

W ′1(x) = V1(x)− 2~√
2m

d2

dx2
ln
(
ψ

(1)
0

)
. (2.63)
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As seen before this yields

E(2)
n = E

(1)
n+1,

ψ(2)
n =

(
E

(1)
n+1 − E

(1)
0

)− 1
2 Aψ(1)

n+1. (2.64)

So far we just repeated what was done in section (sec. 2.1), but now we
will continue the chain of Hamiltonians and construct a new parter Hamil-
tonian to the second Hamiltonian. The ground state energy of the second

Hamiltonian is E
(2)
0 = E

(1)
1 , which allows us to write

H2 = A1A†1 + E
(1)
0 = A†2A2 + E

(2)
0 = A†2A2 + E

(1)
1 . (2.65)

The factorization was done exactly the same way as in section (2.1)

A2 =
~√
2m

d

dx
+W2(x), A†2 = − ~√

2m

d

dx
+W2(x). (2.66)

where

W2(x) = − ~√
2m

(
ψ

(2)
0 (x)

)′
ψ

(2)
0 (x)

= − ~√
2m

d

dx
ln
(
ψ

(2)
0

)
. (2.67)

Now we construct a new partner Hamiltonian by reversing the order of the
factors

H3 = A2A†2 + E
(1)
1 = − ~2

2m

d2

dx2
+ V3(x), (2.68)

and its corresponding potential thus takes the form

V3(x) =W2(x)2 +
~√
2m

W ′2(x) + E
(1)
1 = V2(x)− 2~√

2m

d2

dx2
ln
(
ψ

(2)
0

)
=V1(x)− 2~√

2m

d2

dx2
ln
(
ψ

(1)
0

)
− 2~√

2m

d2

dx2
ln
(
ψ

(2)
0

)
=V1(x)− 2~√

2m

d2

dx2
ln
(
ψ

(1)
0 ψ

(2)
0

)
. (2.69)

Similar to the first partner Hamiltonian we can draw some useful conclusion
for the third partner from the above calculations

E(3)
n =E

(2)
n+1 = E

(1)
n+2,

ψ(3)
n =

(
E

(2)
n+1 − E

(2)
0

)− 1
2 A2ψ

(2)
n+1

=
(
E

(1)
n+2 − E

(1)
1

)− 1
2
(
E

(1)
n+2 − E

(1)
0

)− 1
2 A2A1ψ

(1)
n+1. (2.70)

As we see, the solutions of the third Hamiltonian can be expressed through
the solutions of the first Hamiltonian. This means that the number of Hamil-
tonians in the chain is restricted by the number of bound states of the initial
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Hamiltonian. For example if there are p bound states for the initial Hamil-
tonian we are able to construct a chain of p − 1 Hamiltonians, with the
m’th Hamiltonian having the same spectrum as H1 except for the (m − 1)
lowest energy eigenvalues. This means that we can write a general formula
for a chain of Hamiltonians connected through supersymmetry. I will not
list them here, since it is more interesting to look at these chains for Shape
Invariant Potentials (SIP). What one needs to keep in mind is the initial
shift performed to obtain a zero energy ground state. To get the actual
spectrum of the potential we need to shift back the energy for the first
Hamiltonian and this then automatically shifts all the other energy levels.
The following figure shows the general principle of a Hamiltonian chain.

Figure 2.5: Energy spectrum of a Hamiltonian chain

As seen in figure 2.1 the energy levels of the different Hamiltonians are
related through A and A† which also applies to the chain of Hamiltonians.
The graph also shows the reduction of energy levels in every step in the
chain.
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The figure 2.6 shows the chain of Hamiltonians produced from the initial
Hamiltonian

H =
~

2m

d2

dx2
+ V (x), (2.71)

with

Visw(x) =

{
0 : 0 ≤ x ≤ a
∞ : else

. (2.72)

Figure 2.6: The infinite square well and the first three partner potentials of
the Hamiltonian chain

In this figure it is clear that every new partner potential will have a higher
ground state energy level. In the next section we will use these principles
on a special group of potentials which will allow us to solve for the energy
spectrum in a very elegant way.
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Chapter 3

Shape Invariant Potentials

Shape invariant potentials are a great success of supersymmetry in quan-
tum mechanics. As we saw in chapter 2, SUSY allows us to build chains
of Hamiltonians with very simple relations between the Hamiltonians in the
chain. In this chapter we want to take this idea a step further and look at
the benefits of the shape invariance condition. We will see that every well
known exactly solvable potential can be solved using SUSY and SIP in a
very elegant way. We will also lay the foundation for our calculation of the
radial energy spectrum of the hydrogen atom.
We start by looking at two partner potentials V1(x) and V2(x) related
through SUSY. We call a potential shape invariant if the following condi-
tion is satisfied

V2(x; a1) = V1(x; a2) +R(a1), (3.1)

where a1 and a2 are two different sets of parameters related through some
function a2 = f(a1). A very important aspect of SIP is that the remainder
R(a1) is independent of x. This simple condition in combination with the
hierarchy of Hamiltonians results in a very powerful tool for calculating the
energy spectrum if supersymmetry is unbroken. It is important to note
that the condition is an equation where the second potential is a function
with the set of parameters a1 and the first potential is written with the new
parameters a2 and the remainder is a function of the old parameters a1. One
should alway pay attention when checking this condition because it can be
very confusing with the two sets of parameters.

3.1 Energy Spectrum

We start by taking two partner Hamiltonians related through supersymme-
try. Then we know that they have the same energy spectrum and their
eigenfunctions are related through the relations in eq.(2.19). Since we as-

19
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sume supersymmetry to be unbroken we also know that

E
(1)
0 (a1) = 0, (3.2)

ψ
(1)
0 (x; a1) = N exp

(
−
∫ x

W1(y; a1)dy

)
. (3.3)

Let us now construct a chain of Hamiltonians which satisfies the condition
eq.(3.1). We start with the first Hamiltonian

H1 = − ~2

2m

d2

dx2
+ V1(x; a1), (3.4)

and its partner Hamiltonian

H2 = − ~2

2m

d2

dx2
+ V2(x; a1)

= − ~2

2m

d2

dx2
+ V1(x; a2) +R(a1), (3.5)

where we used eq.(3.1) to obtain this.
Continuing the Hamiltonian chain we construct the third partner by shifting
the second Hamiltonian and applying the same steps as before. The shifted
second Hamiltonian H̃2 has the form

H̃2 = − ~2

2m

d2

dx2
+ V1(x; a2), (3.6)

which leads to the third shifted Hamiltonian

H̃3 = − ~2

2m

d2

dx2
+ V2(x; a2)

= − ~2

2m

d2

dx2
+ V1(x; a3) +R(a2). (3.7)

The reason for shifting the second Hamiltonian lies in the conditions nesces-
sary for the factorization of the Hamiltonian , namely that the ground state
energy of one of the partners needs to be zero. As we shifted the second
Hamiltonian down by R(a1) we need to shift back to get the real energy
spectrum. By doing so we get the following first three Hamiltonians

H1 = − ~2

2m

d2

dx2
+ V1(x; a1),

H2 = − ~2

2m

d2

dx2
+ V1(x; a2) +R(a1),

H3 = − ~2

2m

d2

dx2
+ V1(x; a3) +R(a2) +R(a1). (3.8)

In some cases, the first Hamiltonian is already shifted to obtain a zero energy
ground state. In this case this shift needs to be added to each Hamiltonian
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to obtain the actual energy spectrum. The relations between the parameters
are expressed by the following functions

a2 = f(a1), (3.9)

a3 = f(a2) = f(f(a1)). (3.10)

We now turn to the energy spectrum of the three Hamiltonians and their
relations. Since we assume supersymmetry to be unbroken we know that
H1 has a zero energy ground state and we also know that H2 has the same
spectrum except for that zero energy ground state. Because we are interested
in the energy difference of the two ground states we take a closer look at the
second Hamiltonian and immediately realize that

H2ψ
(1)
0 (x; a2) =

[
− ~2

2m

d2

dx2
+ V1(x; a2)

]
ψ

(1)
0 (x; a2)︸ ︷︷ ︸

H1(x;a2)ψ
(1)
0 (x;a2)=0

+R(a1)ψ
(1)
0 (x; a2)

(3.11)

= R(a1)ψ
(1)
0 (x; a2). (3.12)

We see that the ground state eigenfunction ψ
(1)
0 of the first Hamiltonian is

also an eigenfunction of the second Hamiltonian just with a different set of
parameters a2 = f(a1). This lets us conclude that the ground state energy
of the second Hamiltonian is just the remainder,

E
(2)
0 = R(a1). (3.13)

Further we know from chapter 2 that this energy level is equal to the first
excited energy level of H1. Let us now look at the k’th partner Hamiltonian

Hk = − ~2

2m

d2

dx2
+ V1(x; ak) +

k−1∑
i=1

R(ai). (3.14)

As already discussed for the second Hamiltonian we again look for the ground
state eigenvalue

Hkψ
(1)
0 (x; ak) =

[
− ~2

2m

d2

dx2
+ V1(x; ak)

]
ψ

(1)
0 (x; ak)︸ ︷︷ ︸

H1(x;ak)ψ
(1)
0 (x;ak)=0

+

k−1∑
i=1

R(ai)ψ
(1)
0 (x; ak).

(3.15)
Once again this means that the ground state energy of the k’th Hamiltonian
is

E
(k)
0 =

k−1∑
i=1

R(ai), (3.16)
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which, as we know from the last chapter, is equivalent to the (k − 1)’th
energy level of the initial Hamiltonian H1. Hence to obtain the energy
spectrum of the first Hamiltonian we just need to know all ground states of
the Hamiltonian chain. Therefore from eq.(3.16) it follows for the spectrum
of H1 that

E(1)
n (a1) =

n∑
i=1

R(ai); E
(1)
0 = 0. (3.17)

It is important to keep in mind that sometimes E
(1)
0 = 0 is not always the

case and a shift is nescessary to obtain this situation. In such a case we need
to add the shift at the end of our calculations to obtain the actual energy
spectrum.
From the above thoughts we can also draw conclusions for the eigenfunctions
of the first Hamiltonian. To do so we recall equation eq.(2.20) and look at
a Hamiltonian in the chain. We know from equation eq.(3.14) that the

Hamiltonian Hk has the ground state ψ
(1)
0 (x; ak) from which we now go

back one step and get

ψ
(1)
1 (x; ak−1) ∝ A†(x; ak−1)ψ

(1)
0 (x; ak), (3.18)

which is the first excited state of Hk−1. By repeating this step we get the
unnormalized k’th excited state of the first Hamiltonian

ψ
(1)
k (x; a1) ∝ A†(x; a1)A†(x; a2)...A†(x; ak)ψ

(1)
0 (x; ak+1) (3.19)

As we already saw in figure 2.1 there is an explicit relation between two
partner Hamiltonians and their eigenfunctions which leads to the following
relation between different eigenfunctions of the initial Hamiltonian

ψ
(1)
k (x; a1) =

1√
E

(1)
k−1

A†(x; a1)ψ
(1)
k−1(x; a2). (3.20)

This means that for potentials which satisfy the SIP condition, we only need
to find the first ground state eigenfunction and the function f(a) which
determines the change of the parameters as well as the remainder and from
there we can calculate all eigenfunctions and energy levels.

3.2 Example

Let us illustrate the idea of SIP by a simple example. For simplicity, in this
example we set ~ = 2m = 1. As a comprehensive example let us take a look
at the radial equation of the 3D oscillator, this is also a good preparation
for the upcoming solution of the radial radial part of the hydrogen atom.



3.2. EXAMPLE 23

The superpotential of the oscillator in 3D has the following form (as seen in
chapter 4 in Supersymmetry in Quantum Mechanics [3])

W (r) =
1

2
ωr − (l + 1)

r
, (3.21)

where l is the azimuthal quantum number. We know a simple relation be-
tween the superpotential and the partner potentials from eq.(2.6). From
there we get

V1(r) =
1

4
ω2r2 − ω

(
l +

3

2

)
+
l(l + 1)

r2
(3.22)

and

V2(r) =
1

4
ω2r2 − ω

(
l +

1

2

)
+

(l + 1)(l + 2)

r2
(3.23)

with their corresponding Hamiltonians

H1 = − d2

dr2
+ V1(r; l) (3.24)

H2 = − d2

dr2
+ V2(r; l) (3.25)

Figure 3.1 shows the superpotential with the two partner potentials.

Figure 3.1: The superpotential W(r) with the two corresponding partner
potentials V1(r) and V2(r)

Let us now check whether SUSY is unbroken so we can use SIP and the
Hamiltonian chain to extract the energy spectrum. For SUSY to be unbro-
ken we need one of the ground states to be normalizable and have a zero
energy. From eq.(2.9) we can calculate the ground state eigenfunction

ψ
(1)
0 = N exp

(
−
√

2m

~

∫ r

W (y)dy

)
= N exp(−1

4
ωr2 + ln(r)l + ln(r)),

(3.26)
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which when inserted in the Hamiltonian H1 yields a zero energy ground
state. Therefore SUSY is unbroken and we are allowed to use the formulas
extracted with SIP and the Hamiltonian chain. Already a short look at the
two potentials lets us guess that they will satisfy the SIP condition eq.(3.1).
To check the SIP condition we first need to rename the parameter l in the
first potential to something new, let’s say l2, and insert them in the equation

1

4
ω2r2 − ω

(
l +

1

2

)
+

(l + 1)(l + 2)

r2
=

1

4
ω2r2 − ω

(
l2 +

3

2

)
+
l2(l2 + 1)

r2

+R(l).

Since we are interested in the relation f(l) = l2 we only look at the terms
with an r-dependency . That means we only have to solve a simple quadratic
equation to obtain

l2 = f(l) = l + 1. (3.27)

Now we plug this into the above SIP condition and solve for the remainder

R(l) = 2ω. (3.28)

We are now interested in expanding the chain of Hamiltonians to get the
whole energy spectrum of the 3D oscillator. To do so, we forget about
the first Hamiltonian and shift the second Hamiltonian by a constant to
receive a zero energy ground state. As discussed in the section 3.1 this
down shift is identical to the calculated remainder R(l). This leads to the
new Hamiltonian

H̃2 = − d2

dr2
+ V1(r; l2) (3.29)

with a zero energy ground state.
It is clear that the new partner Hamiltonian (potential), will also satisfy the
SIP condition with the same relations as before. Therefore we do not need
to calculate all the Hamiltoniansin the chain. We only need our result from
the first partner Hamiltonians. From there, using

E(1)
n (a1) =

n∑
i=1

R(ai), (3.30)

since we know that R(l) is actually not depended on l we can extract,

E(1)
n =

n∑
i=1

R(li) = 2nω, (3.31)

which is the same result as obtained in Supersymmetry in Quantum Me-
chanics [3].
SIP also allows us to obtain the eigenfunctions for the first Hamiltonian as



3.2. EXAMPLE 25

shown in the preceding section. After finding the ground state eigenfunc-
tion for the first Hamiltonian it is a simple exercise to extract the ground
state eigenfunctions for the other Hamiltonians since they only differ in the
parameter but not in the r-dependence. We are then ready to calculate all
eigenfunctions of the first Hamiltonian. Let us begin by finding the ground
state eigenfunction for H1. This is done with help of eq.(2.30) which yields

ψ
(1)
0 (r) = N−1 exp

(
−
∫ r [1

2
ωr′ − (l + 1)

r′
dr′
])

= N−1 exp

(
−1

4
ωr2 + ln(r)l + ln(r)

)
, (3.32)

with the normalization

N =

∫ ∞
0

[
exp

(
−1

4
ωr2 + ln(r)l + ln(r)

)]2

dr. (3.33)

Now we just need to construct the operator

A† = − d

dr
+W (r; a1) = − d

dr
+

1

2
ωr − (l + 1)

r
, (3.34)

and we are set to construct all eigenfunctions of the 3D oscillator. For the
first excited state we do this explicitly as a guide, the other eigenfunctions
are then easily obtained by repeating the same steps.
To obtain the first excited eigenfunction we apply the operator in eq.(3.34)
to the ground state,

ψ
(1)
1 (r; a1) = A†(r; a1)ψ

(1)
0 (r; a2)

= − d

dr
ψ

(1)
0 (r; a2) +W (r; a1)ψ

(1)
0 (r; a2)

= − d

dr
ψ

(1)
0 (r; l + 1) +W (r; l)ψ

(1)
0 (r; l + 1), (3.35)

then we normalize the eigenfunction by

N1 =

∫ ∞
0

∣∣∣ψ(1)
1 (r; a1)

∣∣∣2 dr (3.36)

and have already found the first excited eigenstate.
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Figure 3.2 shows the first two eigenfunctions and the related eigenvalue
implanted in the potential.

Figure 3.2: First two radial eigenfunctions of the 3D oscillator

In figure 3.3 we see the ground and first excited state energy level with the
squared norm of their corresponding eigenfunctions | ψ0,1(r) |2. To conclude
this example we see that using SUSY, the hierarchy of Hamiltonians and
the SIP condition, we can solve analytically solvable problems in a very
elegant way. There are only first order differential equations as well as simple
quadratic equations that need to be solved to obtain the desired results. In
the book Supersymmetry in Quantum Mechanics [3] there are many more
examples of problems which are easily solved using SIP.

Figure 3.3: Energy levels of the 3-D oscillator



Chapter 4

Hydrogen Atom

4.1 Introduction

The hydrogen atom is a textbook problem in quantum mechanics. Because
of its characteristics to have a heavy essentially motionless proton and a
light electron orbiting around it, makes it more easy solvable for quantum
mechanics. That’s why this example is often looked at when calculating
energy levels. In this chapter we want to look at a different way of calcu-
lating this spectrum than the classical way by using SUSY (and factorizing
the Hamiltonian) and the SIP condition. We will only look at the radial
equation since this part satisfies the SIP condition. For a classical way of
calculating the spectrum one may consult chapter 4.2 in Introduction to
Quantum Mechanics [4].

4.2 Radial Equation

The motion of the electron is governed by the Coulomb force with the po-
tential

V (r) = − e2

4πε0

1

r
. (4.1)

By plugging this into the radial Schrödinger equation

− ~2

2m

d2u

dr2
+

[
V (r) +

~2

2m

l(l + 1)

r2

]
u(r) = E0u(r) (4.2)

for the shifted radial potential we get

Ṽ (r) =

[
−1

4

e2

πε0

]
1

r
+

[
~2l(l + 1)

2m

]
1

r2
− E0. (4.3)

27
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Figure 4.1: Radial Coulomb Potential

Our next step is to find the corresponding partner potential and verify the
SIP condition. Let us begin by finding the superpotential through the dif-
ferential equation

Ṽ (r) = W (r)2 − ~√
2m

W ′(r), (4.4)

knowing what Ṽ (r) looks like, we make the ansatz

W (r) = C − D

r
, (4.5)

which leads to

Ṽ (r) =C2 − 2CD

r
+
D2

r2
− D

r2

~√
2m

=C2 − 1

r
2CD +

1

r2
(D2 − ~√

2m
D). (4.6)

Since C2 does not depend on r, we can directly identify this constant with
the ground state energy E0 = −C2. By comparing the coefficients we further
get

−2CD =− e2

4πε0
, (4.7)

D2 − ~√
2m

D =
~2

2m
l(l + 1), (4.8)
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from where we extract

C =

√
2m

~
e2

2 · 4πε0(l + 1)
, (4.9)

D =
~√
2m

(l + 1). (4.10)

It is interesting to see that from this short calculation we already found the
ground state energy of the radial Hamiltonian (for l = 0).

E0 = −C2 = − e4

4 · 16π2ε20(l + 1)2

2m

~2
= −2.18 · 10−18J ≈ −13.6 eV. (4.11)

Plugging eq.(4.9) and eq.(4.10) in the ansatz eq.(4.5) gives us the superpo-
tential

W (r) =

√
2m

~
e2

2 · 4πε0(l + 1)
−

(
~√
2m

(l + 1)
)

r
(4.12)

from which we will continue to the partner potential through eq.( 2.11)

V2(r) =

[
−1

4

e2

πε0

]
1

r
+

[
~2(l + 1)(l + 2)

2m

]
1

r2
+

[
e4m

32π2~2ε20(l + 1)2

]
. (4.13)

Comparing the partner potential with the first potential eq.(4.3) we may
already assume that the SIP condition eq.(3.1) will be satisfied.

Figure 4.2: The two first hydrogen partner potentials (l = 1)

In fact, it is easy to see that the relation between the parameters

a2 = f(a1)⇒ f(l) = l + 1, (4.14)
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leads to the remainder

R(l) =
e4m(2l + 3)

32π2~2ε20(l + 1)2(l + 2)2
. (4.15)

As discussed in chapter 3 this remainder is equal to the energy gap between
the zero energy and the first excited state therefore we get

E∆0→1 =
e4m(2l + 3)

32π2~2ε20(l + 1)2(l + 2)2
, (4.16)

and since we know the ground state energy is not zero, we shift the energy
down by the previous shift E0 and get

E1 = − e4m

32π2~2ε20(l + 1)2
+

e4m(2l + 3)

32π2~2ε20(l + 1)2(l + 2)2
. (4.17)

Since we are interested in the whole energy spectrum we will try to extract a
formula for the n’th energy level En. We have all the knowledge necessary to
do so, because we know the remainder R(l) between two partner potentials
and the relation for the parameter f(l) = l + 1. Together with the two
calculated energy levels this leads to

En = E0 +

n∑
i=1

e4m(2(l + n− 1) + 3)

32π2~2ε20(l + n)2(l + n+ 1)2
. (4.18)

For l = 0, we can rewrite this sum into a direct formula which reads

En =
e4m

32π2~2ε20(n+ 1)2
, (4.19)

which is the known formula for the energy levels and yields the following
energies.

Energy Level [J] [eV]

E0 -2.179 · 10−18 -13.605

E1 -5.450 · 10−19 -3.401

E2 -2.422 · 10−19 -1.512

E3 -1.362 · 10−19 -0.851

E4 -8.722 · 10−20 -0.544

E5 -6.058 · 10−20 -0.378

Table 4.1: First 6 energy levels of the hydrogen atom.

which is in good agreement with the known energies of the hydrogen atom.
The example of the radial energy spectrum of the hydrogen atom shows how
powerful these tools can be in quantum mechanics.



Conclusion

The main aim of the thesis was to give a short introduction to SUSY in
quantum mechanics, starting out from the factorization of Hamiltonians and
leading to some powerful tools for investigating energy spectra of Hamilto-
nians. Concerning energy spectra of Hamiltonians, the shape invariance
condition is one of the most important achievements of SUSY in quantum
mechanics. With it we can calculate the energy spectrum of a Hamiltonian
with just a few steps without having to go through the trouble of solving
the Schrödinger equation. This shows that even though SUSY in quantum
mechanics started as a testing ground for quantum field theory, it turned
out to be interesting in its own right. The methods developed with the help
of SUSY do not require any knowledge of quantum field theory, therefore
they can well be used by undergraduate students to see a different approach
to known text book problems in quantum mechanics and thereby lead to
a deeper understanding of the solvability of potentials. Furthermore, the
reduction of the order of derivatives due to the factorization makes it sig-
nificantly easier to find eigenfunctions to given Hamiltonians. Even though
the factorization method is known since a long time, it is usually only used
to solve the harmonic oscillator problem, whereas we saw in this thesis that
it can be very useful for a wide range of potentials.
The SUSY algebra was mentioned in this thesis for completeness reasons,
but was not further investigated, because it was not of big importance to
our calculations. Nevertheless, this would be an interesting topic to look
into, specially when considering more than two generators. Moreover, the
investigation of SUSY breaking (which plays an important role in quantum
field theory) in quantum mechanics could lead to interesting results or new
methods which could be applied in quantum field theory. I would like to
mention that the possibilities of SUSY in quantum mechanics are still much
broader than those looked at in this thesis. For example the relations of
transmission and reflection coefficients of partner potentials are an interest-
ing problem to examine, especially potentials without reflection could lead
to deeper insight where this non reflection comes from. Many of these topics
could be investigated by undergraduate students to make them more acces-
sible to other students, since most papers on these topics are written for
more sophisticated readers.
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Appendix A

Calculations

A.1 Proof for N=2 SUSY algebra

Here is the short proof of the (anti)commutation relations which define the
SUSY algebra. Equation eq.(2.26) follows from

[H,Q] =

(
H1 0
0 H2

)(
0 0
A 0

)
−
(

0 0
A 0

)(
H1 0
0 H2

)
(A.1)

⇒ [H,Q] =

(
0 0

H2A− AH1 0

)
=

(
0 0

AA†A− AA†A 0

)
= 0, (A.2)

and eq.(2.27) comes from

{Q,Q†} =

(
0 0
A 0

)(
0 A†
0 0

)
+

(
0 A†
0 0

)(
0 0
A 0

)
(A.3)

⇒ {Q,Q†} =

(
A†A 0

0 AA†
)

=

(
H1 0
0 H2

)
. (A.4)

At last eq.(2.28) is proven by

{Q,Q} =

(
0 0
A 0

)(
0 0
A 0

)
+

(
0 0
A 0

)(
0 0
A 0

)
(A.5)

⇒ {Q,Q} =

(
0 0
0 0

)
. (A.6)
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[9] José F. Carina and Arturo Ramos. Riccati equation, factorization
method and shape invariance. (11.30.PB,03.65.Fd), October 14 1999.

[10] Fred Cooper, Avinash Khare, and Uday Sukhatme. Supersymmetry
and quantum mechanics. Physics Reports, 251(5-6):267 – 385, 1995.
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