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Abstract

We calculate the phase diagram of the 3-dimensional 3-state Potts model with an additional
non-zero density of infinitely heavy color charges as a model for QCD with heavy quarks. This
model has a sign problem which can be solved by a meron-cluster algorithm. This algorithm
is theoretically ergodic but practically it is nearly impossible to reach certain configurations,
as will be explained, making it very hard to accurately calculate some physical quantities.
To circumvent this problem we use a variant of a flux model which is equivalent to the Potts
model. The physical observables are easily calculable there using a worm algorithm.

We found that the first order phase transition from the original Potts model without color
charges is weakened by increasing the number of charges. At some point it probably turns
into a second order transition before finally disappearing completely. However, because of
a lack of time, locating the exact point where the transition becomes second order was not
possible and we were unable to identify the details of where and how the transition vanishes.
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1. Introduction

The theory of the strong force, Quantum Chromodynamics (QCD), seems to have (at least)
two phases: the low energy confined phase where the quarks are bound into colorless states
and the high energy deconfined phase where quarks can exist as quasi-free particles. This
is a highly non-perturbative feature of QCD which can be investigated from first principles
only by using the lattice regularization which will be explained briefly in chapter 2. In fact
it hasn’t even been rigorously proven yet for full QCD. In some simplified cases, however, it
is possible to analytically study confinement. For example in Yang-Mills theory with static
quarks and infinite coupling constant confinement is already established, i.e. in this system
the quarks (and gluons) are indeed confined (as will be shown in this thesis). For all other
values of the coupling constant and for most more complicated systems, the problem can
only be solved numerically using Monte Carlo simulations. However, this is presently still a
very difficult task. Even though pure Yang-Mills theory doesn’t pose any unsurmountable
problems, adding quarks or, more generally, fermions often introduces a so-called complex
action problem. The standard way to simulate a system with many degrees of freedom is to use
Monte Carlo simulations which generate configurations based on a probability distribution,
i.e. they generate the more probable ones more often. Normally one uses the Boltzmann
factor exp(−S) as a probability distribution. If S is not real and positive, one encounters the
complex action problem. Interpreting the action as a probability distribution then obviously
doesn’t work. This problem can be quite hard to solve depending on the actual model. It
still remains unsolved for QCD even though some progress has been made lately ([6] contains
an overview of the techniques used and the results of some recent work).

An easier way is to use simplified models which share some key features with the full model.
An example of this is the so-called 3-dimensional 3-state Potts model which we will be using
here. Calculating the phase transition numerically in this model using a cluster algorithm is
a task already performed by other people [1, 4].

The standard Potts model does not include an equivalent to quarks. It represents pure
Yang-Mills theory, a theory consisting only of gluons. Adding static charges as a model for
infinitely heavy quarks has already been done a number of times [1, 4, 10]. These works
introduce a chemical potential coupling to the quark number Q. In order for the quarks to
be truly static, their mass M has to be set to infinity. To avoid getting only trivial results,
the chemical potential has to go to infinity as well such that M −µ remains finite. This then
means that using these simplifications, only a small part of the whole phase diagram can be
studied, namely only the case of systems with many infinitely heavy quarks. It was found
that there is a line of first order transition starting at the transition point of the original
Potts model. It ends at a critical end point to finally turn into a crossover [1]. Using only this
approach still leaves a complex action problem, i.e. it is not possible to easily simulate this
model using standard Monte Carlo algorithms. In recent work [10] an improved algorithm
for an equivalent model was used to circumvent this problem. This study still found a region
with a first order phase transition and a crossover everywhere else.

In this thesis we will use a similar approach for a slightly different model. We want to add
a fixed number of static color charges to the Potts model, i.e. without introducing a chemical
potential. We obtain a representation of these infinitely heavy quarks by using Polyakov
loops which is the standard way to achieve this in Yang-Mills theory. This introduces a
complex action problem. Solving it is possible using a so-called meron-cluster algorithm,
the construction of which will be explained in chapter 3. This completely solves the complex
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action problem but still leaves a dynamical problem: The algorithm is practically non-ergodic
because the system may get stuck in the so-called two-meron sector which, as will be shown in
this thesis, prevents the calculation of useful results or at least greatly decreases the amount
of statistics generated.

At this point we can then use a similar solution to what has been done in [10]: We switch
to a different but equivalent model where there is no complex action problem at all. This new
model is called the flux model as its fundamental degrees of freedom are static charges and
(charge) fluxes in between. It can be efficiently simulated using so-called worm algorithms
introduced (for different problems) by N. Prokof’ev and B. Svistunov [13, 14]. This also
avoids the problem with the two-meron sector of the Potts model completely. All this will be
explained in chapter 4.

As the flux model solves these problems we are then in a position to start calculating the
phase diagram of the Potts model with a fixed number of static color charges. How one can
then proceed to calculate the diagram is explained in the first part of chapter 5. The second
part and the conclusion of this work consist of a discussion of our results (and some problems
that still remain).
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2. Lattice Quantum Chromodynamics with static quarks

We want to investigate the confinement-deconfinement phase transition in a theory based
on Quantum Chromodynamics (QCD) without dynamical quarks. This leaves us with the
gluon gauge fields and infinitely heavy color charges representing static quarks. We start by
introducing the general concepts of lattice QCD.

2.1. Pure gauge lattice Yang-Mills theory

Standard pure gauge Yang-Mills theory in the path integral formulation with Euclidean time
can be defined using its partition function

Z =

∫
DG exp(−S[G]), (2.1)

where the action is

S[G] = −
∫

d4x
1

4g2s
trGµνGµν (2.2)

and

Gµν(x) = ∂µGν(x)− ∂νGµ(x) + [Gµ(x), Gν(x)], (2.3)

Gµ(x) = igsG
a
µ(x)T

a, a = 1, ..., 8. (2.4)

Here T a are the generators of the gauge group SU(N) and Ga
µ(x) are the gluon fields trans-

forming in the adjoint representation of SU(N). In order to be well defined, the meaning of
the integral measure DG needs to be clarified. In general this is a product of infinitely many
integrals (one for each point in space-time since there is an independent field variable G(x)
for each x) over the group space of SU(N). The only possible way to define this currently
(apart from perturbative expansions) is to regularize it by introducing a space-time lattice.
The continuum theory is then defined by taking the limit of vanishing lattice spacing.

The lattice is introduced by replacing for each dimension of space-time the continuous real
numbers by integers and by introducing a lattice spacing a between adjacent lattice points.
As a representation of the gauge fields one then adds so-called link variables Uµ,x ∈ SU(N) on
the line connecting the point x to x+ aµ̂ in the positive µ-direction (where µ̂ is a unit-vector
in this direction) as shown in figure 1. These link variables take values in the group SU(N)
and one can write

Uµ,x = exp

(
aGµ

(
x+

aµ̂

2

))
, (2.5)

which ensures that for vanishing lattice spacing the link variables become the gauge fields at
the point x because

Uµ,x = 1+ aGµ

(
x+

aµ̂

2

)
+O(a2). (2.6)

Under gauge transformations these fields transform as

U ′
µ,x = ΩxUµ,xΩ

†
x+aµ̂, Ωx ∈ SU(N), (2.7)
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which yields after a short calculation using a → 0 in continuum notation

U ′
µ,x = 1+ aΩ(x) [Gµ(x) + ∂µ] Ω(x)

† +O(a2). (2.8)

Together with formula (2.6) this shows that in the continuum limit the gauge field transforms
correctly, i.e.

G′
µ(x) = Ω(x)(Gµ(x) + ∂µ)Ω(x)

†, Ω(x) ∈ SU(N). (2.9)

-�
a

-
Uµ,x

-

6
�

?
Uµ,ν,y

-

6

µ̂

ν̂

Figure 1: Basic building blocks of lattice Yang-Mills theory in 2 dimensions.

As a last step we need to define a lattice action. There are several ways to do this which may
differ by their convergence behavior towards the continuum limit. This could, for example,
mean that one of them matches the continuum action up to the order of a2 while another
one agrees with it up to even higher powers of the lattice spacing. Here we use the simplest
variant as it suffices for our purposes. It is defined through elementary plaquette variables

Uµ,ν,x := Uµ,xUν,x+aµ̂U−µ,x+aµ̂+aν̂U−ν,x+aν̂ , (2.10)

where

U−µ,x+aµ̂ = U †
ν,x. (2.11)

An elementary plaquette is a closed loop around a square of four nearest neighbor points as
depicted in figure 1. Then the action takes the form

S[U ] = − 1

4g2s

∑
x,µ>ν

Re(trUµ,ν,x), (2.12)

where the sum is such that every plaquette occurs exactly once. This quantity is gauge
invariant because of the cyclicity of the trace. In the continuum limit this yields the correct
results up to the order of a2. Then

∑
µ>ν a

4 is replaced by 1
2

∫
d4x (which actually implies

that we have to calculate up to order a4 thereby making the calculation somewhat tedious).
To summarize, the partition function in the lattice regularization takes the form

Z =
∏
µ,x

∫
SU(N)

DUµ,x exp(−S[U ]), S[U ] = − 1

4g2s

∑
x,µ>ν

Re(trUµ,ν,x), (2.13)

which is completely well defined once one introduces the so-called Haar measure on the group
space of SU(N).
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2.1.1. The Haar measure

The Haar measure is the gauge invariant measure on a gauge group. Mathematically it is the
unique measure dU on a compact group G which obeys [11]

1. Invariance:
∫
G dU f(U) =

∫
G dU f(V U) =

∫
G dU f(UV ) ∀V ∈ G,

2. Normalization:
∫
G dU = 1.

It is a generalization of the Lebesgue measure on Rn and has the properties∫
SU(N)

dU Uij = 0, (2.14)∫
SU(N)

dU UijU
∗
kl =

1

N
δikδjl, (2.15)

as can be easily verified e.g. for SU(2) by noting that the integral over SU(2) can be replaced
by an integral over the unit sphere S3 = {Uµ ∈ R4 : |U | = 1} if one identifies the two spaces
by writing

U = U01+ i~U · ~σ, U2
0 + |~U |2 = 1, (2.16)

where 1 is the two-dimensional unit-matrix, U0 ∈ R, ~U ∈ R3 and ~σ = (σ1, σ2, σ3) are the
three Pauli matrices.

2.2. Static quarks

From here on we will set the lattice spacing a = 1 to simplify the notation in the calculations.
Before calculating anything, we first have to introduce the last missing piece: We need a
representation for infinitely heavy quarks. The way to do this is by introducing the so-called
Polyakov loop. Writing x4 = it for the (imaginary) Euclidean time direction it is defined as

Φ~x = tr

(
β∏

x4=1

U4,(~x,x4)

)
= tr

(
U4,(~x,1)U4,(~x,2)U4,(~x,3)...U4,(~x,β)

)
, (2.17)

which in the continuum limit becomes

Φ(~x) = P exp

(∫ β

0
dx4G4(~x, x4)

)
, (2.18)

where P denotes path ordering and is defined through taking the continuum limit of the
lattice based definition. Furthermore, the inverse temperature β = 1

T is the extent of the
Euclidean time direction on a finite lattice with periodic boundary conditions in Euclidean
time.

The Polyakov loop has a fixed spatial coordinate ~x as it extends only in the Euclidean time
direction as depicted in figure 2. In fact, it is a closed loop in time, gauge invariant (as any
physical quantity needs to be) and its expectation value,

〈Φ~x〉 =
1

Z

∏
µ,x

∫
SU(3)

DUµ,xΦ~x exp(−S[U ]) = exp(−βF ), (2.19)
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6
x4

~x

6

6

6

6

6
Φ[U ]

~x0

Figure 2: Polyakov loop at ~x0 on a lattice with periodic boundary conditions in Euclidean
time.

is a measure of the free energy F of a static quark, i.e. the energy needed to add an additional
static quark into the system of dynamical gluons at finite temperature T [9]. The Polyakov
loop is an order parameter that distinguishes between confinement and deconfinement: In the
confined phase it costs infinite energy to add a single quark which means that F is infinite
and 〈Φ~x〉 = 0. In the deconfined phase, on the other hand, single quarks cost a finite amount
of energy. Therefore F < ∞ and 〈Φ~x〉 6= 0.

2.2.1. Area law for a quark-anti-quark pair

Using the Haar measure it is possible to do calculations in the strong coupling limit, i.e.
by taking gs → ∞. To investigate confinement we are interested in expectation values of
static quarks. Therefore we first calculate the expectation value of the Polyakov loop of a
quark-anti-quark pair, i.e.

〈Φ~xΦ
∗
~y〉 =

1

Z

∏
µ,z

∫
SU(3)

DUµ,z Φ~xΦ
∗
~y exp(−S[U ]), (2.20)

as shown in figure 3a. This can be calculated explicitly to first non-vanishing order in 1
g2s

using eqs. (2.14) and (2.15): First we can simplify the expectation value using the strong
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coupling limit,

〈Φ~xΦ
∗
~y〉 =

1

Z

∏
µ,z

∫
SU(3)

DUµ,z Φ~xΦ
∗
~y exp(−S[U ])

=
1

Z

∏
µ,z

∫
SU(3)

DUµ,z Φ~xΦ
∗
~y exp

(
1

4g2s

∑
x,µ>ν

Re(trUµ,ν,x)

)

=
1

Z

∏
µ,z

∫
SU(3)

DUµ,z Φ~xΦ
∗
~y

∏
x,µ>ν

exp

(
1

4g2s
Re(trUµ,ν,x)

)
=

1

Z

∏
µ,z

∫
SU(3)

DUµ,z Φ~xΦ
∗
~y

∏
x,µ>ν

(
1 +

1

4g2s
Re(trUµ,ν,x) +O(

1

g4s
)

)
=

1

Z

∏
µ,z

∫
SU(3)

DUµ,z Φ~xΦ
∗
~y

∏
x,µ>ν

(
1 +

1

8g2s
(trUµ,ν,x + trU∗

µ,ν,x) +O(
1

g4s
)

)
. (2.21)

Eq. (2.14) implies that every link for which there are more variables Uµ,x in one direction
than variables U−µ,x+µ̂ in the opposite direction, this integral vanishes. Therefore the whole
contribution of this configuration to the expectation value vanishes if we have any such links.
In the last formula above we have plaquettes trUµ,ν,x and anti-plaquettes trU∗

µ,ν,x to choose
from, i.e. we can use those to counter the Polyakov loops as depicted in figure 3b. However,
doing this just shifts the problem because we still create two rows of single variables as shown
in figure 3c. The complete solution therefore is to tile up the space between the two Polyakov
loops with plaquettes as in figure 3d. As every plaquette yields a factor proportional to g−2

s

this is also the first non-vanishing term in the strong coupling expansion,

〈Φ~xΦ
∗
~y〉 =

Np

Z

(
1

8g2s

)Rβ 1

N2Rβ+β
+O(g−(A+2)

s ) =
Np

ZNβ

(
1

8g2sN
2

)Rβ

+O(g−(A+2)
s ), (2.22)

where R = |∆x1 + ∆x2 + ∆x3| is the spatial distance between the Polyakov loops on the
lattice, Np is the number of shortest paths between x and y (which only depends on the
number of lattice dimensions) and β is the extent of the Euclidean time direction. We then
define

〈Φ~xΦ
∗
~y〉 ∼ exp(−σA), (2.23)

where A is the area between the two Polyakov loops, i.e. we have A = Rβ. If the expectation
value behaves like this, it obeys an area law (because it decreases exponentially with the area
between the loops). With the approximation above we can read off the string tension

σ = ln(8N2g2s). (2.24)

The area law implies confinement because for large separations between the quark and the
anti-quark, i.e. for large R, the expectation value goes to zero. Therefore it is impossible to
separate the quarks completely (to let R go to infinity).

The same calculation with just one Polyakov loop trivially leads to 〈Φx〉 = 0. As a conse-
quence of eq. (2.15) there is no way to counter the link variables from the Polyakov loop using
only plaquettes. Therefore, together with eq. (2.19), this shows that it is impossible to add
a single static quark as it would require infinite energy. This shows that confinement indeed
exists in the strong coupling limit of QCD. The other extreme case of vanishing coupling
(gs → 0) is obviously deconfinement because it describes a free theory without interaction.
This means that there must be a transition between these two phases.
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Figure 3: Polyakov loop - anti-Polyakov loop pair

2.3. The center symmetry

Another way to look at confinement is using the center symmetry which is broken in the
deconfined phase but unbroken in the confined phase [8].

The center Z(G) of a group G is defined as the set of all elements which commute with
every other group element, i.e.

Z(G) := {z ∈ G : az = za ∀a ∈ G}. (2.25)

As can be easily verified, the center forms a subgroup of G. Here we are interested in the
groups SU(N), for which the center is equal to

Z(SU(N)) = Z(N) := Z/NZ = {1 exp
(
2πin

N

)
: n ∈ {1, 2, ..., N}}, (2.26)

where 1 is the N ×N unit-matrix. We have assumed the standard representation of SU(N)
using complex N -dimensional matrices. Using this we can define a global center transforma-
tion of the fields by allowing gauge transformations with periodic boundary conditions up to
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an element of the center in the Euclidean time direction, i.e. for gauge transformations Ωx

with

Ω(~x,β) = zΩ(~x,0), z ∈ Z(SU(N)). (2.27)

In order to simplify studying this transformation we can use the fact that lattice Yang-Mills
theory is gauge invariant. This means that we can actually omit the part of the transformation
which consists of a gauge transformation and only keep the additional z factor. This is the
same as multiplying each link variable on one time slice with z. For example we can define

U ′
µ,(~x,x4)

:=

{
Uµ,(~x,x4) x4 6= 0

zUµ,(~x,0) x4 = 0
, z ∈ Z(SU(N)). (2.28)

Figure 4 shows the links which get transformed in this case. Under these transformations the
theory behaves as

S[U ]′ = S[U ], (2.29)

Z ′ = Z, (2.30)

Φ[U ]′ = Φ[zU ] = Φ

[
1 exp

(
2πin

3

)
U

]
= exp

(
2πin

3

)
Φ[U ]. (2.31)

Therefore in the pure gauge case, the center transformation is a symmetry of the theory.
The Polyakov loop, however, is not invariant. This then implies the following: If we have
〈Φ〉 = 0, the factors from the Polyakov loop generated by the center transformation average
out and the system remains invariant. On the other hand, if we have 〈Φ〉 6= 0, the symmetry is
spontaneously broken because the system is no longer invariant under center transformations.
Therefore the realization of the center symmetry indicates whether the system is in a confined
or a deconfined phase. This means that testing whether the symmetry is broken or not with
a simulation tells us something about confinement. However, to only get some qualitative
information about the transition it suffices to use a simplified model which shares the same
symmetry. Therefore in the next chapter we will look at a model which preserves the center
symmetry to further study confinement.

-

6
x4

~x

Figure 4: Center symmetry. The bold lines are an example of the links between points whose
link variables Uµ,x get an additional factor z ∈ Z(N) from the center transformation.
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3. The 3-d 3-state Potts model

3.1. Motivation and definition

As observed in the last chapter, studying the center symmetry tells us something about
confinement. However, simulating Yang-Mills theory with static color charges is still rather
difficult. Therefore we study here a simpler model. The 3-d 3-state Potts model has been
used many times as an approximation to SU(3) Yang-Mills theory [5, 3].

The model is defined in terms of Potts spins φx ∈ Z(3) on each point of a 3-d spatial lattice
without time direction. The action is replaced by a standard nearest neighbor Potts model
interaction

S[φ] = −κ
∑
x,i

δφx,φx+î
. (3.1)

Here, κ qualitatively corresponds to the temperature of the system. Large κ equals large
temperature (and not the other way around as in the standard statistical mechanics interpre-
tation). In the lattice formulation, the partition function then becomes

Z =
∏
x

∑
φx∈Z(3)

exp(−S[φ]), (3.2)

where the sum and the product replace the integral over all configurations, i.e. they combine
to a sum over all possible configurations. The model has a charge conjugation symmetry, i.e.
the action is invariant under the transformation

φx → φ∗
x. (3.3)

The reason for using this model is that it also has another symmetry: It shares the Z(3)
symmetry with Yang-Mills theory, i.e. it is invariant under transformations

φ′
x = zφx, z ∈ Z(3). (3.4)

Moreover one could explicitly integrate out all degrees of freedom of the original path integral
introduced in chapter 2 except for the center variables by writing it in terms of

exp(−Seff[z]) =

∫
SU(3)

DU exp(−S[U ])
∏
~x

δz~x,P (φ~x), (3.5)

where P is a projection operator from SU(3) onto Z(3). With this we could write

Z =
∏
x

∑
zx∈Z(3)

exp(−Seff[z]), (3.6)

which is equivalent to the standard Yang-Mills partition function because of the Kronecker-δ.
The problem here is the calculation of Seff. It is currently not possible to explicitly calculate
this and if it were it would result in a rather complicated non-local action. Still, this shows
that in principle one can turn Yang-Mills theory into a model with a Z(3) symmetry. If one
further assumes that the nearest-neighbor interactions are the most important ones, then one
arrives at a variant of the Potts model. Therefore it is a reasonable approximation to lattice
Yang-Mills theory.
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As has been explained in chapter 1, we want to examine an approximate model for Yang-
Mills theory with a fixed finite number Q of static color charges. For reasons which get clearer
below, we even restrict ourselves to a fixed baryon number B = 3Q. Each quark is represented
by a Polyakov loop as has been explained before which simplifies to

Φ[U ] → φx (3.7)

for a color charge at position x where the product over all time slices disappears from eq.
(2.17) because the Potts model is a static model without time-direction. Therefore the full
partition function can be written as

Z =
∏
x

∑
φx∈Z(3)

3∑
nx=0

exp(−S[φ])δ∑
x nx,Q

∏
x

φnx
x , (3.8)

where nx is the number of quarks at position x. In general we could add different types of
quarks representing the flavors of QCD. Also anti-quarks could be allowed which are described
by φ∗

x instead of φx. However, for simplicity we don’t consider these possibilities. We only
allow to have up to three quarks per site x. This is because, on one hand, in full QCD we
got three different colors which a quark can have but, on the other hand, the Pauli principle
forbids more than one particle of the same species at the same point. Therefore we only allow
nx = 0, 1, 2, 3.

3.2. The Potts model without quarks

If we set all nx equal to 0, we get the standard 3-d 3-state Potts model. It doesn’t have any
kind of complex action problem, wherefore it can be simulated using a standard Metropolis
algorithm, i.e. in each step we randomly choose a new value φx ∈ Z(3) for a point x and
accept this new configuration with probability

p = min{1, exp(−∆S)} = min{1, exp(−(Snew − Sold))}. (3.9)

Doing this, however, leads to a subtle problem: For large κ (or equivalently for large temper-
atures) the convergence is very slow. That is because then (almost) every point has the same
value φ0 ∈ Z(3) and it is extremely improbable to change into a configuration where every
point has the value φ1 6= φ0, even though its Boltzmann weight is the same. If we represent
the Z(3) values as complex numbers, i.e.

Z(3) =
{
1 exp

(
2πin

3

)
: n ∈ {0, 1, 2}

}
, (3.10)

then we can use the observable 〈
Im

1

V

∑
x

φx

〉
(3.11)

to show this behavior because all three Potts spin values have a different imaginary part

(0,±
√
3
2 ). Figure 5 shows a plot of this using the Metropolis algorithm. Even though the

algorithm is in principle ergodic, the system obviously stays in a configuration where all spins

have the same value (−
√
3
2 in this case) which is not correct as the other two possibilities
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Figure 5: Problem of the Metropolis algorithm for the Potts model.
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Figure 6: The cluster algorithm solves the problem of the Metropolis algorithm for the Potts
model.
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Figure 7: Example distribution of bonds and 10 clusters (including the 3 single-site clusters
depicted by dots) defined by connected activated bonds.

actually have the same Boltzmann weight exp(−S) and should therefore appear as often.
Solving this requires using a better algorithm, in our case we used a cluster algorithm. It
manages to avoid this problem as figure 6 clearly shows.

The main difference between the Metropolis and the cluster algorithm is that in the latter,
in general, we don’t switch the value of only one point at once anymore. Instead we form
clusters of points with equal values and then switch those all together. To do this we first
introduce bond variables b〈xy〉 = 0, 1 for each link connecting two neighboring lattice sites x
and y. A sweep then consists of the following steps:

1. Put bonds: Visit each bond and activate the bond with probability pb := 1− exp(−κ)
(see below), if the two connected sites have the same spin value. Otherwise deactivate
it.

2. Identify clusters: A cluster is defined as a set of all points connected via activated
bonds. Every site not connected to any other site via activated bonds forms its own
single site cluster.

3. Switch cluster values: For each cluster, randomly decide on a new spin value giving
each of the three possibilities the same probability.

An example configuration of bonds and clusters is given in figure 7.
The probability pb can be calculated as follows [1]: We rewrite the factor of the action for

a bond as

exp(κδφx,φy) =

1∑
b〈xy〉=0

[
δb〈xy〉,1δφx,φy(exp(κ)− 1) + δb〈xy〉,0

]
(3.12)

where y = x+î is the neighbor of x in a given direction i. From this we see that the Boltzmann
weight of an active bond is Wb〈xy〉=1 = δφx,φy(exp(κ)− 1), the weight for a deactivated bond
is Wb〈xy〉=0 = 1. Assuming φx = φy, we can then calculate the probability to put a bond

pb =
Wb〈xy〉=1

Wb〈xy〉=1 +Wb〈xy〉=0
=

δφx,φy(exp(κ)− 1)

δφx,φy(exp(κ)− 1) + 1
=

exp(κ)− 1

exp(κ)
= 1− exp(−κ). (3.13)
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As this result is directly based on the probability distribution of the Metropolis algorithm,
detailed balance is also fulfilled for the cluster algorithm. Ergodicity is satisfied as well since
it is possible to generate every allowed configuration of the lattice. Starting e.g. from a
configuration where every spin has the same value, every bond can individually be put or
not, thereby (in principle) generate every possible cluster configuration with a non-vanishing
probability. Realizing every cluster configuration is obviously equivalent to generating every
spin value configuration. Detailed balance additionally ensures that the reverse path is pos-
sible as well. Together this implies that every configuration is reachable from every other
configuration with a non-zero probability, i.e. ergodicity is indeed fulfilled.

Apart from solving the efficiency problem, the cluster algorithm also has other advantages:
We can now construct improved estimators of certain observables by analytically averaging
over Potts spin values. The magnetization for example can be rewritten using∑

x

φx =
∑
Ci∈C

∑
x∈Ci

φx =
∑
Ci∈C

|Ci|φCi , (3.14)

where C is the set of all clusters and |Ci| is the size of the cluster Ci, i.e. the number of sites
it contains. In the last equality we used that every site in a cluster Ci has the same value
φCi . The magnetization then becomes

χ =

〈
|
∑
x

φx|2
〉

=

〈∑
x

∑
y

φxφ
∗
y

〉
=

〈∑
Ci∈C

∑
Cj∈C

|Ci||Cj |φCiφ
∗
Cj

〉
=

〈∑
Ci∈C

|Ci|2
〉
, (3.15)

where we used that the product φCiφ
∗
Cj

adds up to zero for Ci 6= Cj if we average over the

three values of Z(3) (because
∑

z∈Z(3) z = 0). This means that we can analytically evaluate
some of the other configurations with the same Boltzmann weight which implies that we will
have a smaller statistical error as it increases our statistics (we considered more different
configurations than before and averaged over them).

The cluster algorithm in this form is rather efficient even though it still slows down near
the phase transition. This is because then the confined and the deconfined phases coexist
and switching between those is inefficient. Nevertheless it can be used to study the phase
transition of the Potts model without quarks. We used χ and the expectation value of the
action 〈S〉 = 〈−κ

∑
x,i δφx,φx+î

〉 as observables to determine the value of the coupling constant
κT at the point of the phase transition using the methods which will be explained in chapter
5. Doing this we were able to reproduce the value of κT ≈ 0.5506 known from the literature
[1, 4].

3.3. Adding quarks to the model

3.3.1. Complex action problem and its solution

As mentioned above, the Potts model with a fixed number of quarks is defined through its
partition function

Z =
∏
x

∑
φx∈Z(3)

3∑
nx=0

exp(−S[φ])δ∑
x nx,Q

∏
x

φnx
x . (3.16)

If not all the nx are equal to zero, then this model suffers from a complex action problem. In
general the factors φnx

x are then complex numbers which cannot be interpreted as a probability
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distribution. This would stop us from using it as a Boltzmann weight. A possible solution
for this is to still use exp(−S) as a probability density and move the complex phase into the
observables. This means that for an observable O instead of 〈O〉 we had to evaluate

〈O〉′ =
〈O
∏

x φ
nx
x 〉

〈
∏

x φ
nx
x 〉

. (3.17)

This quantity however would suffer from serious cancellation problems and its simulation
would be extremely inefficient. To explain this we write

exp(iϕ) :=
∏
x

φnx
x , (3.18)

which is well-defined because |φx| = 1 and therefore |
∏

x φ
nx
x | = 1. We can then calculate

〈exp(iϕ)〉a =
1

Za

∑
c

exp(−S) exp(iϕ) =
Z

Za
=

exp(−βfV )

exp(−βfaV )
= exp(−β∆fV ). (3.19)

This quantity gets very small for large inverse temperatures β and/or large volumes V . There-
fore, in these cases, both the nominator and the denominator of eq. (3.17) get small. However
the ratio between the two quantities is of order 1. A small change in 〈

∏
x φ

nx
x 〉 then implies

a large change in 〈O〉′. We therefore need to have a very small error of 〈
∏

x φ
nx
x 〉 in order to

obtain a decent accuracy of 〈O〉′ (a somewhat more detailed explanation of this can be found
e.g. in [1] for a slightly different model). This is practically impossible, making this solution
rather useless.

A better way is to directly solve the whole problem by rewriting the model in such a
way that we don’t have a complex action anymore. To do this we can use a mathematical
statement which says

∀x ∈ G : x|G| = 1, (3.20)

where G is an arbitrary finite group and |G| is the number of elements in this group. In our
case this translates to the fact that

φ3 = 1 ∀φ ∈ Z(3). (3.21)

If we would rewrite the Potts model in terms of bond variables and clusters only instead of
the Potts spins, we could ensure that within each cluster we have a multiple of three quarks.
This is reasonable because if we have a cluster with one or two quarks (modulo 3), these
configurations actually don’t contribute to the partition function. The reason is that if we
have one quark (modulo 3) all the three values of it are, in fact, equally probable and therefore
we get no contribution from them because

∑
z∈Z(3) z = 0. Having two quarks (modulo 3) in

a cluster doesn’t change this result because then we have a Potts value squared which is still
a value of Z(3) and in general different from one. Therefore the same reasoning applies. For
zero quarks (modulo 3) the factor contributed by these quarks becomes one and therefore the
whole product, ∏

x

φnx
x =

∏
Ci∈C

φ
nCi
Ci

= 1, (3.22)
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would vanish from our partition function thereby solving the complex action problem com-
pletely.

To be able to make use of this observation we first rewrite the partition function:

Z =
∏
x

∑
φx∈Z(3)

3∑
nx=0

exp(−S[φ])δ∑
x nx,Q

∏
x

φnx
x

=
∏
x

∑
φx∈Z(3)

3∑
nx=0

exp(−S[φ])δ∑
x nx,Q

∏
Ci∈C

φ
nCi
Ci︸ ︷︷ ︸

=1

=
∏
b〈xy〉

1∑
b〈xy〉=0

3∑
nx=0

W [b]3|C[b]|δ∑
x nx,Q, (3.23)

where the first product is over all bonds, |C[b]| is the number of clusters of the configuration
[b] and W [b] is its Boltzmann factor,

W [b] :=
∏
b〈xy〉

(
δb〈xy〉,1(exp(κ)− 1) + δb〈xy〉,0

)
. (3.24)

The factor 3|C[b]| in the last line of eq. (3.23) comes from averaging over the three values of
the Potts spins of a given cluster. Using the fact that the factor δb〈xy〉,0 can be neglected in
the product (because it is either not there or equal to one), the partition function can also
be written as

Z =
∏
b〈xy〉

1∑
b〈xy〉=0

3∑
nx=0

W (κ)nb3|C[b]|δ∑
x nx,Q, (3.25)

where W (κ) = exp(κ)− 1. Here nb :=
∑

b〈xy〉
b〈xy〉 is the number of activated bonds.

Using this representation we can then define a modified version of the cluster algorithm
for the Potts model without quarks. We start from an arbitrary configuration of bonds (and
therefore also of clusters). Then a sweep consists of the following steps:

1. Update bonds: For each bond, decide whether to change it according to:

• If the bond is not activated and both neighboring points are already part of the
same cluster, then activate the bond with probability p = min{1, exp(κ)− 1}.

• If the bond is activated and the clusters of the neighboring points are different,
then activate the bond with probability p = min{1, exp(κ)−1

3 } (the factor 3 comes

from 3|C[b]| in the partition function because afterwards we have one cluster less).

• If the bond is already activated and after removing the bond the cluster would
not decay into two disconnected parts, then deactivate the bond with probability
p = min{1, 1

exp(κ)−1}.
• If the bond is activated and its removal splits the cluster in two, then verify that

both clusters have a multiple of three quarks. If this is true, then deactivate the
bond with probability p = min{1, 3

exp(κ)−1}. Otherwise do nothing.
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2. Update quarks: For each cluster Ci, move the quarks in it randomly, i.e. randomly
choose two sites x, y ∈ Ci. If x has quarks and y has less than three quarks, then move
one quark from x to y.

These steps yield a correct Monte Carlo algorithm because both ergodicity and detailed
balance are fulfilled. Ergodicity for the clusters is satisfied because, in principle, every com-
bination of clusters is reachable. For the quarks this means that moving them within one
cluster ensures that they can change clusters (via cluster splitting) and therefore reach every
site. Also detailed balance poses no problem as we essentially use the same probabilities as
before. Therefore this algorithm together with the rewriting completely solves the complex
action problem of the Potts model with static quarks.

3.3.2. Observables and meron-clusters

Calculating the expectation value of observables with the above algorithm is in principle
possible. However, the ones we used, namely the action 〈S〉 and the susceptibility χ both
need some adjustments in either their definition or in the algorithm itself. The action we have
defined before was written in terms of the Potts variables,

S = −κ
∑
x,i

δφx,φx+î
. (3.26)

In the reformulated model, however, the Potts spins are completely replaced by bond variables,
wherefore we need to change this definition. As can easily be checked, an equivalent definition
of the expectation value of the action is

〈S〉 = −κ
∂ logZ

∂κ
. (3.27)

This formula doesn’t refer to the Potts variables. Therefore it is still valid in the rewritten
model and we can calculate the action using the representation of eq. (3.25) of the partition
function,

〈S〉 = −κ
∂ logZ

∂κ
= −κ

1

Z

∏
b〈xy〉

1∑
b〈xy〉=0

3∑
nx=0

∂W (κ)nb

∂κ
3|C[b]|δ∑

x nx,Q

=
1

Z

∏
b〈xy〉

1∑
b〈xy〉=0

3∑
nx=0

−κnb

W (κ)
W (κ)nb3|C[b]|

=

〈
−κnb

1− exp(−κ)

〉
. (3.28)

This new representation can easily be evaluated using the above algorithm.
The expectation value for the susceptibility χ suffers a priori from a different problem:

χ =
∑
x

∑
y

〈φxφ
∗
y〉 (3.29)

contains a product of a quark at position x (φx) and an anti-quark at y (φ∗
y). Therefore the

constraint of having a multiple of three quarks per cluster needs to be modified:
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• If x and y are not part of the same cluster, then the cluster containing x is only allowed
to have 2+3n quarks (n ∈ N) apart from φx, the one containing the site y needs 1+3m
(m ∈ N).

• If x and y are part of the same cluster, nothing changes.

In order to handle this in the simulation, let us introduce the concept of a meron-cluster
similar to what has been done in [3]. A meron-cluster is a cluster with one missing quark,
i.e. one with 2+ 3n (n ∈ N) quarks. An anti-meron is one with one additional quark, i.e. one
with 1 + 3m (m ∈ N) quarks. As can be easily verified, the Potts model with a fixed number
of baryons always has an equal number of meron and anti-meron clusters.

With these definitions we can now speak of the zero-meron sector with neither meron nor
anti-meron clusters and of the two-meron sector with exactly one meron and one anti-meron
cluster. These are the only sectors relevant in this context. We now modify the algorithm in
such a way that we visit both the zero-meron sector and the two-meron sector. The easiest way
to achieve this is to modify the first step in the algorithm above to allow transitions into the
two-meron sector. However, we have to adjust for the fact that the two-meron sector is much
bigger than the zero-meron sector (every zero-meron sector configuration can be turned into
several two-meron sector configurations by moving any quark into another cluster). Naively
allowing all transitions into the two-meron sector would lead to spending a comparatively
long time in the two-meron sector and only a small fraction in the zero-meron sector. The
latter, however, gives the bigger contribution to χ (and also the expectation value of the
action gets no contribution from the two-meron sector at all) as will be explained below. A
possible solution for this problem is to make it less probable to actually enter the two-meron
sector (and to correctly account for this when calculating the expectation values, see below),
i.e. enter it only with probability p2. Doing this changes the algorithm to:

1. Update bonds: For each bond, decide whether to change it according to:

• If the bond is not activated and both neighboring points are already part of the
same cluster, then activate the bond with probability p = min{1, exp(κ)− 1}.

• If the bond is not activated and the clusters of the neighboring points are different,
then activate the bond with probability p = min{1, exp(κ)−1

3 }.
• If the bond is already activated and after removing the bond the cluster would

not decay into two disconnected parts, then deactivate the bond with probability
p = min{1, 1

exp(κ)−1}.
• If the bond is activated and its removal splits the cluster in two, then verify that

both clusters have a multiple of three quarks. If this is true, then deactivate the
bond with probability p = min{1, 3

exp(κ)−1}. Otherwise check if we would be in the

two-meron sector. If so, accept this with probability p = min{1, 3p2
exp(κ)−1}. If none

of this is the case, then do nothing.

2. Update quarks: For each cluster Ci, move the quarks in it randomly, i.e. randomly
choose two sites x, y ∈ Ci. If x has quarks and y has less than three quarks, then move
one quark from x to y.

These modifications don’t actually change anything apart from allowing transitions between
the two-meron and the zero-meron sector. Therefore ergodicity and detailed balance are still
fulfilled even in this larger configuration space.
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As mentioned above, the expectation value of the action only gets contributions form the
zero-meron sector. This is because in the two-meron sector, when calculating the action,
we don’t have these additional quarks. Therefore the constraint is violated and we have a
cluster with one additional quark and one with a missing quark. Averaging over the Potts
spin values then leads to vanishing contributions of these configurations. This means that
the expectation value of the action can be calculated as before, we just have to be careful
to take only contributions from the zero-meron sector (and average it over the number of
configurations generated in the zero-meron sector) while ignoring all configurations in the
two-meron sector. This is another reason to introduce p2, i.e. to make it less probable to be
in the two-meron sector, because the more time we spend in the two-meron sector the less
time is spent in the zero-meron sector. The result is then that we have less statistics for this
observable. Therefore we need to have a way to balance between increased statistics for the
susceptibility and for the expectation value of the action.

As mentioned above, the susceptibility χ receives contributions from the zero- and the two-
meron sector. The zero-meron sector contributions are still the same as before, i.e. we just
sum up the cluster sizes squared,

χ0 =

〈∑
Ci∈C

|Ci|2
〉
, (3.30)

where the index 0 denotes contributions from the zero-meron sector. In the two-meron sector
the contributions are different. Calculating the expectation value, we obtain

χ2 =

〈
|
∑
x

φx|2
〉

=

〈∑
x

∑
y

φxφ
∗
y

〉
=

〈∑
Ci∈C

∑
Cj∈C

|Ci||Cj |φCiφ
∗
Cj

〉
= 〈|C1||C2|〉, (3.31)

where C1 is the meron cluster and C2 is the anti-meron cluster. The last equality follows
because the average vanishes for every cluster except the ones where adding the quark or
the anti-quark makes the number of quarks in this cluster a multiple of three, i.e. it vanishes
for all clusters except the meron and the anti-meron cluster. If we denote the number of
meron-clusters by N (i.e. N = 0 if we are in the zero-meron sector, N = 2 if we are in the
two-meron sector), we can calculate the expectation value of the susceptibility [3] (note that
the authors of this paper use somewhat different conventions than we use here)

χ =

〈∑
Ci∈C |Ci|2δN,0 +

|C1||C2|
p2

δN,2

〉
〈δN,0〉

. (3.32)

From here on, the last thing to be done is getting a reasonable value for p2. As it turns
out, different p2 lead to different results for the statistical error. As mentioned above, for the
expectation value of the action this behavior is expected. For the susceptibility this is less
obvious. Still, from the way the error analysis works (as explained in appendix A), we obtain
the smallest error if both contributions (from the zero- and the two-meron sector) are of the
same order. A more precise discussion of the effect on the statistical error of this so-called
reweighting can e.g. be found in [7]. Finding a good value for this, however, is non-trivial and
the only way we used was to try different values and to choose those leading to the smallest
errors.

26



3.3.3. The two-meron sector problem

In principle, we now have everything to simulate the Potts model with static quarks. Doing
this, however, doesn’t quite work for a practical reason: As has been mentioned, the two-
meron sector is much bigger than the zero-meron sector. With our approach we can restrict
the probability with which to enter the former. However, if the system is already in the
two-meron sector, we have no way of ensuring that we actually return to the zero-meron
sector in a reasonable amount of time. This means that if the relative size difference between
the sectors is too big, it is almost impossible to return to the zero-meron sector. While
simulating the model, this is exactly the situation we encountered once the system entered
the two-meron sector: It never returned to the zero-meron sector. Such a run then yields no
useful results as it entered the two-meron sector generally after just a few sweeps. Then we
didn’t have enough statistics in the zero-meron sector leading to a bigger error (or, in the
extreme case, even no sweeps in the zero-meron sector leading to not being able to actually
calculate anything because the denominator in formula (3.32) vanishes). Not visiting the
two-meron sector at all would be a possibility if we were only interested in calculating the
expectation value of the action. However we also want to calculate the susceptibility because
it shows the phase transition significantly better as will be shown in chapter 5. Therefore
not visiting the two-meron sector is not an option for us. This means that we had to search
for a different solution. We didn’t find a way to circumvent this directly. However, using a
flux model which is equivalent to the Potts model but doesn’t suffer from this problem (and
neither from the complex action problem), we found an even better solution which will be
explained in the next chapter. This finding then led us to abandon the search for a solution
of this problem within the Potts model itself though we still ensured that if we happen to
avoid this problem (e.g. by simulating on a small lattice or by only calculating the expectation
value of the action) our algorithms work and give the correct result.

27



28



4. Flux representation of the Potts model

4.1. Definition of the flux model

The flux model is defined in terms of flux variables Ex,i ∈ {−1, 0, 1} on the links between
neighboring points x and x+ î and the number of charges nx ∈ {0, 1, 2, 3} at a point x. The
flux variables are directed fluxes, i.e. Ex,i is a flux flowing from point x in direction i. There
exists also a flux conservation rule, a Z(3) Gauss law such that for each point we must have

nx =
∑
i

(
Ex,i − Ex−î,i

)
mod 3. (4.1)

As in the Potts model, the action has a simple nearest-neighbor interaction, i.e.

S[E] =
g2

2

∑
x,i

E2
x,i := g′

∑
x,i

E2
x,i, (4.2)

where we defined g′ as a shorthand notation for the factor g2

2 . With this action, the partition
function can be written as

Zf =
∏
x

∑
nx∈{0,1,2,3}

∏
x,i

∑
Ex,i∈{0,±1}

∏
x

δx exp(−S[E])δ∑
x nx,Q, (4.3)

where δx ensures the Gauss law (4.1) and can be written as

δx =
1

3

∑
φx∈Z(3)

φ
nx−(

∑
i(Ex,i−Ex−î,i)

x . (4.4)

This can be easily verified by noting that if the constraint is fulfilled, i.e. if

nx −
∑
i

(Ex,i −Ex−î,i) = 0 mod 3, (4.5)

we trivially get δx = 1. Otherwise the sum adds up to zero because
∑

φx∈Z(3) φx = 0.
From the definition it is clear, that the flux variables Ex,i replace the Potts spins φx and

the number of charges nx represent the number of quarks as in the Potts model. Still there
are some remarkable differences: For example, the action of the Potts model S[φ] is always
less or equal to zero, i.e. S[φ] ≤ 0, while for the flux model we have S[E] ≥ 0. This is
significant as it actually implies that κ → 0 corresponds to g → ∞, i.e. in some sense the
two models are dual to each other. The high temperature deconfined state in the flux model
is characterized by having many closed loops, confinement corresponds to having only a few
closed loops. Typical high and low temperature situations are shown in figures 8a and 8b,
respectively, where arrows indicate fluxes Ex,i (which are 1 if the arrow points in the positive
direction and -1 if it points in the negative direction). A last point worth mentioning is that
(as with the bond and cluster representation of the Potts model) we can’t distinguish the
three high temperature phases anylonger as they all look the same now. Therefore we don’t
need to worry about the problem we had with the original Metropolis algorithm which, in
practice, didn’t generate each of these phases the same number of times.

All these differences need to be accounted for when we want to obtain results for the Potts
model using the flux model. This will be covered further below. First, however, we will show
that the two models are in fact equivalent.
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Figure 8: Typical flux model configurations.

4.2. Equivalence to the Potts model

Inserting the δ-function and the action into the partition function, we can simplify the equa-
tion,

Zf =
∏
x

∑
nx

∏
x,i

∑
Ex,i

∏
x

1

3

∑
φx∈Z(3)

φ
nx−(

∑
i(Ex,i−Ex−î,i)

x exp

−g′
∑
x,i

E2
x,i

 δ∑
x nx,Q

=
∏
x

∑
nx

∏
x,i

∑
Ex,i

∏
x

1

3

∑
φx∈Z(3)

φnx
x

(
φ∗
xφx+î

)Ex,i exp

−g′
∑
x,i

E2
x,i

 δ∑
x nx,Q

=
∏
x

∑
φx∈Z(3)

∏
x

1

3

∑
nx

φnx
x

∏
x,i

∑
Ex,i

(
φ∗
xφx+î

)Ex,i exp

−g′
∑
x,i

E2
x,i

 δ∑
x nx,Q. (4.6)

Now the sums over Ex,i and nx have decoupled and can therefore be calculated separately.
The former can easily be summed explicitly,∑

Ex,i

(
φ∗
xφx+î

)Ex,i exp(−g′
∑
x,i

E2
x,i) = 1 +

(
φ∗
xφx+î

)−1
exp(−g′) + φ∗

xφx+î exp(−g′)

= 1 + 2Re
(
φ∗
xφx+î

)
exp(−g′). (4.7)

In the case without quarks, i.e. setting all nx = 0, the partition function then simplifies to

Zf =
∏
x

∑
φx∈Z(3)

∏
x,i

[
1 + 2Re

(
φ∗
xφx+î

)
exp(−g′)

]
. (4.8)

The corresponding partition function of the Potts model takes the form

Zp =
∏
x

∑
φx∈Z(3)

∏
x,i

exp(κδφx,φx+î
). (4.9)
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For the two models to be equivalent, the two partition functions have to be the same up to a
constant factor, i.e.

Zf = CdV Zp, (4.10)

where C may depend on the coupling constants, d is the number of dimensions and V is the
volume. Therefore dV is the number of bonds. The factor enters because as the next step we
calculate C at a specific bond, where the above relation implies the two equations

1 + 2 exp(−g′) = C exp(κ), φx = φx+î,

(1− exp(−g′))C = 1, φx 6= φx+î. (4.11)

The second relation defines the constant C and by dividing the equations we obtain a relation
between κ and g′,

C =
1

1− exp(−g′)
,

exp(κ) =
1 + 2 exp(−g′)

1− exp(−g′)
. (4.12)

Using these equations, it is now clear that the two models are equivalent in the case without
quarks. When adding quarks we only need to notice that φnx

x in the Potts model corresponds
directly to φnx

x in the flux model. Therefore the equivalence is also true in the case with
quarks and the nx play the same role as they did in the Potts model.

4.3. Worm algorithm

The flux model can be efficiently simulated using a so-called worm algorithm as originally
proposed (for a different model) by N. Prokof’ev and B. Svistunov [13, 14]. The algorithm
explained here is mainly based on [2].

The idea behind the worm algorithm in our case is to introduce an explicit violation of the
constraint (4.1) by changing the value of a flux. This, in fact, violates the constraint in two
points. At one of them, called the head, the constraint is then repaired, moving the worm
head one step in some direction. This procedure is repeated until the head meets the tail
at which point the constraint is again satisfied everywhere. If all these steps are performed
with the correct probability this algorithm is ergodic in the flux variables (but not yet in the
charges which will be solved later) and detailed balance is fulfilled as well (as explained in
[2]). Another way of looking at this algorithm is saying that we use a standard Metropolis
algorithm in an enlarged configuration space (where the constraint doesn’t hold) using a few
modifications (like not actually fully randomly choosing the next point and direction where a
change should be proposed). This thinking naturally leads to the following concrete version
of the algorithm:

1. Start worm: Randomly choose a site s, a direction î and a new flux value f . Accept
this new configuration with probability exp(−∆S), where S is defined as in eq. (4.2)
even though eq. (4.1) is not valid anymore. If it is not accepted then the sweep is over
and nothing changes. Otherwise s is called the tail of the worm, x := s+ î is called the
head of the worm and we proceed with the next step.
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2. Try moving the worm: Starting at x, choose randomly a new direction î and a new
flux f . Then check whether this change repairs the constraint at point x. If so, accept
it with probability exp(−∆S). If it is accepted, set x = x + î. Otherwise (or if the
constraint was not repaired at point x), change nothing. If the new x is equal to s, then
the sweep is over. Otherwise repeat step 2.

After these steps, we have either added an arbitrary closed loop of fluxes or changed nothing.
In both cases the constraint is again fulfilled at every point. However, as has been mentioned,
we cannot stop here because we haven’t moved the quarks at all yet. We therefore add other
steps to the algorithm. We used two different quark moving steps:

1. Move entire baryons: Randomly choose two independent sites x and y. If nx equals
3 and ny is 0, move the baryon, i.e. the three charges, from x to y. We don’t need
to check for acceptance because this move doesn’t change the action and is therefore
always accepted.

2. Move a single quark: Choose one of the charges nx at a random point x and a
direction î. If nx+î < 3, then propose moving a quark from x to x + î. To fulfill the
constraint this implies a new flux f for Ex,i (or Ex+î,−i depending on the sign of i).
Therefore we accept this change with probability exp(−∆S) if f ∈ {−1, 0, 1}. Otherwise
we change nothing.

Adding these two steps to the algorithm finally makes it ergodic. Detailed balance is fulfilled
as well. An important other fact is, that the relative number of all these steps is important
for the behavior of the autocorrelation. E.g. applying these quark moves twice in every sweep
(while just creating one worm) instead of just once actually decreases the autocorrelation for
small values of κ and thereby the statistical error (for large values of κ this changes nothing).
This is partly due to the fact that moving quarks more often (i.e. more than just one step per
quark) makes the difference between this and the previous configuration bigger. An example
of this behavior is shown in figure 9. It shows binning curves which should converge to the
uncorrelated statistical error σO of an observable O (see appendix A for more details), which
in this example is the expectation value of the action, 〈S〉. As can be clearly seen, the curve
on the left where the quarks are moved only one step per sweep converges to a value nearly
twice as high as the one in the plot on the right side where the quarks were moved up to
10 times per sweep. Also, the number of steps which are needed to reach convergence is
drastically smaller on the right. This number is a measure of the correlation time and the
figures show therefore that this change also decreases the autocorrelation significantly.

Finding the optimal relative values seems to be a problem which can be solved in the easiest
way by simply trying different numbers. Doing this led us to a rather dramatic decrease in
the autocorrelation time and therefore in the overall error (for a fixed amount of computer
time).

4.4. Calculating the observables

Using the algorithm above we can easily calculate the expectation value of observables as a
function of g′. However, we are interested in the flux model only as a representation of the
Potts model. Therefore we would prefer to calculate these as a function of κ instead.
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Figure 9: Correlation behavior of the worm algorithm for the flux model moving each quark
once per sweep (left) or 10 times per sweep (right).

We start by explicitly calculating from eq. (4.12) what g′ is in terms of κ, namely

g′ = − ln

(
exp(κ)− 1

exp(κ) + 2

)
, (4.13)

and therefore (as we will need it later on)

∂g′

∂κ
=

3 exp(κ)

2− exp(κ)− exp(2κ)
. (4.14)

As we have seen, the two partition functions are related by

Zp = ZfC
dV , C =

1

1− exp(−g′)
. (4.15)

Together these equations allow us to reformulate the expectation value of the action in terms
of the flux model variables. We have already seen that

〈S[φ]〉p = −κ
∂ logZp

∂κ
= −κ

∂ log(ZfC
dV )

∂κ
= −κ

(
∂ log(Zf )

∂κ
+ dV

∂ logC

∂κ

)
, (4.16)

where 〈·〉p denotes an expectation value calculated with the partition function of the Potts
model and where Zp is the partition function of the Potts model. The factors can then
explicitly be calculated, the first one yielding

−κ
∂ log(Zf )

∂κ
= −κ

1

Zf

∂Zf

∂g′
∂g′

∂κ
=

〈
κ

g′
∂g′

∂κ
Sf

〉
f

, (4.17)

where Sf is the flux model action and 〈·〉f denotes a flux model expectation value. The second
factor simplifies to

dV
∂ log(C)

∂κ
=

dV

C

∂g′

∂κ

∂C

∂g′
=

dV

1− exp(−g′)

∂g′

∂κ
. (4.18)

Putting everything together, we obtain an explicit formula for the expectation value of the
Potts action within the flux model,

〈S[φ]〉p = κ
∂g′

∂κ

(
〈S[E]〉f

g′
+

dV

exp(g′)− 1

)
. (4.19)
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Calculating the expectation value of the susceptibility is somewhat different. In the Potts
model it is defined as

χ =

〈
1

V 2
|
∑
x

φx|2
〉

p

=
1

V 2

∑
x,y

〈φxφ
∗
y〉p =

1

V

∑
x

〈φxφ
∗
x0
〉p, (4.20)

where the missing factor V in the last equation comes from summing only over one point
instead of x and y (which is possible because of the translation invariance of the model).
Looking back at the proof of the equivalence of the two models, we see that also here the
factor φxφ

∗
y corresponds to adding a quark at x and an anti quark at the fixed point y. This

translates to adding a charge at these positions and is, in fact, the very thing we are already
doing implicitly when starting a worm. In this model, however, the expectation value can
be simplified even more. As the charges are a separate quantity and don’t actually enter the
action, χ can be calculated as

χ =
1

V

∑
x Zx0x

Z0
=

1

V

Z0 + Z2

Z0
, (4.21)

where Z0 is the flux model partition function, Zx0x is the partition function of the enlarged
space with the constraint broken at the points x0 and x (which may coincide leading to an
unbroken constraint) and Z2 is the partition function with the constraint being violated at
exactly two points. As the partition function is actually proportional to the probability of
being in one of these sectors (constrain obeyed or violated at two points), the susceptibility
is equivalent to

χ =
1

V

(
1 +

p2
p0

)
, (4.22)

i.e. 1 plus the ratio between the time spent with the constraint violated at two points and the
time spent in the sector with the constraint being obeyed. Here p2 and p0 are the respective
probabilities. This means that we just have to count how many times we are in each of these
sectors while letting the worm grow (and close again).
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5. Results

Using the flux model we are now able to circumvent all problems mentioned in previous
chapters and we have a rather efficient algorithm with which we can try to produce a phase
diagram of the Potts model approximation to lattice Yang-Mills theory with static color
charges. The first step is to actually regain the well known result for the Potts model without
additional charges which will serve here as an explanation of the techniques we use for locating
the position of the phase transition (if there is one).

5.1. Phase transition of the Potts model without static color charges

5.1.1. Possible transitions

Phase transitions are categorized according to their behavior in the continuum limit. Gener-
ally there are three different cases:

1. First order phase transitions: These are characterized by being discontinuous at
the transition point. An example of this is shown in figure 10a.

2. Second order phase transitions: Here the order parameter itself remains a smooth
function. However its derivative still is discontinuous at the transition point resulting
e.g. in what is shown in figure 10b.

3. Crossovers: This is the weakest kind of transition possible. It is not actually a phase
transition anymore but just a smooth crossover from one state to the other where
everything remains continuous as shown in figure 10c.
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(a) Order parameter at a first order phase transition

(b) Order parameter at a second order phase transition

(c) Order parameter at a crossover

Figure 10: Possible transitions between two different phases.

36



5.1.2. Potts model phase transition

After verifying the correctness of the program with the methods explained in appendix B,
we executed the simulation on a 3-dimensional lattice with 20 points per dimension, i.e. on a
V = 203 lattice. As explained before, we use the expectation value of the action (per volume)
of the Potts model and the susceptibility as observables. The results of these simulations are
shown in figure 11. The statistical errors are too small to be visible. In the susceptibility
plot it can clearly be seen that there is a phase where χ = 0 which lasts up to κT ≈ 0.55 and
another phase with the susceptibility significantly bigger than zero with a rapid transition in
between. Also the expectation value of the action shows a difference between these phases
with a transition in between, although there this is somewhat less pronounced. Locating the
exact point directly from this plot is actually very difficult. However, as mentioned before, it
is well known that this transition is first order, in the continuum limit both observables are
not continuous at the transition point. There is a jump which gets washed out on the lattice
leading to curves as in figure 11.

Using this knowledge we can locate the point of the phase transition approximately (i.e.
apart from corrections from finite-size scaling effects): It is at the point with the biggest (nu-
merical) derivative. We approximate the derivative by finite differences, i.e. for an observable
A(κ) with a step size ∆κ between different measurements of A(κ) we calculate

∂A(κ0 +
∆κ
2 )

∂κ
≈ A(κ0 +∆κ)−A(κ0)

∆κ
. (5.1)

Note that the derivative is defined at κ0+
∆κ
2 , i.e. in between two measurements. To judge the

accuracy of the point we located, we have to calculate the error of this estimation. Obviously
we cannot get the transition point from this calculation with an accuracy better than ∆κ.
Moreover it is helpful to consider the error of the derivative itself because (as we will see)
this transition gets weaker if we increase the number of charges and then we need to be
able to judge whether two adjoining points are equal within errors. To calculate the error
we can identify two sources: First there is the known error of A(κ) itself which can easily
be propagated to the derivative by using Gaussian error propagation applied to eq. 5.1.
Second, we introduce an error with the discretization. This second error can be estimated by
calculating the next order contribution to eq. 5.1 which is given by

∂A(κ0)

∂κ
=

A(κ0 +∆κ)−A(κ0)

∆κ
− 1

2

∂2A(κ0)

∂κ2
∆κ+O(∆κ2). (5.2)

The term ∂2A(κ0)
∂κ2 can be approximated by

∂2A(κ0)

∂κ2
=

A(κ0 +∆κ) +A(κ0 −∆κ) + 2A(κ0)

∆κ2
+O(∆κ2). (5.3)

Therefore inserting this back into eq. 5.2 and taking the second term as an approximation to
the error we finally get for the error of the derivative

σderiv ≈ σgauss +
1

2

A(κ0 +∆κ) +A(κ0 −∆κ) + 2A(κ0)

∆κ
. (5.4)

Calculating the derivative and this error for the measurement shown in figure 11 yields what
is shown in figure 12. Both plots show a clear maximum at the same point. Looking directly
at the data, we can locate the transition point at κT = 0.55075± 0.00025 which is consistent
with κT ≈ 0.55056 from the literature [1].
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Figure 11: Plots of the considered observables as a function of the coupling κ on a V = 203

lattice without static color charges.
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Figure 12: Plots of the derivatives of the observables considered as a function of the coupling
κ on a V = 203 lattice without static color charges.
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5.2. Adding color charges

After having confirmed the correctness of our algorithms, the last remaining step is to obtain
the phase diagram of the model as a function of the number of color charges from simulations.
The parameter we actually use for representing the number of quarks in a simulation is the
baryon density nB which we define as

nB =
Q

3V
, (5.5)

where Q is the number of color charges or “quarks” and V is the volume of the system. Obvi-
ously the baryon density has only a discrete set of allowed values because Q ∈ {0, 1, ..., 3V }.
Using a further symmetry of the model explained in the next section we may notice that we
actually need to simulate only one half of these values in order to be able to get a full phase
diagram.

5.2.1. Baryon density symmetry of the Potts model

The Potts model with static color charges defined by the partition function of eq. (3.8) is
invariant under the global transformation

n′
x = 3− nx, (5.6)

i.e. under exchange of positions filled with color charges and positions without. This could be
described as changing “holes” into color charges and vice versa. Calculating the transformed
partition function yields again the partition function of eq. (3.8), because

Z ′ =
∏
x

∑
φx∈Z(3)

3∑
n′
x=0

exp(−S[φ])δ∑
x n′

x,Q
′

∏
x

φn′
x

x

=
∏
x

∑
φx∈Z(3)

3∑
nx=0

exp(−S[φ])δ∑
x(3−nx),Q′

∏
x

φ3−nx
x

=
∏
x

∑
φx∈Z(3)

3∑
nx=0

exp(−S[φ])δ∑
x nx,3V−Q′

∏
x

φ−nx
x

=
∏
x

∑
φx∈Z(3)

3∑
nx=0

exp(−S[φ])δ∑
x nx,3V−Q′

∏
x

φnx
x = Z, (5.7)

where we used that φ3 = 1 ∀φ ∈ Z(3) and the fact that it doesn’t matter whether we sum
over all values of φx or of φ−1

x . Here Q′ is the number of color charges after the transfor-
mation. Therefore Q = 3V − Q′ is the number of color charges we had before applying the
transformation. For our simulations this implies that we actually need to look only at baryon
densities nB ≤ 0.5 as above this we will get nothing but a mirror image of the same results.

40



5.3. The phase diagram

We have used the above procedure to evaluate different baryon densities. This resulted in the
plot shown in figure 13. The bars above and below each point correspond to the width of the
peak in diagrams like in figure 12. We see that the transition gets broader as we increase the
baryon density. Moreover it seems to be moving to smaller values of κT with increasing nB,
although this is not conclusively decidable from this plot.
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Figure 13: Phase diagram of the Potts model. The error bars are a measure of the derivative’s
peak width.
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5.3.1. Small baryon densities

We now look at a part of figure 13 in more detail which is shown in figure 14. We see that for
the first few values the transition point is lowered but the width stays the same. The width in
this part is primarily determined by our step size, i.e. by the smallest difference between values
of the coupling κ we evaluated. However looking only at this plot hides a significant detail:
If we look at the actual results of these runs, i.e. at the susceptibility itself, and plot it for
different volumes we get what is shown in figures 15 and 16. The first one, at vanishing baryon
density, shows a clear change with increasing volume. There seems no doubt that this will
become an actual jump in the infinite volume limit. Figure 16 shows only the biggest and the
smallest volume considered in figure 15 for a slightly increased baryon density nB = 0.000375,
i.e. with only 3 additional baryons. Even though this seems like a small change of the density,
we already see a very different picture. It doesn’t seem clear at all what happens to this in the
infinite volume limit. It may still be a (very weak) first order transition or it may have turned
into a second order transition. Deciding this is not possible from these plots, we would need
to perform a finite size scaling analysis which is outside the scope of this thesis. We can also
plot the behavior of the susceptibility for different baryon densities in a fixed volume. This is
shown in figure 17. Note that the difference between consecutive baryon densities is exactly
one baryon, i.e. the smallest change allowed. We see here also that the transition becomes
slower with increasing baryon density. This implies again that the first order transition gets
weaker, most probably turning into a second order transition at some point. However, we
cannot extract this point from our data, a more extensive search would be needed to be able
to conclusively decide on the order of the transition at every point of the diagram.
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Figure 14: Enlargement of a part of the phase diagram.
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Figure 15: Volume dependence of χ at nB = 0.
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Figure 16: Volume dependence of χ at nB = 0.000375.
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5.3.2. Large baryon densities

After having investigated very small baryon densities, let us now look at large values of it.
Figure 18 shows what happens for the largest possible baryon density nB = 0.5. Note that
the fluctuations of points for small κ is of no physical origin. It is an artifact of an inefficiency
of the worm algorithm leading to a much larger statistical error of these points than what we
get for other values of κ (this is actually the reason why the error-bars are omitted in this
plot). This interpretation is also supported by the fact that the expectation value of the Potts
model action shows no such behavior at all as can be clearly seen in figure 19. Unfortunately
we didn’t have time to further investigate this problem and try to solve it. Figure 18 still
shows that there clearly remains no first or second order phase transition. It seems to be
gone, χ is significantly bigger than 0 for every value of κ. This means that the system is
always in the deconfined phase independent of the temperature.

Figure 20 shows the susceptibility of the largest baryon density still included in figure 13,
nB = 0.0625. Apart from the same problem with small values of κ it shows again no distinctive
sign of a phase transition even though here it is not clear whether or not the system is in the
confined phase for very small κ i.e. whether an actual transition remains. However, because
the transition is, in fact, associated with the breaking of an exact symmetry of the Potts
model and therefore there is a qualitative difference between the two states, it is not possible
to have a crossover here. From our results though, we cannot tell what happens to the
phase transition. Most likely it should just move to κT = 0 and thereby vanish afterwards.
This could explain what we see in our results even though no indication of this move of the
transition point is visible in figure 13 up to nB = 0.0625. However, this question may be
answered by simply collecting more data.
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Figure 18: Susceptibility at nB = 0.5.
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Figure 19: Expectation value of the action at nB = 0.5.
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Figure 20: Susceptibility at nB = 0.0625.
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5.3.3. The susceptibility as a function of the baryon density

Instead of looking for a phase transition in plots at a fixed baryon density nB, we can also
consider plots at a fixed value of κ as a function of nB. We have done this in figure 21. Apart
from the same problem with the statistical errors getting big for small values of κ, we see that
here we first have some densities for which (approximately) χ = 0, then the value grows and
soon gets significantly different from 0. This may be an indication that there is a transition
for some nBc, i.e. that indeed the transition line in figure 13 moves down to κT = 0 with
increasing baryon density. However we don’t have enough data (and some of the errors are
too big) to really be sure that this is what happens here.

Generating the same plot for different values of κ yields figure 22. We see that for the
largest value of κ = 0.697 there is clearly no phase transition at all. The system is always in
the deconfined phase. As expected, decreasing κ leads to smaller values of the susceptibility
for small values of nB until we reach κ = 0.19 where we cannot be sure whether we have a
transition or not. It would be interesting to go to even smaller values of κ. In principle we
would even have the data to do this. However, the errors then get so big that these plots
become impossible to interpret.
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Figure 21: Susceptibility at κ = 0.19.
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6. Conclusion and outlook

We investigated the phase diagram of the Potts model with a fixed number of static color
charges avoiding the sign problem by switching to an equivalent flux representation. We found
the already well-established first order phase transition for vanishing baryon density and saw
that increasing the number of color charges weakens the transition more and more until it
most likely turns into a second order transition. However, because of time constraints, we
couldn’t investigate this in more detail to find out the exact fate of the transition for higher
baryon densities, though we have strong evidence that at some point the transition disappears
completely.

The next step would obviously be to study at which point the transition turns from first to
second order, e.g. by investigating the behavior on larger lattices. We think that this happens
at small baryon densities where the inefficiency problem of the algorithm for small values
of the coupling constant doesn’t come into play yet. To see what happens further in the
diagram, and especially to decide whether the second order transition terminates somewhere
(which from theoretical arguments is impossible) or goes all the way down to κT = 0, we
have to improve the algorithm. That is because its inefficiency for small couplings makes
it impossible to extract meaningful results if the transition moves to values of the coupling
smaller than κT ≈ 0.4. This could possibly be achieved by making only a small change to our
worm algorithm: It might suffice to add the possibility to move color charges in the worm
itself instead of doing this as a separate step (as used for a somewhat different model in a
recent paper [10]). Another idea is to add a step which can move the color charges by more
than one lattice spacing at once. Though whether these ideas actually work needs to be tested
in future work.

As a final conclusion, we can say that we have obtained part of the phase diagram of the
Potts model with static color charges and we showed that it is possible to avoid sign problems
by switching to a flux representation of the partition function which can be simulated quite
efficiently using a worm algorithm.
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A. Monte Carlo simulations and error analysis

A Monte Carlo simulation is a simulation which builds a Markov chain of configurations that
models a given probability distribution approximatively. This means that the number of
times a configuration appears is proportional to its probability, e.g. to its Boltzmann weight
in statistical mechanics. Every configuration follows from its predecessor through a well-
defined probabilistic manipulation. In order for this to be correct, two criteria have to be
fulfilled. First the algorithm needs to be ergodic, i.e. every configuration must in principle
be reachable with a non-zero probability. Second, it needs to fulfill detailed balance. This
means that the probability to get from one configuration to another must be balanced to its
inverse. What exactly is meant by this will be defined below. Both criteria together ensure
that after waiting long enough the initial configuration doesn’t matter anymore and that one
gets a correct approximation to the given probability density.

The standard approach to fulfill these requirements in statistical mechanics is the so-called
Metropolis algorithm. There every configuration [φ] has an associated action S[φ] and a
Boltzmann weight exp(−S[φ]). One then proposes in every step (also called sweep) a new
configuration [φ′]. The latter is then accepted with probability

ω([φ] → [φ′]) = min{1, exp(−S[φ′] + S[φ])} (A.1)

ensuring detailed balance, i.e. it fulfills [12]

P [φ]ω([φ] → [φ′]) = P [φ′]ω([φ′] → [φ]), (A.2)

where

P [φ] =
exp(−S[φ])

Z
(A.3)

is the probability of the configuration [φ]. Doing this a large number of times then allows us
to generate an accurate distribution of configurations according to their Boltzmann weight
(after omitting the first few configurations which still depend on the initial state).

A.1. Binning

Due to the fact that Monte Carlo simulations build a Markov chain, consecutive configura-
tions naturally depend on each other. This implies that naively calculating the error of an
observable O, i.e. calculating its standard deviation

σO =

√
〈O2〉 − (〈O〉)2

N − 1
=

√√√√ 1

N(N − 1)

N∑
i=1

(O[φ(i)]− 〈O〉)2, (A.4)

doesn’t yield the correct result, this expression actually underestimates it. To solve this, one
uses a so-called binning procedure. Instead of calculating σO using every measurement Oi

one uses averages of j subsequent measurements

〈O〉ij =
1

j

j−1∑
k=0

O[φ(i+k)]. (A.5)
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j here is usually called the binsize. With this we generate a sequence of standard deviations

σOj =

√√√√ 1

M(M − 1)

M∑
i=1

(〈O〉ij − 〈O〉)2 (A.6)

where M = N
j is the number of bins. This quantity then converges to the uncorrelated

statistical standard deviation of the measurements Oi as e.g. shown in figure 23. It clearly
shows that the standard deviation converges to a certain value with increasing number of
binning steps, i.e. with increasing binsize. Note that the fact that the curve gets broader
at the end is due to M getting smaller and smaller with increasing binsize. Therefore the
number of individual measurements contributing to the standard deviation σOj gets smaller
as well, thereby increasing the error of the calculated value due to less statistics.
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Figure 23: Example of a binning curve.
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B. Verifying the implementation of the algorithms

To ensure the correctness of our programs we use the following different techniques:

• Calculation by hand: For very small lattices in one dimension the Potts model only
has a very small number of possible configurations allowing us to calculate the partition
function fully analytically.

• Exact evaluation by a program: For slightly larger lattices (up to V ≈ 23) it is
possible to calculate all configurations using a computer program.

• Comparing the different algorithms: Although most of the different algorithms
presented in chapters 3 and 4 only work correctly in a subset of the whole configuration
space (e.g. only for vanishing baryon density) there are still areas where some of them
give correct results concurrently.

With these we can begin with the calculations by hand to ensure correctness of the exact
programs. The latter then allow us to verify all algorithms on small lattices. The independent
algorithms finally were used to ensure that all of them give the same result in their respective
subspaces of the configuration space where they work correctly.
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