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Abstract

In this thesis, the toric code error correction process, one method to check a quantum memory

storage  for  errors  and  correcting  them,  is  analysed  theoretically.  The  focus  was  set  on  the

determination of the accuracy threshold, the upper limit pcrit  of the probability with which the

manifestation of errors can be allowed during consecutive measurements for errors,  so that the

non-erroneous state of the quantum memory storage can be restored. To do this, an analogy between

the toric code error correction model (TCECM) and the random-bond Ising model (RBIM) was

used. In this analogy, the probability of error creation pEC  in the TCECM is equivalent to the

probability to have an antiferromagnetic bond p AFB  in the RBIM. The behaviour of the TCECM

with increasing  pEC  corresponds to the behaviour of the RBIM along the so called Nishimori

line with increasing p AFB . The two phases of the TCECM, where the non-erroneous state can be

restored respectively cannot, correspond to the ferromagnetic respectively paramagnetic phase of

the RBIM. In the RBIM, the transition between these two phases along the Nishimori line occurs at

the so called Nishimori point. Thus, by numerically simulating the RBIM along this Nishimori line

and determining the position of the phase transition, the accuracy threshold pcrit  of the TCECM

can be determined.

The  two  different  variants  of  the  algorithm  that  were  used  yielded  pcrit=0.1081±0.0007

respectively  pcrit=0.108±0.001  as a result  for this  accuracy threshold.  These values deviate

slightly from reference values found in the literature. The reason for this remains somewhat unclear,

but likely sources were determined and propositions made on how to get rid of them by improving

the method.
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1. Introduction

Currently, quantum computers are envisioned as the next great revolution in computer development.

They allow the performance of a new, broader class of operations on the information that is put in.

This  in  turn  opens  up  new ways  to  solve  mathematical  and physical  problems.  Such quantum

algorithms will have their largest impact on problems which previously could only be solved with a

large expenditure of time and/or storage space, but for which these new operations provide more

efficient approaches. This makes quantum computation an important emerging field of study.

However, in order to actually build a quantum computer that is able to reliably perform calculations,

many different  technical  problems need to  be  solved.  One of  these  problems is  to  ensure  that

external influences do not cause errors in the stored data during calculation. One way to address this

problem is through the use of so called surface codes. These are described, after an introduction into

quantum computation, in Section 2. The focus of this description is set on the theoretical model

behind the methods used for the recognition of errors in the stored data and their correction for a

specific surface code, named the toric code.

The objective of this thesis is to determine the so called accuracy threshold, the upper bound for the

probability for errors to occur between different rounds of error recognition that limits the ability of

the system to restore the non-erroneous state of the stored data. This is done using the analogy of

the  problem to  the  two-dimensional  random-bond Ising  model.  The calculations  are  performed

numerically by applying worm algorithms. To test the correctness of the results, two different types

of  worm algorithms  are  used  for  each  calculation.  The  method  is  described  in  more  detail  in

Section 3, explaining how the algorithms were first tested on the two-dimensional standard Ising

model before being applied to the two-dimensional random-bond Ising model. The results of the

tests in the standard Ising model are then presented and discussed in Section 4. They are followed

by the presentation and discussion of the results for the accuracy threshold from the simulation of

the random-bond Ising model in Section 5. Thereafter, the performance of the two types of worm

algorithms is compared in Section 6.  Then, further findings from the simulations of these Ising

models are presented in Section 7. Finally, conclusions are drawn in Section 8.
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2. Theoretical background

This  section  aims  at  providing  an  overview  about  quantum  computation  in  general  and  the

realisation of a quantum computer using so called surface codes in particular. Then the focus is laid

on a particular form of surface code, the  toric code. For this, the error and correction model is

presented and discussed in detail,  just  like their  relation to the random-bond Ising model.  This

provides  the  necessary theoretical  background  to  understand  the  calculations  performed  in  the

following sections as well as to understand the results.

2.1. Quantum computers

In order to understand what a quantum computer is, it is useful to first understand how exactly a

“classical” computer performs a calculation. A classical computer can be considered as an electronic

experimental set-up that is analogous to a certain way to solve a mathematical or physical problem

(a so called algorithm), respectively can be put into a configuration that has this analogy. It consists

of a sequence of so called classical gates, which, obeying the laws of classical electrodynamics, in

this set-up perform operations analogous to the logical operations of the algorithm. On the set-up an

initial  configuration  is  set,  which  corresponds  to  the  specifications  of  the  problem.  Then,  the

experiment is performed. This mostly consists of a temporal evolution of the set-up that depends on

the initial configuration. Eventually, the final configuration is determined. Using the analogy to the

algorithm, out of this final configuration the solution of the problem is then interpreted. A quantum

computer  works  basically  the  same  way.  Just  instead  of  making  use  of  the  laws  of  classical

electrodynamics,  it  is  based  on  the  laws  of  quantum  physics.  This  leads  to  some  essential

differences between these two types of computers and how they work, e.g. in the use of so called

quantum gates instead  of  the  classical  gates.  These  differences  are  discussed  in  the  following

subsections and are based on Nielsen & Chuang [1].

2.1.1. Information storage

In  classical  computers,  information  is  stored  in  bits,  represented  by either  the  presence  or  the

absence  of  an  electric  charge  respectively  current.  Consequently,  there  are  two  absolute  and

contrary (classical) states of which just the one or the other, but not both, can be present at a time. In

quantum computers on the other hand, the information is stored in so called quantum bits or qubits.

These are realized by a quantum physical system that can be in two (quantum) states,  ∣0 〉  and

∣1〉 ,  or  any  superposition  of  them,  α∣0 〉+β∣1 〉 ,  which  satisfies ∣α∣
2+∣β∣2=1 .  The  strict

exclusion constraint found in classical computers does not apply here any longer. This increases the

number of different states that are realizable to infinity. However, when a quantum state is measured

at  the  end  of  the  calculation,  it  will  collapse  to  one  of  the  basis  states  of  the  corresponding

measurement operators. For the initial basis introduced above this would be either ∣0 〉  or ∣1〉 .

The  probability  for  this  is  given  by  ∣α∣
2

 respectively  ∣β∣2 .  Since  the  solution  to  the

mathematical  respectively physical problem is  interpreted from the probability distribution with

which the different measurement outcomes of the finally applied measurement operator manifest, a

calculation on a quantum computer in general needs to be performed a large number of times to

determine a good estimate for this distribution.

2.1.2. Information processing

In classical computers, information is processed by inserting one or multiple bits into a so called

gate. A new bit then exits the gate. Its state depends on the states of the inserted bits and the type of

the gate. The number of different gates is determined by the number of different possible inputs,
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which is  2
n

 with  n  the number of bits  that is  put  in.  For each of these inputs,  the gate

determines a specific output. Each type of gate differs in this assignment. Hence there are 2
(2 n)

different gates. However, not all of these gates need to be realized physically in a computer. Most of

them can be built as a combination of other gates. This largely reduces the number of gates that

actually need to be realized to a small set. Such a set is called functionally complete. A specific set

of gates out of which by building the right combination each other type of gate can be created is

referred to as universal.

In quantum computers, on the other hand, the information processing has to abide to the rules of

quantum physics.  This  means that  a  quantum gate takes  the form of a  unitary operator  that  is

applied on the inserted quantum state to form the output state. Consequently, the number of possible

quantum gates is infinite. However, like for the classical gates, there are functionally complete sets

of quantum gate types that allow the construction of any other type. One of these consists of the two

qubit  controlled NOT-gate (CNOT) together with the single qubit gates. The way the CNOT-gate

works is illustrated in Figure 2.1.1.

2.1.3. Information copying and deletion

In classical computers the information stored in bits can easily be copied or deleted. However, since

in quantum computers the quantum gates can only be unitary operators, they are always reversible.

Therefore, a quantum state can be neither deleted nor copied, because both processes contain the

loss of quantum information (that of the information-bearing qubit itself respectively that of the

qubit on which the information should be copied). Such a loss, however, is irreversible. This is

because in the deletion the initial quantum state can be arbitrary, the final state, however, is given.

Consequently, a reverse transformation should be able to map a given state onto any arbitrary state.

This cannot be achieved by a unitary transformation. The proof for copying goes mutatis mutandis.

2.2. Surface codes

While the abstract theoretical description of quantum computers is well-established and works quite

nicely, their actual development turns out to face some technical challenges. These problems first

need to be solved in order to build a quantum computer that is able to reliably perform a calculation.

One of the problems is how to prevent the modification of the information stored in the quantum
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Figure 2.1.1: Structure of the controlled NOT-gate. In this quantum gate two qubit states, ∣A 〉  and ∣B 〉 , are

inserted. Each of them is a quantum state that has the form αi∣0 〉+βi∣1 〉 . The total inserted quantum state is thus

given  by  the  tensor  product  of  these  two  ket-vectors.  It  can  be  expressed  as
a∣0A 0B 〉+b∣0A 1B 〉+c∣1A 0B 〉+d ∣1A1B〉 , where the index indicates to which qubit a certain basis state belongs.

The output of this quantum gate is such that the state of the first qubit, ∣A 〉 , remains unchanged while that of the

second one,  ∣B 〉 ,  gets transformed into  ∣BXOR A 〉 ,  where XOR denotes the logical operation known as

exclusive OR. This logical operation has two inputs, A and B, which can be either true  (1) or false (0). Its output is

true (1),  if  the inputs  are different  (A=1, B=0 respectively A=0, B=1),  and false (0),  if  the inputs are the same

(A=0, B=0  respectively  A=1, B=1).  This  means  that  in  the  CNOT-gate  the  prefactor  in  front  of  the  basis

ket-vector ∣iA , jB 〉  gets  shifted  in  front  of  the  basis  ket-vector  ∣iA , jB XOR iA 〉 .  Thus  the  output  of  the

CNOT-gate is given by a∣0A 0B 〉+b∣0A 1B 〉+d∣1A 0B 〉+c∣1A1B〉 .

CNOT

A

B

A

B XOR A

CNOT

AA

BB

AA

B XOR A



system by perturbations from external sources, so that a calculation can be performed correctly. One

way to address  this  problem is  by using so called  surface codes.  Their  discussion in  the  next

subsections follows E. Dennis et al. [2].

2.2.1. Structure of surface codes

In surface codes, instead of storing a certain piece of information in just a single qubit, a large set of

qubits is used. Each of these qubits corresponds to a spin ½ quantum system, so that it can either be

in the state spin up, spin down or in a superposition of these two states. The qubits are arranged on

the links of a two-dimensional lattice surface as shown in  Figure 2.2.1. Thus, if the lattice has a

horizontal  length  of  Lx  links  and  a  vertical  length  of  Ly  links,  it  consists  of  a  total  of

2 Lx Ly  links. Hence, it gives rise to a  2
2Lx Ly -dimensional Hilbert space. At each site of the

lattice, four qubits connect. These neighbouring qubits are able to interact with each other. These

interactions as well as the geometry of the surface are chosen in a way that the ground state is

degenerate. This means that there are several distinct quantum states of the joint system that have

the same energy, which is also the minimal energy the system can realize. These ground quantum

states of the joint system are in turn used as the basis states of qubits. These qubits are the ones that

are used for the storage of information and the computation. They are thus referred to as  logical

qubits while those qubits forming the lattice are called physical qubits.

The spin ½ nature of the physical qubits can be described with the Pauli matrices σℓ
a

 where ℓ
determines the position of the link on which the Pauli matrix acts and the σa

, a∈{1 ,2 ,3}  are

given by

σ1=(0 1

1 0) , σ2=(0 −i

i 0 ) , σ3=(1 0

0 −1) .  (2.2.1)

They obey the commutation relation

[σℓ
a
,σℓ '

b ]=2i δℓ ℓ ' ϵ
abc σℓ

c
 (2.2.2)

where  δxy  is the Kronecker delta and  ϵijk
 is the Levi-Civita tensor. Furthermore, the Pauli

matrices are Hermitian and their own inverse.
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Figure 2.2.1:  Structure  of  the  surface  code  lattice.  Each  point  on  which  two lines  cross  is  called  a  site.  The

horizontal or vertical lines connecting two adjacent sites are referred to as links. One link is highlighted by being

drawn broader. The six links neighbouring this one are highlighted by being drawn dashed. A square formed by four

connected links is called a  plaquette. One such plaquette is highlighted by being drawn broader and dotted. The

complete structure is known as a lattice.

The dashed arrows are not part of the lattice but placed to point at different structural parts.
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2.2.2. Toric code

One specific type of surface code is the toric code. Here each pair of opposite ends of the lattice are

joined. Hence, the lattice takes the form of the surface of a torus. Consequently, it no longer has a

boundary. The interactions between the links is such that the Hamiltonian H  of the system is

given by

H = − ∑
i∈Sites

J i

⋅X  ,i    − ∑
j∈Plaquettes

J j

⋅Z , j

= − ∑
i∈Sites

J i

 ∏
ℓ∈ links adjacent

to the site i

σℓ
1
   − ∑

j∈Plaquettes

J j

 ∏
ℓ ' ∈ links in the

plaquette j

σℓ '

3

 
(2.2.3)

where the first sum goes over all sites of the lattice, the second sum over all of its plaquettes (see

Figure 2.2.1 for the definition of the plaquette). J i


, J j

∈ℝ  are the coupling constants. They are

set to be

J i

= J j

= J =const.>0 ∀ i , j∈links .  (2.2.4)

X , i  refers to the X-star operator at the site i , it applies the Pauli-X operator σ1
 on the

four links adjacent to that site (see also Figure 2.2.2)

X , i= ∏
ℓ∈ links adjacent

to the site i

σℓ
1
.  (2.2.5)

Z , j  refers to the Z-plaquette operator at the plaquette  j ,  it  applies the Pauli-Z operator

σ3
 on the four links forming that plaquette (see also Figure 2.2.2)

Z , j= ∏
ℓ∈ links in the

plaquette j

σℓ
3
.  (2.2.6)

Like the Pauli matrices they are made of, the X-star and Z-plaquette operators are unitary and their

own inverse. Furthermore, all the X-star and Z-plaquette operators commute with one another and

thus also with the Hamiltonian H , even though σ1
 and σ3

 do not commute when acting

on the same physical qubit.

The reason for this is that any pair of an X-star and a Z-plaquette operator either overlap at none or
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Figure 2.2.2:  Form of  the  X-star  and  the  Z-plaquette  operator.  The  X-star  operator  consists  of  four  Pauli-X

operators  applied on the links adjacent to a site.  The Z-plaquette  operator consists of four Pauli-Z operators

applied to the links forming a plaquette.
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two qubits. When they do not overlap, there is no qubit on which both a σ1
 and a σ3

 operator

act.  Instead these Pauli  operators are preceded respectively followed by identity operators  with

which they trivially commute. The proof for the other case, where these two operators overlap at

two qubits, is a bit more sophisticated:

σ1
 and  σ3

 do not commute. If they are applied on a certain quantum state, the final result

depends on the order in which they have been applied.

σ1 σ3(
α
 
β)=(0 1

1 0)(1 0

0 −1)(
α
 
β)=(0 1

1 0)(
α
 
−β)=(−β

 
α ) ,

σ3 σ1(
α
 
β)=(1 0

0 −1)(0 1

1 0)(
α
 
β)=(1 0

0 −1)(β
 
α)=( β

 
−α)=(−1)⋅(−β

 
α )

 (2.2.7)

The difference in the final state between the two orders of application is, however, just a factor

of -1. Hence, when these two Pauli operators are applied on two quantum states, the difference

between the two orders in which they are applied becomes (−1)2
=1 . This occurs because of the

bilinearity of the tensor product ⊗  which combines the two quantum states.

(σ1⊗σ1)(σ3⊗σ3)((
α
 
β)⊗(

γ
 
δ)) = (σ1 σ3(

α
 
β))⊗(σ1σ3(

γ
 
δ))=(−β

 
α )⊗(−δ

 
γ ) ,

(σ3⊗σ3)(σ1⊗σ1)((
α
 
β)⊗(

γ
 
δ)) = (σ3 σ1(

α
 
β))⊗(σ3σ1(

γ
 
δ))=( β

 
−α)⊗( δ

 
−γ)

 =  ((−1)⋅(−β
 
α ))⊗((−1)⋅(−δ

 
γ ))=(−1)2

⋅((−β
 
α )⊗(−δ

 
γ ))

= (−β
 
α )⊗(−δ

 
γ )

(2.2.8)

As a consequence, the final state after the application of these two Pauli operators on two quantum

states is the same, no matter which one was applied first. Thus, the two operators  σ1⊗σ1
 and

σ3⊗σ3
 commute. Therefore also the X-star and Z-plaquette operators commute if they overlap

on two physical qubits.

Since two σ1
 operators that are applied to the same physical qubit trivially commute with each

other, as do two  σ3
 operators, the different X-star operators commute among themselves, just

like the Z-plaquette operators. Furthermore, since the Hamiltonian only consists of a sum of these

operators, each of them also commutes with the Hamiltonian.

The toric code has two ℤ2  gauge symmetries, one of the actual lattice and the other of the dual

lattice.  For  the  error  model  and  its  correction  model  described  in  Section 2.2.3 respectively

Section 2.2.4 only the latter one is of importance. Therefore, only the ℤ2  gauge symmetry of the

dual lattice will be discussed here. This gauge symmetry demands that the application of any of the

Z-plaquette operators Z , j  or of a combination of them on the quantum state of the lattice must

leave that state invariant.

The determination of the ground state of the toric code is quite elaborate:

As shown in Section 2.2.2, each of the 2 Lx Ly  physical qubits of the lattice has two spin states.

This yields 2
2 Lx Ly  different configurations of these spin states that can be realized on the lattice.

Since the assignment of the labels spin up and spin down to the two quantum states of a physical

qubit is arbitrary, the properties of the system must not change if these labels are assigned the other

way  round.  Thus,  the  properties  of  each  lattice  configuration  are  identical  to  those  of  the
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configuration in which all physical qubits have opposite spin. Consequently, the number of actual

configurations  reduces  to  2
2Lx Ly−1

.  Each  quantum  state,  in  which  the  lattice  can  be,  is  a

superposition of these configurations. This is also true for the ground state, which is characterized

by being the quantum state with the lowest energy that also is an eigenfunction of the Hamiltonian.

It therefore has to be one of these configurations or has to consist of a superposition of them.

The best approach to find the ground state is to split up the Hamiltonian in two parts, the sum over

sites and the sum over lattices:

H=H Sites+H Plaquettes

H Sites=− ∑
i∈Sites

J⋅X , i , H Plaquettes=− ∑
j∈Plaquettes

J⋅Z , j

 
(2.2.9)

When only looking at H Sites , 4⋅2
Lx Ly−1

 configurations can be determined that yield the lowest

energy,  i.e.  where  the  application  of  each  X , i  operator  returns  1.  The  simplest  of  these

configurations CT ,0  is  the one in  which the  spins  of  all  the  physical  qubits  are  in  the  state

σ1=1 . Thus

CT ,0= ⊗
ℓ∈links

∣1ℓ 〉 .  (2.2.10)

The other configurations are similar to this one, just that they contain one or several closed chains

of links in the state σ1=−1 . These are sets of adjacent links which form a closed loop.

The configurations can be divided into four classes. The first class consists of CT ,0  as well as all

configurations that can be created thereof by applying the different combinations of the  Z , j

operators, i.e. the configurations given by

CT=( ∏
j∈ some of the

plaquettes

Z , j)CT , 0.  (2.2.11)

The second class forms around the configuration C H , 0 , where at all links σ1=1 , except for

links along a strictly horizontal closed chain on the lattice, where σ1=−1 :

C H , 0=( ∏
ℓ∈ links along a

closed strictly

horizontal chain

σℓ
3)CT , 0  

(2.2.12)

This second class consists of  C H , 0  as well as all configurations that can be created thereof by

applying the different combinations of the Z , j  operators. These can be expressed as

C H , i=( ∏
j∈ combination i

of the plaquettes

Z , j)( ∏
ℓ∈ links along a

closed strictly

horizontal chain

σℓ
3)CT ,0 .  

(2.2.13)

The third class forms around a similar configuration as C H , 0 , namely CV ,0 . The difference is

that here the closed chain is strictly vertical:

CV ,0=( ∏
ℓ∈ links along a

closed strictly

vertical chain

σℓ
3)CT , 0  

(2.2.14)

This third class consists of  CV ,0  as well as all configurations that can be created thereof by
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applying the different combinations of the Z , j  operators. These can be written as

CV ,i=( ∏
j∈ combination i

of the plaquettes

Z , j)( ∏
ℓ∈ links along a

closed strictly

vertical chain

σℓ
3)CT ,0 .  

(2.2.15)

Finally, the fourth class forms around the configuration C B, 0 , which has two such closed chains,

one strictly horizontal, the other strictly vertical:

C B, 0=( ∏
ℓ∈ links along a

closed strictly

horizontal chain

σℓ
3)( ∏

ℓ∈ links along a

closed strictly

vertical chain

σℓ
3)CT ,0  

(2.2.16)

This fourth class consists of  C B, 0  as well as all configurations that can be created thereof by

applying the different combinations of the Z , j  operators. These can be expressed as

C B, i=( ∏
j∈ combination i

of the plaquettes

Z , j)( ∏
ℓ∈ links along a

closed strictly

horizontal chain

σℓ
3)( ∏

ℓ∈ links along a

closed strictly

vertical chain

σℓ
3)CT , 0.  

(2.2.17)

The  closed  strictly  horizontal  respectively  vertical  chains  that  distinguish  the  accentuated

configurations CT ,0 ,CH , 0 ,CV ,0  and  C B, 0  are called  Polyakov loops (see also Figure 2.2.3).

The corresponding operators P i  that creates these loops apply  σ3
 on the links of a strictly

horizontal respectively vertical chain:

PH = ∏
ℓ∈ links along a

closed strictly

horizontal chain

σℓ
3

, PV = ∏
ℓ∈ links along a

closed strictly

vertical chain

σℓ
3

 
(2.2.18)

Since they consists of σ3
 operators, the P i  commute with the Z-plaquette operators. Because

at each site of the lattice they apply σ3
 on either none or two adjacent links, they also commute

with the X-star operators. Hence, they commute with the Hamiltonian H  as well.  As it was

shown before, these operators transform a configuration from one class into that of another. Two

types  of  Polyakov  loop  operators  can  be  distinguished,  horizontal PH  respectively

vertical PV  ones. The first adds a horizontal Polyakov loop transforming a first (trivial) class

state into a second (horizontal) class one, respectively a third (vertical) class state into a fourth

(both) class one. The second operator adds a vertical Polyakov loop and transforms a first (trivial)

class state into a third (vertical) class one, respectively a second (horizontal) class state into a fourth

(both) class one.

The Polyakov loop operators have dual analogues Ai  (see also Figure 2.2.3). These operators

apply the  σ1
 operator on all the links that form the corresponding Polyakov loop on the dual

lattice:

AH= ∏
ℓ∈ links along a

closed strictly

horizontal chain

on the dual lattice

σℓ
1= ∏

ℓ∈ vertical links

along a row

of the lattice

σℓ
1

, AV = ∏
ℓ∈ links along a

closed strictly

vertical chain

on the dual lattice

σℓ
1= ∏

ℓ∈ horizontal links

along a column

of the lattice

σℓ
1

(2.2.19)

This means that the horizontal dual analogue operator AH  applies  σ1
 to all  vertical links

contained inside a horizontal row of plaquettes, while the vertical analogue operator AV  applies
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σ1
 to all horizontal links of a vertical column of plaquettes. With these operators the class to

which a configuration belongs can be determined. Applying them on a configuration yields

AH CT ,i=+CT ,i , AV CT ,i=+ CT ,i ,

AH CH , i=+ CH ,i , AV C H , i=-C H ,i ,

AH CV ,i=-CV ,i , AV CV ,i=+CV ,i ,

AH CB ,i=-C B , i , AV C B, i=-C B ,i .

 (2.2.20)

Since the Ai  operators consist of applications of σ1
, they commute with the X-star operator.

Since each Z-plaquette operator either overlaps at none or two links with the Ai  operators, they

commute as well. Thus, the Ai  operators also commute with the Hamiltonian H . However,

they do not commute with the Polyakov loop operators P i , because these two operators overlap

at only one link and there apply different Pauli matrices (dashed bold links in Figure 2.2.3).

While  the aforementioned configurations  and their  linear  combinations  all  are  ground states  of
H Sites , they are not necessarily ground states of H  as well. For the latter, they also need to

form  a  ground  state  of  H Plaquettes ,  which  is  equivalent  to  fulfilling  the  Gauss  law  of  the  

ℤ2  gauge symmetry of the dual lattice. This means that the ground state  ∣Ψ0 〉 of the toric

code has to fulfil the following relation for every gauge transformation, i.e. for the application of

every possible combination k  of Z-plaquette operators Z , j

∏
j∈ plaquettes in

combination k

Z , j∣Ψ0 〉=
!

∣Ψ0 〉 .  (2.2.21)

9

Figure 2.2.3: Form of the Polyakov loop operators,  PH
in horizontal (left lattice) as well as PV

 in vertical direction

(right lattice), and their dual analogue operators, AH in horizontal (right lattice) as well as AV  in vertical direction (left

lattice). The bold links are those that are affected by the P i
, the dotted ones are those affected by the Ai

. The link that is

dotted as well as bold is the link that gets affected by both operators.

PH

AH

AV
PV

PH

AH

AV
PV



This  constraint  is  only  fulfilled  for  four  combinations  of  the  configurations  as  well  as  linear

combinations of them. They are

∣Ψ0 ,T 〉=2

1−Lx Ly

2 ⋅ ∑
i∈ configurations

in the first

(trivial) class

CT ,i , ∣Ψ0 , H 〉=2

1−Lx Ly

2 ⋅ ∑
i∈ configurations

in the second

(horizontal) class

CH , i ,

∣Ψ0 ,V 〉=2

1−Lx Ly

2 ⋅ ∑
i∈ configurations

in the third

(vertical) class

CV ,i , ∣Ψ0 , B 〉=2

1−Lx Ly

2 ⋅ ∑
i∈ configurations

in the fourth

(both) class

C B , i .

 

(2.2.22)

These four combinations thus form the ground state of the toric code, which is fourfold degenerate.

This allows two logical qubits to be encoded in one lattice.

2.2.3. Error theory of toric codes

The error theory of surface codes is a theoretical model that describes how errors occur in the

calculation  of  a  surface-code-based quantum computer  and how these errors  will  influence  the

outcome.

It is assumed that external sources are able to cause two types of errors on the physical qubits of a

surface code, bit- flips and phase-shifts. If the information storage is based on the σ1
 eigenstates

of the physical qubits, as it was the case in the previous subsection, the bit-flip errors are equivalent

to applications of a Pauli-Z-operator  σ3
 on a specific physical qubit and the phase-shift errors

are equivalent to the applications of a Pauli-X-operator σ1
.

Furthermore, it is assumed in this theory that the errors occur stochastically, that each error occurs

independent of the other ones and that the different types of errors are uncorrelated. This allows the

assignment of probabilities for the errors to occur, as well as a separate discussion of bit-flip and

phase-shift errors. For simplicity, it is assumed that the different types of errors are equally likely to

occur.

2.2.4. Error diagnosis and correction of toric codes

The problem of error diagnosis in quantum information storage devices is that such a diagnosis

consists of a measurement of the quantum system. In general, the state of a quantum system is

changed by a measurement.  The only exception to  this  are measurements  which correspond to

operators of which the current state of the system is an eigenstate. Thus the error diagnosis, in order

not to interfere with the stored data, must use exclusively such measurements. On the other hand,

these measurements must also provide some sort of information on the correctness of the stored

data.

For toric codes, where the system is in a state that consists of a superposition of the four ground

states  (see  eq. (2.2.22))  with  some  bit-flip  and  phase-shift  errors,  there  are  two  types  of

measurement operators that fulfil these requirements, the X-star and the Z-plaquette operator (see

Section 2.2.2 and  Figure 2.2.2), which therefore are also referred to as  diagnosis operators. The

X-star operator applies the Pauli-X operator σ1
 on the four links adjacent to a specific site on the

lattice. It is able to detect an odd number of errors that are caused by the application of  σ3
on

these  links  (bit-flip  errors,  if  the  information  storage  is  based  on the  σ1
 eigenstates  of  the

physical qubits). On the other hand, the Z-plaquette operator applies the Pauli-Z operator σ3
 on

the four links forming a plaquette. It is able to detect an odd number of errors that are caused by the

application of  σ1
 on these links (phase-shift errors, if the information storage is based on the

σ1
 eigenstates  of  the  physical  qubits).  As  it  was  shown  in  Section 2.2.2,  the  X-star  and

Z-plaquette  operators  all  commute  with  one  another.  Furthermore,  the  ground  state  and  the

erroneous states are eigenstates of these operators. They thus can all  be measured simultaneously
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without disturbing the stored information or the measurement outcome of each other.

This property motivates the strategy to check for errors in the lattice. In regular time intervals, such

a simultaneous measurement of all X-star and Z-plaquette operators is performed. The resulting

information gathered from these measurements, the so called error syndrome, is stored in a classical

data storage  and a classical  computer  is  used  to  analyse  it.  An example  of  how such an  error

syndrome from the X-star measurements about the bit-flip errors could look like is given in Figure 

2.2.4.  As it  can be easily seen,  the erroneous links cannot be determined directly.  Instead only

information about lattice sites is obtained that are adjacent to an odd number of erroneous links. An

isolated erroneous link can thus be determined by the measurement result of the two adjacent sites

(see Figure 2.2.4a).  In  the  case of  a  series  of  erroneous  links  of  which each is  adjacent  to  the

previous one, only the sites at the two ends of this so called error chain can be detected (see Figure 

2.2.4b). Furthermore, there are structures of erroneous links that cannot be detected (see  Figure 

2.2.4c&d). These undetectable structures have in common that they do not have open ends, the

series of erroneous links forms a closed loop. They can be divided into two categories. Structures

from the  first  category (Figure 2.2.4c)  encircle  plaquettes,  structures  from the  second  category

(Figure 2.2.4d) do not. Since each pair of opposite boundaries of the lattice are joined together in

the  toric  code,  the  error  chains  are  able  to  wind  around  the  lattice.  The  two  aforementioned

categories of error chains without ends differ in regard to these windings. The structures of the first

category  have  an  even  number  of  windings  in  both  horizontal  and  vertical  direction.  They

correspond to gauge transformations. The structures of the second category have an odd number of

windings in at least one of the directions. They correspond to a gauge transformation combined

with the application of a Polyakov loop operator in the direction(s) where the number of windings is

odd.
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Figure 2.2.4: Example of how bit-flip errors could be located on a toric code lattice. Erroneous links are highlighted

using a dashed line, non-erroneous links are drawn with a continuous line. The numbers next to each site of the

lattice show the results of the error syndrome's X-star measurements. This measurement result is 1, if there are none

or an even number of erroneous links adjacent to the site, and -1, if the number of adjacent erroneous links is odd.

The later ones are furthermore marked with a black dot for easier recognition. Keep in mind that when actually

using the error correction technique discussed here, only the results of the syndrome measurements are known. The

position of the erroneous links, different than shown here, cannot be directly determined.

The erroneous links form different types of structures. These are labelled:

(a) isolated error: a single erroneous link without another erroneous link adjacent to it

(b) open error chain: a series of erroneous links of which each is adjacent to the next and which has a distinct

beginning and end

(c) category 1 closed error chain: a series of erroneous links of which each is adjacent to the next one and which

encircles one or several plaquettes. If it winds around the lattice in a direction, it does this an even number of times.

(d) category 2 closed error chain: a series of erroneous links of which each is adjacent to the next one and which

does not encircle any plaquettes. It winds around at least one direction of the lattice an odd number of times. Notice

that due to the geometry of the toric code the two positions of the error chain shown in the figure which are marked

with (*) are actually connected.

1 1 1 1 1 1 1 1 -1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 -1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 -1 1 1 1 1 1

1 -1 1 -1 1 1 1 1 1 1

1 1 1 1 -1 -1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 -1 1 1 1 1 1 1 -1 1

1 1 1 1 1 1 1 1 -1 1

(*) (*)

(a)

(a)

(b)

(b)

(b)

(c)

(d)

1 1 1 1 1 1 1 1 -1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 -1 1 1
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1 -1 1 -1 1 1 1 1 1 1

1 1 1 1 -1 -1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 -1 1 1 1 1 1 1 -1 1

1 1 1 1 1 1 1 1 -1 1

(*) (*)

(a)
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(b)
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1 1 1 1 1 1 1 1 -1 1

1 1 1 1 1 1 1 1 1 1
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Due to the gauge symmetry of the toric code all structures of the first category of error chains

without ends leave the quantum state of the lattice invariant. This is because the application of these

error chains on the ground state bijectively maps in each class of configurations every configuration

onto another configuration of the same class. Since the basis states of the ground state of the lattice

are equal-weight superpositions of all configurations of the corresponding class, the basis states get

mapped onto themselves. The quantum state of the lattice and the information stored within thus

remain unaffected.

The aforementioned effect can be used in the strategy to correct the errors in the toric code. After

each  round  of  syndrome  measurement,  which  is  assumed  to  be  performed  without  error,  the

measurement data is inserted into a classical computer. There an algorithm is executed which finds

the  most  probable  positions  of  erroneous  links  on  the  lattice  that  leads  to  the  measured  error

syndrome.  Because the errors are assumed to occur  stochastically with a given probability and

because the measurement results of the error syndrome only reveal the end points of open error

chains, the algorithm simulates the error formation in order to connect these end points into pairs of

two using as few links as possible. To do so, links for the correction chain are selected with the

same probability as errors occur. This makes a correction chain more unlikely to be used the longer

it is. The links of the correction chain are assumed to be the erroneous links. In the next step, an

operator is applied to these links in order to correct the errors. In the case of bit-flip errors, this is

the σ3
 operator, since it is its own inverse. There are three possible outcomes to this correction

step (see Figure 2.2.5):

In the first case, the algorithm correctly determines a complete error chain (Figure 2.2.5A). Hence,

the  application  of  the  σ3
 operator  reverses  the  errors  along  this  chain  restoring  the  non-

erroneous state of the links.

In the second case, the algorithm connects the two end points of an open error chain. However, it

does not determine the correct position of all contained erroneous links. Instead the computed error

chain connects the ends by a different path (Figure 2.2.5B). This case is quite likely, because in

most cases there are several paths of the same length that connect two sites on the lattice. Thus,

there is no criterion that allows the distinction of the actual path of the error chain from one that has

the same length but goes a different way. The result of the correction step belonging to this case is

that  the error  chain gets  extended by the application  of  the  σ3
 operator  to  previously non-

erroneous links. An exception are the links which have been correctly determined erroneous and

thus get corrected by the σ3
 operator. In addition to that, the previously open ended error chain

has transformed into a closed error chain. If this closed error chain falls into the first category, due

to the gauge symmetry the non-erroneous ground state of the lattice is restored. However, if the

closed error chain falls into the second category, the Polyakov loop it forms will change the state of

the quantum system. This means that the data stored in the lattice has been altered without leaving

any measurable signs indicating that such an alteration has occurred and needs to be corrected. This

means the stored data got irreversibly damaged.

In the third case, the algorithm connects end points of distinct open error chains (Figure 2.2.5C).

This leads to an extension of the involved error chains as well as their combination into one closed

error chain. Such a closed error chain takes on one of the two forms presented in the second case.

The consequences of this are the same as discussed above.

To summarize, it can be said that this method of correction is successful as long as the error chain

by itself or together with the correction chain does not form a closed error chain of the second

category. If it does, the stored data has undetectably been altered and thus irreversibly damaged.

The calculation process, which uses this data, thus is not performed correctly and yields a wrong

result. If this occurs too frequently, a toric code is not sufficiently reliable to be used as a quantum

data storage device. There are, however, two strategies to decrease the probability of this type of

closed error chain to form. The first strategy is to increase the lattice size. The larger the lattice is,

the more links have to become erroneous in order to form an error chain that makes a complete
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winding around the lattice. Since each link only becomes erroneous with a certain probability, the

likelihood for the formation of an error chain decreases with increasing length of that chain. The

second  strategy  is  to  decrease  the  probability  with  which  a  link  becomes  erroneous.  As  this

probability  is  defined  as  the  likelihood  that  a  link  changes  its  state  in  the  time  between  two

consecutive error syndrome measurements, this can, for example, be achieved by measuring the

error syndrome more often. This decreases the amount of time in which the errors can occur. Since

the errors are caused by external effects independent of the error syndrome measurements, it can be

assumed  that  their  temporal  probability  distribution  to  occur  is  uniform in  time.  Thus,  during

a  shorter  time  span  between  two  error  syndrome  measurements  fewer  errors  will  manifest

themselves.

So far, only the correction of the bit-flip errors using the data from X-star operator measurements

has been discussed. The correction of the phase-shift errors using the data from the Z-plaquette

measurements, however, turns out to work analogously on the dual lattice. The plaquettes of the

lattice form the sites of the dual lattice. Furthermore, the duality transformation rotates all links by

90°. Thus, the Z-plaquette operators on the lattice turn into Z-star operators on the dual lattice. With

the right coordinate transformation on the qubit quantum state, σ1
 can be turned into σ3

 and

vice  versa.  Hereby the  phase-shift  error  correction  problem is  translated  into  the  bit-flip  error

correction problem discussed above.
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Figure 2.2.5: Different toric code lattices with open error chains (dashed lines) and chains of links on which the corresponding

Pauli operator is applied in the effort to correct them (dotted lines). Note that on the links where both chains overlap, the dotted

line is not drawn on the link, but next to it for reasons of clarity.

On lattice A, all error chains have been determined correctly and in the correction step the corresponding Pauli operator is applied

on all the erroneous links. Thus all errors are removed.

On lattice B, the correction step has connected the end points of the distinct open error chains. However, the correcting chains do

not follow the error chains. The result is two closed error chains. The top one belongs to the first category. Thus there the errors get

corrected. The bottom one, however, belongs to the second category. It therefore undetectably modifies the stored information,

damaging it irreversibly.

On lattice C, in the correction step the end points of different open error chains have been connected. This has lead to the formation

of two closed error chains. The top one again belongs to the first, the bottom one to the second category. Hence in the upper chain

the errors get corrected while the lower chain undetectably modifies the stored information and damages it irreversibly.

A B

C

A B

C



2.2.5. Relation to the random-bond Ising model

As outlined  in  E. Dennis  et  al.  [2],  the  error  correction  of  the  surface  codes  is  related  to  the

two-dimensional random-bond Ising model (RBIM). This relation can be used to translate findings

from this thermodynamic model to questions regarding errors in the toric code. But in order to do

so, first the RBIM needs to be described and the relation discussed:

The Ising model is a classical model that thermodynamically describes a microscopic system which

forms a magnet. It consists of an array of particles each of which has a classical spin. This spin can

be  either  +1 or  -1.  The  system can  be  in  different  states  depending  on  the  orientation  of  the

individual  spins.  The  energy  of  a  certain  configuration  is  given  by  the  classical  Hamilton

function H̃ , which is written as

H̃ =− ∑
< i , j >

J ij⋅si⋅s j .  (2.2.23)

Where si=±1  are the spins of the individual particles,  J ij∈ℝ  is the coupling between two

particles and the sum goes over all pairs of neighbouring particles (to be called bonds).

As long as the couplings between two neighbouring spins J ij  are mostly positive, the system

energetically prefers to stay in a state where most spins have the same orientation. However, when

more couplings  J ij  are negative,  the system energetically prefers to be in a state where the

orientation of the spins alternate. A positive J ij  between two spins is also called a ferromagnetic

bond, while a negative J ij  is also referred to as an antiferromagnetic bond. A special case of the

Ising model is the RBIM. Here the following constraint is put on the coupling:

J ij∈{−J ,+J }  (2.2.24)

where  J  is a positive constant. Consequently, this model has only two types of couplings, a

ferromagnetic and an antiferromagnetic type. Both have the same strength. To each bond its type is

assigned randomly.

The RBIM has two free parameters. The first is temperature, also referred to as the inverse of the

inverse  temperature β−1
.  The  second  is  the  probability  to  have  an  antiferromagnetic

bond p AFB . Variations in these parameters result in the behaviour that is depicted in the phase

diagram  shown  in  Figure 2.2.6.  As  it  can  be  easily  seen,  there  are  two  different  phases,  a

ferromagnetic  and  a  paramagnetic  one.  The  ferromagnetic  phase  forms  at  sufficiently  low

temperatures  and  probabilities  p AFB .  Here  most  spins  are  aligned,  the  system energetically

prefers an ordered state. In contrast, the paramagnetic phase forms once at least one of the two free

parameters becomes too big. Here the system energetically prefers to be in a disordered state with

hardly any correlation between the orientations of the spins.

The analogy to the  toric  code error  correction  arises  from treating  the plaquettes  like  the spin

particles of the two-dimensional RBIM, non-erroneous links like ferromagnetic bonds, erroneous

links like antiferromagnetic bonds and Polyakov loops like antiperiodic boundary conditions. Due

to this, the probability p AFB  to have an antiferromagnetic bond maps on the probability p  that

an error forms on a link. Furthermore, the correction chains of the toric code error correction model

correspond to different spin configurations with distinct periodic/antiperiodic boundary conditions

in the RBIM.  Two anti-aligned spins over an antiferromagnetic bond correspond to an erroneous

link that has been correctly recognized and corrected, two anti-aligned spins over a ferromagnetic

bond correspond to a link that is just part of the correction chain, even though it is not erroneous.
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However, in the analogy the inverse temperature β  is not a free parameter. Instead, it depends on

the error formation probability p  as well. The relation between them is given by

e
−2β=

p

1− p
 (2.2.25)

In the phase diagram, this relation forms the so called Nishimori line. This line crosses the phase

boundary at the point referred to as the Nishimori point N .

The analogue of the ferromagnetic phase is a toric code lattice where the majority of links is non-

erroneous. In the case of a lattice of infinite size, this would lead to all closed error chains belonging

to the first category. The reason for this is that for a closed error chain of the second category, it

would have to wind around the lattice in at  least one direction.  To do so, however,  an infinite

number of erroneous links is required, far too many if the majority of links has to be non-erroneous.

Thus, in the analogue of the ferromagnetic phase, the errors in a toric code with infinite lattice size

will always be eliminated correctly. On the other hand, in the analogue of the paramagnetic phase,

such second category closed error chains become possible on infinite size lattices. Thus here, the

correction of the errors will fail with a non-vanishing probability.

Uniting the findings of the previous paragraphs yields the following conclusion: The Nishimori

point lies at a critical probability for error formation pcrit  which marks the phase transition in the

toric code between a phase where on a lattice of infinite size all errors are always corrected, and

another  phase  where  this  is  no  longer  the  case.  This  critical  probability  is  also  known as  the

accuracy threshold.  Hence, if the toric code error correction is designed in a way in which the

probability for error formation between the different rounds of error determination lies below this

critical value, the erroneous links will be corrected with a good reliability, when the lattice size is

chosen sufficiently large.
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Figure 2.2.6: Phase diagram of the random-bond Ising model. The horizontal axis shows the probability pAFB
 that the

bond between two neighbouring spins is antiferromagnetic instead of ferromagnetic. The vertical axis shows the inverse of

the  inverse  temperature β−1
,  i.e.  the  temperature.  The  continuous  line  indicates  the  phase  boundary  between  the

ferromagnetic and the paramagnetic phase. Furthermore, the Nishimori line (dashed line) and the Nishimori point  N

(intersection between phase boundary and Nishimori line) are marked. The behaviour along the β−1
-axis is that of the

standard Ising model. Its critical point, where it crosses the phase boundary, is marked with S . [2]

S

AFB

S
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3. Method

The objective of this thesis is to determine the accuracy threshold pcrit , the critical probability of

error formation, where a toric code lattice of infinite size undergoes the phase transition from a

phase where the errors are always eliminated correctly to a phase where this is no longer the case

(see Section 2.2.5). This was done numerically using two different versions of a worm algorithm.

First  these  algorithms  were  tested  on  the  standard  Ising  model  (SIM).  Thereafter,  they  were

extended to a simulation of the random-bond Ising model (RBIM).

This section first presents in Subsection 3.1 the analytical preparations that were necessary to be

able  to  translate  the  problem  from  toric  code  error  correction  to  the  RBIM.  Thereafter,  in

Subsection 3.2 it  describes  in  detail  the  two types  of  the  worm algorithm used to  perform the

numerical calculation as well as the algorithms in which these worm algorithms were embedded to

simulate the SIM respectively RBIM. Finally, it lists the different series of calculations that were

made, together with their parameters, in Subsection 3.3.

3.1. Analytical preparation

The  error  diagnosis  and  correction  method  on  the  toric  code,  which  is  described  in  detail  in

Section 2.2.4, works by first determining the ends of the open error chains. Then, in the next step, a

set of links is chosen that combines these ends with one another. By applying the operator that

caused the error on these chosen links, the open error chains are extended and closed. Depending on

which category (see Section 2.2.4 for the definition) the closed error chain falls into, i.e. whether or

not a Polyakov loop operator is applied, this either corrects the information stored on the lattice or

irreversibly damages it. Since the lattice is a two-dimensional structure (it has a horizontal and a

vertical  direction)  the  different  resulting  configurations  of  the  lattice  can  be  divided  into  four

homology classes:

• trivial: All closed error chains are of the first category or there is an even number of second

category closed error chains in both horizontal and vertical direction.

• horizontal: There is an odd number of second category closed error chains in the horizontal

direction. If they are removed, the remaining closed error chains form a configuration that

belongs to the trivial homology class.

• vertical:  There is  an odd number  of  second category closed  error  chains  in  the vertical

direction. If they are removed, the remaining closed error chains form a configuration that

belongs to the trivial homology class.

• both: There is an odd number of second category closed error chains in the horizontal as

well as in the vertical direction. All other closed error chains are of the first category.

These homology classes look similar to the four classes of configurations in Section 2.2.2 that form

the  distinct  basis  states  of  the  ground  state.  However,  they  are  not  the  same  and  need  to  be

distinguished.  In  Section 2.2.2,  the  configurations  of  each  class  get  together  in  a  equal-weight

superposition to form the four basis states of the ground state. On the other hand, here the homology

classes represent different types of operators that act differently upon these basis states. They do not

form superpositions but instead can act separately on the ground state of the lattice. Those of the

trivial  homology class  correspond to  the  gauge transformations.  Thus,  they do not  change  the

ground state.  The  other  homology classes  correspond to  gauge  transformations  combined with

applications of Polyakov loop operators. They affect the ground state.

Thus, only if the closed chain resulting from the correction attempt belongs to the trivial homology

class, the information in the lattice is restored. If it belongs to the three other homology classes, it

gets irreversibly damaged. Hence, the important question for information storage on a toric code

lattice is:  How likely will  the formation of errors and their  correction form a closed chain that

belongs to the trivial homology class?
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The answer to this question P trivial  is given by the sum of the probabilities p̃ i  that a particular

closed chain manifests, summed over all closed chains in the trivial homology class:

P trivial= ∑
i∈trivial homology class

p̃ i  (3.1.1)

This sum can be split up into a product of two sums, one over all different combinations of errors

that can manifest themselves, the other over all ways the formed open error chains can be closed to

form a closed error chain of the first category. Furthermore, the probability can be split into the

product of a part that depends on the error combination p̂ i  and another part that depends on the

applied correction p̂ j :

P trivial= ∑
i ∈ combinations of erroneous

links on the lattice

∑
j ∈ ways to combine

the open ends in i

so that the resulting

final state belongs

to the trivial

homology class

p̂i⋅p̂ j  

(3.1.2)

As discussed in Section 2.2.5, the probability p  to have an erroneous link in the toric code is

analogous to the probability p AFB  of having an antiferromagnetic bond in the RBIM:

p=
!

pAFB  (3.1.3)

Consequently, the probability p̂ i  to have a certain configuration i  of erroneous links in the

lattice of the toric code corresponds to the probability p AFB ,i  of having the configuration i  of

antiferromagnetic bonds in the RBIM. Thus

p̂ i= p
number of erroneous links ini⋅(1− p)number of non-erroneous links in i

   =
!

pAFB

number of antiferromagnetic bonds in i⋅(1−p AFB)
number of ferromagnetic bonds in i

= pAFB ,i

 (3.1.4)

Furthermore,  the probability p̂ j  to  have a certain correction chain applied on the toric  code

corresponds to the probability to realize a specific spin configuration C j  on the lattice of the

RBIM:

p̂ j= pC j
 (3.1.5)

In  doing so,  the  four  different  homology classes  of  the  toric  code get  translated  into  the  four

different  combinations  of  periodic  respectively antiperiodic  boundary conditions  along the  two

directions of the lattice in the RBIM. The trivial  homology class of the toric code matches the

RBIM with periodic boundary conditions in both directions. The other homology classes of the toric

code match the RBIM with antiperiodic boundary conditions in horizontal, vertical respectively

both directions. A system configuration in the RBIM with given p AFB  and β−1
 belongs to the

ferromagnetic phase, if for it the proportion of the weights of configurations with periodic boundary

conditions is predominant over the sum of its three other proportions representing the weights of

configurations with antiperiodic boundary conditions.  If  this  is  no longer the case, the phase is

paramagnetic.  Thus, the phase of the toric code error correction,  where the errors get corrected

successfully using the method described in Section 2.2.4, corresponds to the ferromagnetic phase of

the RBIM while the phase, where the error correction method breaks down, corresponds to the

paramagnetic phase of the RBIM.
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In consequence, P trivial  can be expressed as

P trivial= ∑
i ∈ combinations of

links on the lattice

p AFB ,i ∑
j ∈ combinations of

plaquettes on the lattice

with periodic boundary

conditions

pC j ,i
 

(3.1.6)

Note  that  the  probability pC j ,i  to  realize  a  specific  spin  configuration  also  depends  on  the

configuration of antiferromagnetic bonds that is present on the lattice.

For each of these four types of boundary conditions in the RBIM the same set of configurations

exists. The configurations in each set differ by the position and/or number of antiferromagnetic

bonds as well as their spin configuration. The probability with which each configuration is realized

thus  depends  on  the  probability p AFB  with  which  an  antiferromagnetic  bond  forms  and  the

temperature β−1
 of the system as well as the boundary conditions. Due to the nature of the used

algorithms, it is useful to consider the spin change probability pSC  of the system instead of the

temperature. In this model, there are different realizable configurations with different energies. The

algorithms perform transitions from one of these configurations C i  to another one C j . Each

of these transitions occurs with a certain probability. This is given by

P transition (C i →C j )={1 ,     E (C j)<E (C i)
pSC , E (C j)>E (C i)

.  (3.1.7)

Where E (C i)  is the energy of the configuration C i . The transition thus is always performed,

if it leads to an energetically lower configuration. If it causes a rise in the system's energy, the

transition will only happen with probability pSC . Since the energy of the system is quantized so

that the energy difference ∣E (C i)−E (C j)∣  between the initial  and final configuration of the

transition is always the same, this probability is related to the temperature by

pSC=e
−2β

 (3.1.8)

as it can be easily looked up in a statistical thermodynamics textbook [3].

As it can be deduced from eq. (2.2.23), the energy of a certain configuration E (C i)  is given by

the orientation of neighbouring spins and the type of the associated bonds. Aligned neighbouring

spins over  a ferromagnetic  bond and anti-aligned neighbouring spins over an antiferromagnetic

bond decrease the energy of the system, while anti-aligned neighbouring spins over a ferromagnetic

bond  and  aligned  neighbouring  spins  over  an  antiferromagnetic  bond increase  it.  Furthermore,

periodic  boundary  conditions  behave  like  ferromagnetic  bonds  and  antiperiodic  boundary

conditions  like  antiferromagnetic  bonds  in  this  respect.  This  allows  putting  the  different

configurations in an order with respect to their energies.

In addition, the described method allows the determination of the probability for a configuration to

occur relative to the probability of a reference ground configuration. These relative probabilities can

be understood as weights W (C i)  of their configurations. If the reference ground configuration is

chosen to be the configuration without any antiferromagnetic bonds where all spins are aligned in

the same orientation, then the weights are given by

W (C i)= ∏
< k ,m >

p̃SC

1

2
⋅(1−sign (S k)⋅sign(S m)⋅sign (J km))

.  (3.1.9)

Where the product goes over all pairs of neighbouring spins, p̃SC  is the weight factor with which

spin orientations contribute to the weight,  S k=±1  are the individual spins, and  J km  is the

coupling between the spins S k  and S m  (see also eq. (2.2.23)) which also takes into account

the boundary conditions. p̃SC  is not necessarily identical to the spin change probability pSC
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mentioned above.

The relative probability W AFB(C i) , with which the antiferromagnetic bond pattern of a certain

configuration C i  is realized from the reference ground configuration, is given by

W AFB(C i)= ∏
j∈links on the lattice

( pAFB

1− pAFB
)

δbond type of j ,antiferromagnetic

 (3.1.10)

where δi , j  is the Kronecker delta.

With  the  weights  of  the  individual  configurations W (C i) ,  the  probability P trivial  can  be

expressed as

P trivial=
∑

i∈configurations with periodic boundary conditions

W (C i)

∑
j∈configurations with all types of boundary conditions

W (C j)

.  (3.1.11)

Where the sum in the nominator goes over all the possible combinations of spin configurations with

configurations of ferromagnetic and antiferromagnetic bonds for periodic boundary conditions. The

sum in the denominator goes over all these combinations for the four different types of boundary

conditions.

When, based on the analogy discussed in Section 2.2.5, the RBIM is used to describe the toric code

error  correction,  the  probability p AFB  to  have  an  antiferromagnetic  bond  and  the

temperature β−1
 (and thus  also pSC )  are not  independent.  They have to  fulfil  the relation

presented in eq. (2.2.25). In terms of pSC  this relation can be written as

pSC=
p AFB

1− pAFB

.  (3.1.12)

In this analogy, the anti-alignment of spin orientations takes the role of the correction chain. Two

anti-aligned spins over an antiferromagnetic bond correspond to an erroneous link that has been

correctly recognized and corrected, two anti-aligned spins over a ferromagnetic bond correspond to

a link that is just part of the correction chain, even though it is not erroneous. Since for the toric

code error correction the links are assigned to the correction chain with a certain probability that

equals the probability that these links are part of the error chain (see Section 2.2.4), the weight

factor p̃SC  of the spin orientations must also equal the weight factor for the formation of an

antiferromagnetic bond (see eq. (3.1.10)). Hence

p̃SC=
! p AFB

1− pAFB

.  (3.1.13)

This allows writing eq. (3.1.11) as

P trivial=

∑
i∈configurations with periodic boundary conditions

∏
< k ,m>

( pAFB

1− pAFB
)

1

2
⋅(1−sign (S k (C i ))⋅sign(S m(C i))⋅sign ( Jkm (C i)))

∑
j∈configurations with all types of boundary conditions

∏
< k , m>

( pAFB

1−p AFB
)

1

2
⋅(1−sign(S k(C j ))⋅sign (S m(C j))⋅sign( J km(C j)

(3.1.14)

To summarize, this means that the probability to have an antiferromagnetic bond p AFB , which is

equivalent to the probability of error creation in the toric code, is the only free parameter in this

analogy in the RBIM. Based on it,  on the one hand the likelihood of the formation of different

ferromagnetic-antiferromagnetic  bond patterns  can be determined,  on the other  hand it  sets  the

probability with which spins change to an energetically higher configuration. Furthermore, in the
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here used analogy it determines the weights of the different configurations. These can be used to

determine the probability P trivial  with which a (based on the configuration weights) randomly

chosen  configuration  belongs  to  the  trivial  homology  class  (in  the  toric  code  error  correction

picture) respectively with which it has only periodic boundary conditions (in the RBIM picture).

In order to check the part of the algorithm that creates the different spin configurations the standard

Ising model (SIM) is used. While for the analogy the RBIM is reduced to the Nishimori line, the

path  in  the  p AFB - β−1
-phase  diagram given by eq. (2.2.25),  the  SIM is  its  reduction  onto

another path, namely one which follows the constraint

p AFB=0 .  (3.1.15)

This means that in the SIM there are only ferromagnetic but no antiferromagnetic bonds.

In the phase diagram of the RBIM (see Figure 2.2.6) this corresponds to a path following the β−1
-

axis. Consequently the expression for P trivial  simplifies to

P trivial= ∑
j ∈ ways to combine

the open ends in i

so that the resulting

final state belongs

to the trivial

homology class

p̂ j  

(3.1.16)

Analogously to above, this expression can be transformed into

P trivial=
∑

i∈configurations with periodic boundary conditions

∏
< k , m>

( p̃SC )
1

2
⋅(1−sign (S

k
(C

i
))⋅sign (S

m
(C

i
)))

∑
j∈configurations with all types of boundary conditions

∏
< k , m>

( p̃SC )
1

2
⋅(1−sign (S k (C j))⋅sign(S m(C j)))

.  (3.1.17)

Here p̃SC  is the only free parameter. For reasons of clarity, to better distinguish calculations in

the two models, this parameter will be called q  in the SIM.

For the two-dimensional SIM the location of the critical point separating the ferromagnetic from the

paramagnetic  phase  can be analytically derived and is  thus  known exactly.  This  allows testing

whether the part of the algorithm that simulates the different spin configurations of the Ising model

works  correctly.  Based on Onsager [4],  it  can  be  derived  that  the  phase  transition  in  the  two-

dimensional SIM occurs at the critical inverse temperature of βcrit=
1

2
⋅ln (√2+1)  for lattices of

infinite size. Using eq. (3.1.8), this value can be translated into the critical spin change probability

qcrit= pSC ,crit=√2−1≈0.41421 ... .  (3.1.18)

3.2. Algorithms

Since it is too expensive in labour and thus time to go through all possible configurations on a large

lattice, and even impossible for a lattice of infinite size, another method has to be used that can

yield the correct weighted distribution ratio of closed chains to the four homology classes within the

bars of a certain error in an acceptable time frame as a numerical approximation.

One such method is the use of a so called  worm algorithm. It starts at one configuration of the

lattice and modifies it  to another one.  This is performed a large number of times, starting in a

randomly created configuration of the trivial homology class. Since this algorithm is ergodic and

fulfils detailed balance, as it is proven in Subsection 3.2.2, the probability to enter another specific

configuration  is  proportional  to  the  weight  of  this  configuration.  Therefore,  configurations

belonging to the different homology classes will be produced in a number proportional to the sum
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of the weights  of  their  configurations.  Thus,  after  each application of the worm algorithm, the

homology class, to which the produced configuration belongs, is determined. Then, it is counted

how often configurations of the different homology classes have been created. The ratio between

these counts gives the ratio between the sums of weights associated with each homology class. This

enables the determination of  the probability P trivial  for a given probability p AFB  to have an

antiferromagnetic bond using eq. (3.1.17).

The algorithm of the simulation of the RBIM first randomly generates patterns of antiferromagnetic

bonds in the lattice. Thereafter, an initial configuration is set on the spins, followed by a variation of

this spin configuration, which is able to change the boundary conditions as well. This variation is

repeated  several  times  and  for  each  of  the  produced  configurations,  the  homology  class  is

determined.  Thereafter  this  whole  procedure  is  repeated  for  a  new  random  pattern  of

antiferromagnetic bonds.

Since an antiferromagnetic bond between aligned spins behaves in the same way as a ferromagnetic

bond between two anti-aligned spins or between two aligned spins separated by a boundary with

anti-parallel boundary conditions, these cases do not need to be distinguished. Instead it is sufficient

to call a link that raises the energy of the system occupied, while the other ones remain unoccupied.

Thus, the initial antiferromagnetic/ferromagnetic bond pattern in the lattice, where links became

antiferromagnetic  with  probability p AFB ,  is  realized  using  occupied/unoccupied  links.  The

random initial spin configuration is achieved by randomly selecting plaquettes in that lattice with

probability p (iPS )  and  changing  the  link  state  of  the  links  forming  these  plaquettes  from

occupied to unoccupied respectively vice versa. Thereafter, the change from one spin configuration

to  another  is  achieved  using  the  worm algorithm with q=
pAFB

1−p AFB

 (see  eq. (3.1.13))  as  the

probability to change the state of a link from unoccupied to occupied (while the probability to

change the link state from occupied to unoccupied is 1). In this process, the boundary conditions of

the model will change every time the worm winds around the lattice in one direction, changing the

homology class to which the next configuration belongs in the process.

The algorithm for the simulation of the SIM proceeds in almost the same way. The difference,

however,  is  that  here no randomly generated patterns of antiferromagnetic bonds are produced.

Instead, only the spin configuration and the boundary conditions are changed. Thus,  q  can be

used here directly as the input parameter.

In the next step, in both simulations the results of the homology class measurements are binned

several times.  In each binning the bins have a specific size.  In the first  binning there is 100=1

measurement per bin. The next binnings always have ten times more measurements per bin than the

one before up until in the final binning all measurements are contained in a single bin. Then the

counting is performed and the ratio between the different homology classes is determined inside

each of these bins for all the binnings. By splitting up the measurement data in this way, many

measurement  values  for  the  counts  respectively  the  ratio  values  are  obtained.  This  allows  the

determination of their standard deviation to be used as the error of these quantities. However, if the

bins are too small, there is an autocorrelation between the contained measurements. This tends to

produce an error estimate that is too small. On the other hand, if the bins are too large, there are

only a few of them. This increases the size of the error estimate. Between these two extremes is an

interval  in  bin size in  which a good value for  the error can be obtained.  In order  to  find this

intermediate region, it is determined for which of these binnings with different bin size that are

adjacent  the  error  remains  more  or  less  constant.  The individual  errors  in  this  region are  then

averaged to form the error for the corresponding quantity.

In order to achieve a certain robustness in the produced results, the calculations are performed with

two different types of worm algorithms and the results are then compared. Their differences are

elaborated  in  Subsection 3.2.1.  They  are  named  wormhead only (WHO)  respectively

wormhead- and tail (WHAT).
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3.2.1. Procedure of the worm algorithms

The worm algorithm starts by planting a so called  worm on one random site in the lattice. This

worm consists  of  two ends,  the  wormhead and  wormtail,  which are located on sites.  They are

connected by the  wormbody consisting of a set of adjacent links on the lattice that start  at  the

wormhead  and  finally  reach  the  wormtail.  Since  the  worm is  initially  planted  at  one  site,  its

wormbody has a length of zero at that initial step. A non-zero length is acquired during the next

steps of the algorithm. To do so, one of the four links adjacent to the initiation site, also referred to

as directions, is selected at random. The probability to be chosen is the same for all four directions.

Then, the state of the chosen link is determined. If it is occupied, the wormhead is moved along this

link to the site the link connects to. Furthermore, the state of the link is switched to unoccupied. If

the link, however, is unoccupied, the wormhead only moves along it with probability q . In this

case the link state switches to occupied. With a probability 1−q  the wormhead remains at the

initiation site. In this case no link state is switched and one iteration of the algorithm is completed.

If the wormhead has been moved in the first step, the algorithm continues. Here the two versions of

the algorithm, WHO and WHAT, start to differ. In the WHO-version of the algorithm, only the

wormhead is moved in the following steps. In these, the previously described step is repeated on the

new position  of  the  wormhead.  A direction  is  chosen  at  random.  If  this  link  is  occupied,  the

wormhead moves along it switching the link state to unoccupied. If the link is unoccupied, the

wormhead moves along it with probability q  switching the link state to occupied or stays where

it was with probability 1−q  doing nothing and waiting for the next step. This is repeated until

the wormhead meets the wormtail again. At this point one iteration of the algorithm is completed.

The WHAT-version of the algorithm works basically in the same way. The only difference is that it

is not just the wormhead that can be moved, but both ends. Therefore, at the beginning of each step,

one of these two ends is randomly selected with equal probability. It is then around this end, that a

direction is chosen and it depends on the link state of these directions whether the chosen end is

moved into one of these directions. Here as well,  one iteration is completed once the two ends

meet.

When the worm algorithm is applied several times, there is one more difference between the two

versions. Since it would violate detailed balance to randomly move around the initiation site each

time the algorithm is newly applied, the occurrence of this is only allowed with a probability strictly

smaller than 1. Therefore, the WHO-version of the algorithm has been set in a way that from the

second application onwards the initiation site is randomly selected only with a probability of 0.5.

With a  probability of 0.5,  it  remains  the same as  in  the  previous  application.  By this,  detailed

balance  is  still  fulfilled,  on  the  one  hand,  and  on  the  other,  the  changes  in  the  configuration

produced by the worm algorithm do not restrict themselves to just a certain segment of the lattice. If

a new initiation site gets selected randomly, the iteration is completed afterwards. It is not but at the

next iteration that the worm gets a chance (with a probability 0.5) to propagate from this position.

Since in the WHAT-version of the algorithm, both ends of the worm are able to move, here the

initiation and termination site will likely be different from one another. Thus, the termination site of

the previous application can be used as initiation site for the next application. This both satisfies

detailed balance as well as prevents the changes in the configuration to be just in one segment of the

lattice.

3.2.2. Proof of ergodicity and detailed balance

The proof of ergodicity, the property of a stochastic system that every state can be reached out of

any other state, is quite simple. In the SIM simulation, each configuration consists of closed loops

of  occupied  links.  The  worm  algorithm  alters  such  a  configuration  by  adding,  modifying  or

removing such a loop. As the worm algorithm can affect any link, there is no closed loop it cannot

form,  delete,  or  change  in  any way.  Hence,  starting  from any initial  configuration,  any  other

configuration can be created using one or several applications of the worm algorithm. Thus, the
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algorithm is ergodic.  In the RBIM simulation, the proof proceeds analogously,  even though the

configurations are no longer just closed loops but also open chains. However, due to the initial

random selection of the antiferromagnetic bonds, every configuration containing open chains can be

realized, either directly through selection of the corresponding links in this initial random step or

indirectly through modification of an appropriate selection of links by the worm algorithm.

The proof of detailed balance is a bit more involved. In order to fulfil detailed balance, every step of

the algorithm must abide to the condition

p (C i )⋅wi → j= p(C j )⋅w j→ i ,  (3.2.1)

where p (C i )  denotes the probability to be in the configuration C i  and w i→ j  stands for the

probability to produce the configuration C j  out of C i  in the next step of the algorithm. These

steps can be divided into different categories. For both worm types, they are (a) worm propagation

onto a non-erroneous link, (b) worm propagation onto an erroneous link as well as (c) start and

termination  of  worm  propagation.  The  categories  are  also  depicted  in  Figure 3.2.1 for  the

WHO-version of the worm algorithm and in Figure 3.2.2 for the WHAT-version. From these figures

it can easily be determined for all of these categories expect WHO(c) that the steps belonging to

them obey detailed balance.

For WHO(c), this proof is a bit more sophisticated, since here the worm can jump from one position

to another once its two ends meet and the new initiation site gets selected randomly. This occurs

with probability ω  and each site has the same probability 
1

V
to be selected. However, in that

form  the  algorithm  would  violate  detailed  balance.  To  correct  for  this,  the  weight  of  the

configurations  consisting  only  of  closed  loops,  C2  and  C3  in  Figure 3.2.1,  needs  to  be

adapted. They thus receive an additional weight factor X . Because in this algorithm, only the

configurations with closed loops get counted, because to each of these loops the same weight factor

is multiplied and because in the end only the proportion between the sums of such configuration

weights form the result, this does not change the outcome of the algorithm.

There is,  however,  one case where detailed balance cannot be achieved with this  modification:

By fulfilling detailed balance X  and ω  are set into a relation. It is given by

ω=1−
1

X
.  (3.2.2)

This means that the value of X  directly depends on the jump probability ω . For ω→1 ,
X  thus approaches X →∞ . At this point, the algorithm breaks down, because the worm no

longer propagates but just jumps from one site onto another, so that ergodicity gets violated. Hence,

for  ω  a  value  strictly  smaller  than  1  needs  to  be  chosen.  There  are,  however,  no  further

constraints on this value. Thus, it was set to  ω=0.5 , as it had already been mentioned in the

previous subsection.
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Figure 3.2.1: Algorithm steps of the WHO-version of the worm algorithm. These steps fall into different categories:

(a) worm propagation onto a non-erroneous link

(b) worm propagation onto an erroneous link

(c) worm propagation termination, worm jumping and worm propagation start

On each lattice, the dotted lines represent occupied links, while the continuous lines represent the unoccupied ones. The circle

marks the position of the wormtail, the rhombus the position of the wormhead. The arrows between the lattices represent the steps

the algorithm takes from one configuration to the other.

Under  each  lattice,  the  weight  of  its  configuration p (C i)  is  shown.  It  is  presented  relative  to  the  weight  of  the  first

configuration on the left p (C1) . Above respectively below each arrow, the probability w i→ j  that this step will occur is

depicted. The parameters used in the formulae are: the link switch probability q , the worm jump probability ω , the number

of sites on the lattice V  and the additional weight factor X  for configurations that only consist of closed loops.



3.3. Performed calculations

After the two variants of the worm algorithm had been developed, they were run simulating the

SIM in order to analyse how fast these simulations thermalize, i.e. how long it takes for them to go

from the initial configuration into one that is not autocorrelated to it anymore and where thus the

distribution of created configurations is no longer biased by the selective constraints on the initial

configuration. These runs were performed on four different lattices with the following properties:

The lattices had a size of 2x3 (this means the lattice has a horizontal length of 2 and a vertical

length  of 3),  3x2,  1x1 respectively 2x2.  All  used  a  link  switch  probability  of q=0.25 .  The

probability measure to switch the link states along a plaquette in order to create a random initial

lattice configuration of the trivial homology class was set to p (iPS )=0.4  for all lattices and for

each  of  them  the  simulation  was  performed  several  times  with  a  different  number  of  worm

algorithm applications ranging from 101 to 107 in powers of ten. For all of these simulations, it was

examined how the proportion P trivial  of created configurations belonging to the trivial homology

class developed with an increasing number of data points created in the simulation. The value of
P trivial  at the different stages during this development was compared to that at the end where it

had converged towards a stable value. The analysis of this development showed that already after

1⋅10
5

 applications of the worm algorithm, the difference between the current P trivial  and the
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Figure 3.2.2: Algorithm steps of the WHAT-version of the worm algorithm. These steps fall into different categories:

(a) worm propagation onto a non-erroneous link

(b) worm propagation onto an erroneous link

(c) worm propagation termination and start

On each lattice, the dotted lines represent occupied links, while the continuous lines represent the unoccupied ones. The circle

marks the position of the wormtail, the rhombus the position of the wormhead. The arrows between the lattices represent the steps

the algorithm takes from one configuration to the other.

Under  each  lattice,  the  weight  of  its  configuration p (C i)  is  shown.  It  is  presented  relative  to  the  weight  of  the  first

configuration on the left p (C1) . Above respectively below each arrow, the probability w i→ j
 that this step will occur  is

depicted. The parameters used in the formulae are: the link switch probability q , the worm jump probability ω , the number

of sites on the lattice V  and the additional weight factor X  for configurations that only consist of closed loops.



final  one was in the order  of  per milles.  After  5⋅10
5

 to  2⋅10
6

 applications  of the worm

algorithm (depending on the lattice size), the difference decreased to the order of a tenth of a per

mille,  so that from here on the first  three positions after the decimal point  of  P trivial did not

change as new data points were added. Since this accuracy was good enough for the purpose of this

thesis, it was decided to not use a so called thermalization phase of worm algorithm applications

without  data  collection  in  the  beginning  of  the  simulation,  in  which  the  above  mentioned

autocorrelation gets eliminated. Instead,  it was determined that if the simulation consists of 107

worm algorithm applications of which each time the configuration gets measured, the effects of the

autocorrelation become negligibly small. The so obtained value is thus accurate enough to be used

further. Furthermore, it was determined that if less accuracy is needed (e.g. to get an overview on

how  P trivial  behaves  as  a  function  of  q  in  a  certain  region)  a  simulation with  105 worm

algorithm  applications  without  thermalization  phase  suffices.  In  addition,  the  omission  of  the

thermalization phase significantly shortened the time needed to perform the simulations and thus

made it possible to perform more simulations, especially on larger lattices.

After this, a large variety of tests was performed on the two variants of the worm algorithm. This

was done to ensure that they worked properly. Since this simulation not only revealed the behaviour

of the SIM, but also plays its part in the simulation of the RBIM, the correct performance of the

latter simulation was also endorsed by these tests.

The first of these tests was performed to check whether the correct results are produced and whether

by increasing the number of times the algorithm is run the accuracy of the result increases. For this,

the values of  q  and  p (iPS )  did not yet matter much and were thus selected randomly to

q=0.4  and  p (iPS )=0.55 . A small lattice size of 2x4 was used. This keeps the number of

different configurations low. Thus, apart from the result determined by the worm algorithms, the

accurate result  is  easily calculated by determining and adding up the weights of the individual

configurations, a method referred to as brute force. By this it can be checked how well the worm

algorithm performs and the presence of coding errors can be detected. Furthermore, the number of

times the worm algorithm was applied was varied between the individual test runs. It ranged in

powers of ten from 101 to 107.

In the next test, it was checked that different values of the probability measure to switch the link

states  along  a  plaquette  in  order  to  create  a  random initial  lattice  configuration  of  the  trivial

homology class p (iPS )  do not have an effect on the results and do not produce any systematic

error. For this, a small lattice of size 3x3 was used on which the link switch probability q  was

set to 0.2. For both versions of the worm algorithm several test runs were performed with different

values of  p (iPS ) .  These ranged from 0 to 1 in  steps of 0.05.  Each test  run consisted of 107

applications of the worm algorithm. The results were compared to the accurate results obtained by a

brute force algorithm.

The final test was the most elaborate. Instead of just checking the behaviour of a certain property at

some randomly chosen conditions, this test systematically went through many different small lattice

sizes and link switch probabilities to check the accuracy of the results. To be more precise, for all

the lattice sizes that were considered small enough so that an accurate result could be obtained using

a brute force algorithm, i.e. the lattice sizes 1x1, 1x2, 2x1, 1x3, 2x2, 3x1, 1x4, 2x3, 3x2, 4x1, 1x5,

2x4, 3x3, 4x2, 5x1, 1x6, 2x5, 3x4, 4x3, 5x2, 6x1, and for all link switch probabilities q  from 0

to 1 in steps of 0.05, a test run was performed. Each such test run consisted of 107 worm algorithm

applications and  p (iPS )  was each time set to be 0.25.  All  the obtained results  were finally

compared to the accurate results from the brute force algorithm.

The next phase of testing was started after all the aforementioned tests were performed successfully,

i.e. the distribution of the obtained results fit to a Gaussian distribution around the accurate result

with respect to the obtained standard deviations. The exceptions in this regard were the cases where
q  was close to either 0 or 1. In these cases, for reasons that have not been determined, the results

rarely matched well to the accurate values. However, these cases occur on the extremal parts of the
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interval of values q  can take. The crossing from one phase to the other, which is examined in

this thesis, on the other hand, is not expected to occur in these peripheral regions but more in the

center of the interval. Thus, these exceptions are of little relevance in regard to the goal of this

thesis. Therefore, the algorithm was not adapted to get rid of this wrong behaviour. Instead it was

left  unchanged and whenever such an outlier  appears in the results,  it  will  just  be pointed out.

However, for all of the remaining values of the link switch probability q  that were analysed, the

tests  reliably produced results that only varied from the accurate result  in a manner typical for

stochastic errors.

In this next phase of testing, the focus was set on scaling. Test runs were performed on lattices of

larger size, namely 100x100 and 1000x1000. The link switch probability q  was set to 0.4 and

p (iPS )  to 0.55. In each test run the number of times the worm algorithm was applied changed.

Again, it ranged in powers of ten from 101 to 107. Due to the far too large number of different

configurations which can be realized on these lattice sizes, an accurate result could not be obtained

by a brute force algorithm. Thus, to check whether the algorithm still worked properly in these

larger systems, the results obtained from the different test runs with a different number of worm

algorithm  applications  were  compared  to  each  other.  It  was  determined  whether  their  results

converge towards certain values as the number of worm applications increases and how well the

differences in these measurements with increasing accuracy correlate to their errors.

The success in this test together with that in the former ones lead to the conclusion that the two

variants of the worm algorithm can be considered to reliably produce accurate results. Hence, the

actual  numerical calculations could be started.  These were performed with both variants of the

worm  algorithm  on  lattices  of  five  different  sizes,  namely  20x20,  40x40,  60x60,  80x80  and

100x100. In all runs p (iPS )  was put to 0.55.

First, the SIM was simulated to check that the algorithms are able to correctly reproduce the spin

change behaviour of the two Ising models. Therefore, the following calculations were performed:

The  first  series  of  runs  was  used  to  get  an  overview on  how the  probability P trivial ,  that  a

produced  configuration  belongs  to  the  trivial  homology  class,  depends  on  the  link  switch

probability q . Therefore, in this series both variants of the algorithm were run for every  q

from 0 to 1 in steps of 0.01. As this data was only used for an overview of the dependence, it did not

need to be very accurate. Thus, the worm algorithm was only applied 105 times in each run. The

results are presented in Section 4.1.

In the second series of runs, the attention was directed to the interval where the phase crossing had

occurred in the data of the overview series of runs. Here, both variants of the algorithm were run for

every  q  from 0.350 to 0.450 in steps of 0.001. This was done to produce a finer view of this

interval. Thus, the accuracy was not increased with respect to the previous runs, so that each run

still consisted of 105 applications of the worm algorithm. The results of this series of runs (to be

called zoom-in at 0.350<=q<=0.450) are discussed in Section 4.2. They allowed the refinement of

the limits for the location of the critical link switch probability qcrit , which marks the position of

the phase transition on the infinite size lattice and is contained inside the region of phase crossing in

the finite size lattice, to be set to 0.405≤qcrit≤0.420 .

Thereafter,  in  this  new interval,  high  accuracy measurements  were  performed.  For  every  q

between 0.405 and 0.420 in steps of 0.001 both variants of the algorithm were run. In each run, the

worm algorithm was applied 107 times. The results of these series of runs (to be called zoom-in at

0.405<=q<=0.420) are presented in Section 4.3.

In the final series of runs of the SIM simulation (to be called zoom-in at 0.4130<=q<=0.4150) the

interval of  q  between 0.4130 and 0.4150 was analysed. This interval was chosen, since due to

the findings of the former series of runs, the boundaries for the measured qcrit  could be narrowed

down  to  this  interval.  Both  variants  of  the  algorithm  were  run  in  steps  of 0.0001  on  a

1000x1000-lattice. The large size of the lattice was chosen to further narrow down the interval in

which the phase crossing takes place and inside which  qcrit  is  located.  Because of the long

29



calculation time on lattices of this size, in each run the worm algorithm was only applied 105 times.

The results are presented in Section 4.4.

For the simulation of the RBIM only two series of runs were performed:

In the first series of runs (to be called RBIM overview) a coarse overview of the interval, in which

the phase crossing was expected according to Dennis et al. [2], was performed. For this purpose, on

a 100x100-lattice both variants of the algorithm simulating the RBIM (the one which incorporated

the WHO- as well as the one which incorporated the WHAT-worm algorithm) were run for every
p AFB  from 0.09 to 0.13 in steps of 0.01. For each run, 103 different initial antiferromagnetic bond

patterns were created and for each of these, the worm algorithm was applied 104 times. This resulted

in a total of 107 data points per run. The results are presented in Section 5.1.

Based on the results of the previous series of runs, the phase crossing was confirmed to lie in the

interval p AFB ,crit∈[0.09 , 0.12] . Hence, a more detailed analysis of this interval was performed in

the next series of runs (to be called  zoom-in at 0.090<=p_AFB<=0.120). Both RBIM simulation

algorithms were applied on lattices of the sizes 20x20, 40x40, 60x60, 80x80 and 100x100. They

were run with values of p AFB  between 0.09 and 0.12 in steps of 0.001. As in the previous series

of runs, for each run 103 different initial antiferromagnetic bond patterns were created and for each

of these, the worm algorithm was applied 104 times. The results are presented in Section 5.2.
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4. Standard Ising model

This section presents the results of the numerical simulation of the standard Ising model (SIM) and

discusses them. In this model, the worm algorithms were checked to reproduce the correct spin

change behaviour before applying them to simulate the random-bond Ising model. The series of

runs of the simulation presented in this section have been described in detail in Section 3.3.

First,  the  development  of  the  proportion  of  created  configurations  that  belong  to  the  trivial

homology  class P trivial  is  presented  as  a  function  of  the  link  switch  probability q  in

Subsection 4.1 for the whole range of possible values of q , i.e. q∈[0 ,1] .

Thereafter, the behaviour of P trivial  is shown in more detail in the region of q , in which the

phase crossing was determined to occur in this first  series of runs. Thus,  in Subsection 4.2 the

behaviour  of  P trivial  as  a  function  of  q is  examined  in  more  detail  inside  the  interval

q∈[0.350 ,0.450] .

The results of this second series of runs narrowed down the location of the critical link switch

probability qcrit  into the interval q∈[0.405 ,0.420] . This interval was analysed in the third

series of runs of which the results are shown in Subsection 4.3 and evaluated in Subsection 4.5. It

provided a more accurate picture of the behaviour of P trivial  around qcrit .

The evaluation of these results allowed further narrowing down the location of  qcrit  into the

interval q∈[0.4130 , 0.4150] . This interval is examined in the fourth and final series of runs of

the SIM simulation on a 1000x1000 lattice in Subsection 4.4. The results  are then compared to

those of the previous series of runs in Subsection 4.5.
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4.1. Overview

In the first series of runs of the simulation of the SIM, the two variants of the algorithm were used

to produce a whole-scale overview on how the proportion P trivial  of  produced configurations

belonging to the trivial homology class develops in dependence of the link switch probability q .

The results are illustrated in  Figure 4.1.1 for the simulation using the WHO-variant of the worm

algorithm and in Figure 4.1.2 for the simulation using the WHAT-variant.

In these figures, it can be seen that both variants of the algorithm produce a similar outcome. A

more detailed comparison between the results from these two variants of the algorithm is performed

in Section 6. In both cases,  P trivial  plateaus at 1 for small  q , then decreases rapidly around

q=0.4  and eventually plateaus again for larger  q . This time at 0.25. It can furthermore be

seen that the decrease becomes steeper as the size of the lattice increases. This also extends the

lengths  of  the  two  plateaux.  This  leads  to  the  conclusion  that  the  critical  link  switch

probability qcrit  lies in this region of  q  where the phase crossing occurs, namely inside the

interval q∈[0.350 ,0.450] .  This  finding  has  been  used  to  determine  the  boundaries  of  the

interval, at which to focus in the next series of runs.

In both variants of the algorithm, outliers can be seen for q=1.0 . Outliers at this value of q

were already present throughout the tests of the algorithms, indicating that the used method breaks

down in this region. The reason for this has not been further investigated, since this break down

occurs in the periphery of the link switch probability q  range, that means far off the region

where the phase crossing, onto which the focus of this thesis is set, is expected to occur.

In  the  WHAT-variant,  there  are  two  further  outliers  in  the  data  set  of  the  60x60  lattice  for
q=0.01  and q=0.03 . Their value of P trivial  is 4σ  lower than expected in this plateau

region, where  P trivial  should stay approximately at 1. As with the outliers at  q=1.0 , these

ones are also located in one of the regions where the algorithm breaks down. Since these outliers are

also located far off the region where the phase crossing occurs, they are as well seen to have little

relevance.
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Figure 4.1.1: Diagram illustrating the results of the numerical calculations of the "overview" series of runs performed using the

"wormhead only"  variant  of the worm algorithm in the simulation of  the SIM.  The horizontal  axis represents  the link switch

probability q .  The  vertical  axis  represents  the  proportion P trivial of  produced  configurations that  belong  to  the  trivial

homology class. Five different data sets were created. Each one used a square lattice of a different size, namely a side length of

20 (dark blue), 40 (pink), 60 (yellow), 80 (light blue), respectively 100 (purple) links.

These results give an overview on how P trivial  behaves as a function of q  along the whole scale.
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Figure 4.1.2: Diagram illustrating the results of the numerical calculations of the "overview" series of runs performed using the

"wormhead and -tail" variant of the worm algorithm in the simulation of the SIM. The horizontal axis represents the link switch

probability q .  The  vertical  axis  represents  the  proportion P trivial of  produced configurations  that  belong  to  the  trivial

homology class. Five different data sets were created. Each one used a square lattice of a different size, namely a side length of

20 (dark blue), 40 (pink), 60 (yellow), 80 (light blue), respectively 100 (purple) links.

These results give an overview on how P trivial
 behaves as a function of q  along the whole scale.
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4.2. Zoom-in on interval around qcrit

In the second series of runs of the simulation of the SIM, the two variants of the algorithm were

used  to  zoom  in  on  the  development  of  the  proportion P trivial  of  produced  configurations

belonging to the trivial homology class in the interval in which the phase crossing associated to the

critical  link  switch  probability qcrit  had  been  observed  in  the  overview  series  of  runs.  The

boundaries of the interval were set generously to ensure that  qcrit  lies between them. Thus, it

reaches from q=0.350  to q=0.450 . The results of the simulations using the WHO-variant of

the worm algorithm are shown in Figure 4.2.1, those of the simulations using the WHAT-variant in

Figure 4.2.2.

Both variants of the algorithm produced very similar results. Their  comparison is  performed in

Section 6. The produced results correspond with the expectations from the results of the overview

series.  In  both  diagrams,  on the  left  P trivial  forms  a  plateau  at  the  value 1.  This  is,  in  both

diagrams, followed by a drastic decrease of  P trivial  around q=0.41 , which becomes steeper

with increasing lattice size. Finally, the value of P trivial  again stabilizes at around 0.25 for all the

graphs in both diagrams.

In both diagrams, the decrease of P trivial  on the 100x100-lattice starts at q=0.405  and ends at

q=0.420 . Since the plateaux in front respectively behind these points represent the different

phases the system can be in, qcrit  must lie between them. This finding has been used to determine

the boundaries of the interval, at which to focus in the next series of runs.
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Figure 4.2.1: Diagram illustrating the results of the numerical calculations of the "zoom-in at 0.350<=q<=0.450" series of runs

performed using the "wormhead only" variant of the worm algorithm in the simulation of the SIM. The horizontal axis represents

the link switch probability q . The vertical axis represents the proportion P trivial of produced configurations that belong to

the trivial homology class. Five different data sets were created. Each one used a square lattice of a different size, namely a side

length of 20 (dark blue), 40 (pink), 60 (yellow), 80 (light blue), respectively 100 (purple) links.

These results show how P trivial  behaves as a function of q  in the interval between q=0.350  and q=0.450 .
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Figure 4.2.2: Diagram illustrating the results of the numerical calculations of the "zoom-in at 0.350<=q<=0.450" series of runs

performed using the "wormhead and -tail"  variant  of  the worm algorithm in the simulation of  the SIM.  The horizontal  axis

represents the link switch probability q . The vertical axis represents the proportion P trivial of produced configurations that

belong to the trivial homology class. Five different data sets were created. Each one used a square lattice of a different size, namely

a side length of 20 (dark blue), 40 (pink), 60 (yellow), 80 (light blue), respectively 100 (purple) links.

These results show how P trivial  behaves as a function of q  in the interval between q=0.350  and q=0.450 .
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4.3. More accurate values in interval around qcrit

In the third series of runs of the simulation of the SIM, the two variants of the algorithm were again

used to determine the values of the proportion P trivial  of produced configurations belonging to

the trivial homology class in the interval of the link switch probability q , in which the phase

change associated to the critical link switch probability qcrit  had been observed in the overview

series of runs. This time, however, the boundaries of the interval were narrowed down due to the

findings from the previous series of runs on where to locate qcrit . The lower boundary was set at

q=0.405  and the upper at  q=0.420 . Furthermore, the accuracy of the produced values of
P trivial  was increased to 107 applications of the worm algorithm. The results of the simulations

using  the  WHO-variant  of  the  worm  algorithm  are  presented  in  Figure 4.3.1,  those  of  the

simulations using the WHAT-variant in Figure 4.3.2.

Both variants of the algorithm produce very similar results. Their detailed comparison with respect

to the different variants of the algorithm is performed in Section 6. As expected from the setting of

the boundaries, both diagrams show the decrease in P trivial  that occurs around qcrit . Again, this

decrease gets steeper the larger the lattice becomes. Furthermore, at the point q=0.414±0.001  

(WHO)  respectively  q=0.413±0.001  (WHAT)  the  graphs  from  the  different  lattice  sizes

intersect each other.

The  analysis  of  these  results  will  be  done  sophisticatedly  and  thus  performed  separately  in

Subsection 4.5.
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Figure 4.3.1: Diagram illustrating the results of the numerical calculations of the "zoom-in at 0.405<=q<=0.420" series of runs

performed using the "wormhead only" variant of the worm algorithm in the simulation of the SIM. The horizontal axis represents

the link switch probability q . The vertical axis represents the proportion P trivial
of produced configurations that belong to

the trivial homology class. Five different data sets were created. Each one used a square lattice of a different size, namely a side

length of 20 (dark blue), 40 (pink), 60 (yellow), 80 (light blue), respectively 100 (purple) links.

These results show how P trivial
 behaves as a function of q  in the interval between q=0.405  and q=0.420 . Note

the small size of the error bars due to the high accuracy of the results due to the large number of worm algorithm applications.
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Figure 4.3.2: Diagram illustrating the results of the numerical calculations of the "zoom-in at 0.405<=q<=0.420" series of runs

performed using the "wormhead and -tail"  variant  of  the worm algorithm in the simulation of  the SIM.  The horizontal  axis

represents the link switch probability q . The vertical axis represents the proportion P trivial
of produced configurations that

belong to the trivial homology class. Five different data sets were created. Each one used a square lattice of a different size, namely

a side length of 20 (dark blue), 40 (pink), 60 (yellow), 80 (light blue), respectively 100 (purple) links.

These results show how P trivial
 behaves as a function of q  in the interval between q=0.405  and q=0.420 . Note

the small size of the error bars due to the high accuracy of the results due to the large number of worm algorithm applications.
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4.4. Zoom-in on interval around qcrit on a 1000x1000-lattice

In the fourth series of runs of the simulation of the SIM, the two variants of the algorithm were used

to determine the values of the proportion P trivial  of produced configurations belonging to the

trivial homology class inside the link switch probability q  interval of q∈[0.4130 ,0.4150] .  It

was inside this interval that, according to the findings of the previous series of runs, the critical link

switch probability qcrit  should lie. To better see the phase crossing in this narrow interval, the

lattice size was increased to 1000x1000. This, however, came at the cost of reducing the accuracy of

each  run  to  105 applications  of  the  worm algorithm.  The  results  of  the  simulations  using  the

WHO-variant of the worm algorithm are shown in Figure 4.4.1, those of the simulations using the

WHAT-variant in Figure 4.4.2.

As it can be seen in these figures, both variants of the algorithm produce very similar results. The

detailed  comparison  of  the  results  between  the  two  variants  is  performed  in  Section 6.  In  the

diagrams it can be seen that P trivial  plateaus around 1 for the lower q . At q=0.4135 , the

value of P trivial  starts to decrease. This decrease continues until q=0.4150  (WHO), where the

diagram ends, respectively till q=0.4149  (WHAT), where a new plateau around P trivial=0.25

starts  to  form.  Such  a  plateau  at  the  right  end of  q  cannot  be  seen  in  the  diagram of  the

WHO-variant of the algorithm. This, however, is likely just because the series terminates before

such a plateau could establish itself. These results indicate that the phase crossing on lattices of this

size likely completes at a q  quite close to 0.4150 .

This  shows  that  the  critical  link  switch  probability qcrit  lies  inside  of  the  interval

q∈[0.4135 ,0.4150] , a result that goes along with the findings from the previous series of runs

simulating  this  model.  However,  it  does  not  narrow down much further  the  boundaries  of  the

interval in which qcrit  lies.

This result is compared to the one from the previous series of runs in Subsection 4.5.
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Figure 4.4.1: Diagram illustrating the results of the numerical calculations of the "zoom-in at 0.4130<=q<=0.4150" series of runs

performed using the "wormhead only" variant of the worm algorithm in the simulation of the SIM. The horizontal axis represents

the link switch probability q . The vertical axis represents the proportion P trivial of produced configurations that belong to

the trivial homology class. The data set was created using a square lattice with a side length of 1000 links.

These results show how P trivial  behaves as a function of q  in the interval between q=0.4130  and q=0.4150 .
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Figure 4.4.2: Diagram illustrating the results of the numerical calculations of the "zoom-in at 0.4130<=q<=0.4150" series of runs

performed using the "wormhead and -tail"  variant  of  the worm algorithm in the simulation of  the SIM.  The horizontal  axis

represents the link switch probability q . The vertical axis represents the proportion P trivial of produced configurations that

belong to the trivial homology class. The data set was created using a square lattice with a side length of 1000 links.

These results show how P trivial  behaves as a function of q  in the interval between q=0.4130  and q=0.4150 .
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4.5. Analysis of the results

In the series of runs named "zoom-in at 0.405<=q<=0.420" the method applied in the previous

series of runs to narrow down the interval, in which the critical link switch probability qcrit  is

located, by using the start and the end of the phase crossing no longer works. This is, because this

series of runs was performed on lattices of the same sizes as in the previous ones. This means that

the  length  of  the  phase  crossing  stays  the  same,  only  the  positions  of  its  boundaries  will  be

determine more  accurately.  While  in  the  previous  series  of  runs  this  refinement  still  yielded a

significant reduction in the interval size, i.e. the size of the shift of the boundary was one order of

magnitude  smaller  than  the  interval,  in  the  "zoom-in  at  0.405<=q<=0.420"  series  of  runs  the

refinement  is  too  small  to  significantly  change  the  boundaries  of  the  interval.  Hence,  another

method needs to be used:

With increasing lattice size, the graphs of P trivial (q)  decrease more steeply during the crossover.

By this, more points in the vicinity of the critical point qcrit  move towards a value of P trivial

that corresponds to that of the phase they will be in on the infinite-size lattice. For values below
qcrit  this is 1, for values above  qcrit , this is 0.25. Hence for lattices of different sizes, their

graphs of  P trivial (q)  will  intersect  close to  qcrit .  Therefore,  qcrit  can  be determined by

analysing  these  intersections.  In  Figure 4.3.1 and  Figure 4.3.2 it  can  easily  be  seen  that  the

intersections  are  situated  near  q=0.414  (WHO) respectively  q=0.413  (WHAT).  Around

these points, the data points of each lattice size appear to be arranged almost linearly. Thus, the

graphs of  P trivial (q)  in this region can be well approximated using linear regression (see also

Figure 4.5.1 and Figure 4.5.2). From this, the intersections between the individual regression graphs

can  be  calculated.  Unfortunately,  due  to  their  approximate  nature  (originating  from  the

approximative nature of the algorithm as well as of the here described method to determine qcrit )

the regression graphs do not all intersect in one point. Instead, each regression graph separately

intersects the other ones. The positions of these intersections are shown in Table 4.5.1. It is assumed

that these intersection points distribute stochastically around qcrit . Hence, their mean value can

be used to determine qcrit , together with their standard deviation for its error estimate. For the

WHO-variant of the worm algorithm, these are

qcrit , WHO=0.4140±0.0005 ,  (4.5.1)

and for the WHAT-variant

qcrit , WHAT=0.4135±0.0006 .  (4.5.2)

Analogously, the value of P trivial  at qcrit  and its error can be determined. For the WHO-variant

of the worm algorithm, these are

P trivial , WHO(qcrit )=0.490±0.025 ,  (4.5.3)

and for the WHAT-variant

P trivial , WHAT (qcrit)=0.494±0.027.  (4.5.4)
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Figure 4.5.1: Diagram showing the linear regression of the result data from the "zoom-in at 0.405<=q<=0.420" series of runs from

the simulation of the SIM performed using the "wormhead only" variant of the algorithm. The horizontal axis represents the link

switch probability q . The vertical axis represents the proportion P trivial
of produced configurations that belong to the trivial

homology class. Five different data sets are shown. Each one used a square lattice of a different size, namely a side length of

20 (dark blue), 40 (pink), 60 (yellow), 80 (light blue), respectively 100 (purple) links. The equations of the regression graphs and

their coefficients of determination are listed on the top right. The colours of the equations match those of the individual data sets.

Bright colours have a dark background for better readability.

For  the  regression  only  the  data  points  between  q=0.409  and  q=0.416  were  used,  because  here  the  behaviour  of

P trivial (q)  was almost linear.
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Figure 4.5.2:  Diagram showing  the  linear  regression  of  the  result  data  from the  numerical  calculations  of  the  "zoom-in  at

0.405<=q<=0.420"  series  of  runs from the simulation  of  the SIM performed using  the "wormhead and -tail"  variant  of  the

algorithm. The horizontal axis represents the link switch probability q . The vertical axis represents the proportion P trivial
of

produced configurations that belong to the trivial homology class. Five different data sets are shown. Each one used a square

lattice of a different size, namely a side length of 20 (dark blue), 40 (pink), 60 (yellow), 80 (light blue), respectively 100 (purple)

links. The equations of the regression graphs and their coefficients of determination are listed on the top right. The colours of the

equations match those of the individual data sets. Bright colours have a dark background for better readability.

For  the  regression  only  the  data  points  between  q=0.409  and  q=0.416  were  used,  because  here  the  behaviour  of

P trivial (q)  was almost linear.
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The values obtained for  qcrit  in eq. (4.5.1) and eq. (4.5.2) can be compared to the analytically

derived actual value for the critical point of the phase transition in the SIM, which has been derived

in Section 3.1 to be qcrit= pSC ,crit=√2−1≈0.41421 ...  (see eq. (3.1.18)).

This  yields  a  deviation for  qcrit , WHO  of  0.42σ  and for  qcrit , WH &T  of  1.27σ .  As the

serendipitous finding presented in Section 7 indicates, the exact value of P trivial  at qcrit  likely

is  P trivial (qcrit )=0.5 , at least for finite sized lattices. This value can therefore be compared to

those  obtained  from  the  "zoom-in  at  0.405<=q<=0.420"  series  of  runs,  which  are  given  in

eq. (4.5.3) and eq. (4.5.4). This comparison yields a deviation for P trivial , WHO (qcrit )  of  0.41σ

and for P trivial , WH & T (qcrit)  of 0.22σ .

Another approach to determine qcrit  is to narrow down the interval, in which the phase crossing

takes place and in which qcrit  is thus located, by increasing the lattice size. This is done in the

"zoom-in at 0.4130<=q<=0.4150" series of runs in Section 4.4. The results from this series of runs

show that the phase transition occurs between q≃0.4135  and q≃0.4150 . So far this agrees

with the values for qcrit  obtained above and the exact value determined analytically in the end of

Section 3.1, since both of these qcrit  lie inside the interval. This agreement, however, ends once

the data points in the interval are being inspected in more detail, as it is done in Figure 4.5.3 and

Figure 4.5.4. In these figures,  the two  P trivial (qcrit )  points from the regression analysis  of the

"zoom-in at 0.405<=q<=0.420" were added to the results from the series of runs in the interval
q∈[0.4130 ,0.4150] .

It can be seen in these two figures that the data points from the "zoom-in at 0.4130<=q<=0.4150"

series  of  runs  pass  aside  the  data  point  representing  the  exact  P trivial (qcrit ) ,  rather  than

incorporating it into their development. This discrepancy is larger than 1σ  for both versions of

the algorithm. However, it remains still smaller than  2σ , being even just slightly more than
1σ  for the WHAT-variant. 

On  the  other  hand,  the  data  points  representing  the  P trivial (qcrit )  acquired  from  the  linear

regression fit better with those from the series of runs. Although the P trivial (qcrit )  data points are

actually far away from those of the "zoom-in at 0.4130<=q<=0.4150" series of runs, they also have

a large error compared to the other data points due to the different method by which they were

determined. Due to this  large error,  the discrepancy reduces to slightly less than  1σ  for the

WHO-variant, respectively slightly more than 1σ  for the WHAT-variant.

The different values obtained for qcrit  are difficult to interpret. This is because there are only two
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Table 4.5.1: Positions of the intersections between the linear regression graphs of the data points around q=0.414  (WHO),

respectively  q=0.413  (WHAT) in the "zoom-in at 0.405<=q<=0.420" series of runs of the simulation of the SIM. The left

column indicates the different intersections. The two numbers name the lattice sizes of which the linear regression graphs intersect.

This occurs at the coordinates presented in the central and right column doublet for the WHO- respectively WHAT -variant of the

algorithm.

WHO WHAT

L_1;L_2 q P_trivial q P_trivial

20;40 0.41391 0.50098 0.41245 0.52737

20;60 0.41361 0.50563 0.41282 0.52156

20;80 0.41383 0.50220 0.41319 0.51589

20;100 0.41404 0.49899 0.41344 0.51191

40;60 0.41332 0.51921 0.41319 0.50474

40;80 0.41379 0.50463 0.41355 0.49344

40;100 0.41408 0.49555 0.41378 0.48637

60;80 0.41430 0.47281 0.41393 0.46998

60;100 0.41454 0.46123 0.41411 0.46195

80;100 0.41485 0.43824 0.41430 0.44770

Intersection



of them for each variant of the algorithm and because the difference between them and towards the

exact  value  mostly  is  around  1σ .  This  makes  it  difficult  to  decide  whether  these  values

distribute normally and thus whether the observed discrepancy between these values is just caused

stochastically or whether there is a systematic error source behind it that biases the obtained results.

It is, however, likely that the systematic error between the two versions of the worm algorithm (see

Section 6) had an influence on this outcome. Anyway, the here described discrepancy between the

different values obtained for qcrit  is of a small magnitude (it is only due to the high accuracy of

the calculations that it became visible at all). It has about the same magnitude as the discrepancy

between the two variants of the algorithm. Hence,  by decreasing the accuracy by one order of

magnitude these discrepancies can be made negligibly small, so that all of these approaches for both

variants of the algorithm can confirm the value of

qcrit=0.414±0.0005 .  (4.5.5)

This result is less than 1σ  away from the actual value of qcrit . Hence, if used at this accuracy,

the here tested worm algorithms are adequate to simulate the spin configuration behaviour of the

RBIM.
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Figure 4.5.3: Diagram illustrating the results of the numerical calculations of the "zoom-in at 0.4130<=q<=0.4150" series of runs

performed using the "wormhead only" variant of the algorithm simulating the SIM on a 1000x1000 lattice  (blue), as well as the

value  of  the  critical  link  switch  probability qcrit  obtained  from the  linear  regression  of  the  results  from the  "zoom-in  at

0.405<=q<=0.420" series of runs (Section 4.3; pink) respectively its exact value (end of Section 3.1; yellow).  The horizontal axis

represents the link switch probability q . The vertical axis represents the proportion P trivial of produced configurations that

belong to the trivial homology class.

This  diagram shows  how well  the  different  values  obtained  for  qcrit
 match  with  the  behaviour  of  P trivial (q)  on  the

1000x1000 lattice.

"WHO: Zoom-In at 0.4130<=q<=0.4150" data set and two values for q_crit
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Figure 4.5.4: Diagram illustrating the results of the numerical calculations of the "zoom-in at 0.4130<=q<=0.4150" series of runs

performed using the "wormhead and -tail" variant of the algorithm simulating the SIM on a 1000x1000 lattice (blue), as well as the

value  of  the  critical  link  switch  probability qcrit
 obtained  from the  linear  regression  of  the  results  from the  "zoom-in  at

0.405<=q<=0.420" series of runs (Section 4.3; pink) respectively its exact value (end of Section 3.1; yellow). The horizontal axis

represents the link switch probability q . The vertical axis represents the proportion P trivial of produced configurations that

belong to the trivial homology class.

This  diagram shows  how well  the  different  values  obtained  for  qcrit  match  with  the  behaviour  of  P trivial (q)  on  the

1000x1000 lattice.

"WHAT: Zoom-In at 0.4130<=q<=0.4150" data set and two values for q_crit

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.4130 0.4134 0.4138 0.4142 0.4146 0.4150

q

P
_
tr

iv
ia

l L=1000

q_crit (4.3)

q_crit (exact)



5. Random-bond Ising model

This  section  presents  the  results  of  the  numerical  simulation  of  the  random-bond  Ising

model (RBIM) and discusses them. This model is analogous to the error correction model of the

toric code. The here determined critical probability p AFB ,crit  to have an antiferromagnetic bond,

where  the  phase  transition  occurs  for  an  infinite  size  lattice,  thus  corresponds  to  the  accuracy

threshold pcrit  of the toric code error correction model. The simulations of which the results are

presented in this section have been described in Section 3.3.

First,  in  Subsection 5.1 a  coarse  overview of  the  behaviour  of  P trivial  as  a  function  of  the

probability p AFB  to  have  an  antiferromagnetic  bond  is  presented  in  the  interval

p AFB∈[0.09 ,0.13] . According to Dennis et al. [2],  p AFB ,crit  is expected to be located in this

region.

Then  in  Subsection 5.2,  the  interval  p AFB∈[0.090 ,0.120] ,  where  the  phase  crossing  was

observed in the first series of runs, is analysed in more detail.

Thereafter,  the results  for  p AFB ,crit  obtained in  Subsection 5.2 are  analysed and discussed in

Subsection 5.3. They are then compared to literature values in Subsection 5.4.
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5.1. Overview

The first series of runs of the simulation of the RBIM was performed to coarsely check if the phase

crossing actually occurs where it is expected according to Dennis et al. [2], namely around the value

of  p AFB ,crit=0.1094±0.0002 .  Therefore,  the  values  of  the  proportion P trivial  of  produced

configurations  that  belong to the trivial  homology class  were determined in the interval  of the

probability p AFB  to  have  an  antiferromagnetic  bond  ranging  from p AFB=0.09

to p AFB=0.13 . This was done with both variants of the algorithm, the one that uses the WHO-

and the other that uses the WHAT-worm algorithm. The results of the WHO-variant are shown in

Figure 5.1.1, those of the WHAT-variant in Figure 5.1.2.

Both variants of the algorithm produce a similar outcome. The differences between the outcomes of

the two variants will be discussed in detail in Section 6. For both variants, P trivial  starts at almost

1 for p AFB=0.09 , indicating that the phase crossing starts slightly before that value of p AFB .

Thereafter, for both variants,  P trivial  decreases drastically as  p AFB  gets larger. Finally, they

both reach the other phase at p AFB=0.13 , where their values for P trivial  are around 0.25. This

shows that the phase crossing occurs in this region of p AFB  and that thus the critical point of the

phase transition has to lie herein.
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Figure 5.1.1: Diagram illustrating the results of the numerical calculations of the "overview" series of runs performed using the

"wormhead only" variant of the algorithm in the simulation of the RBIM. The horizontal axis represents the probability pAFB  to

have an antiferromagnetic bond. The vertical axis represents the proportion P trivial of produced configurations that belong to the

trivial homology class. The data set was created using a square lattice with a side length of 100 links.

These results give a coarse overview on how P trivial  behaves as a function of pAFB  in the interval where the phase crossing

is expected according to Dennis et al. [2].
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Figure 5.1.2: Diagram illustrating the results of the numerical calculations of the "overview" series of runs performed using the

"wormhead  and  -tail"  variant  of  the  algorithm  in  the  simulation  of  the  RBIM.  The  horizontal  axis  represents  the

probability pAFB  to  have  an  antiferromagnetic  bond.  The  vertical  axis  represents  the  proportion P trivial of  produced

configurations that belong to the trivial homology class. The data set was created using a square lattice with a side length of

100 links.

These results give a coarse overview on how P trivial  behaves as a function of pAFB  in the interval where the phase crossing

is expected according to Dennis et al. [2].
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5.2. Zoom-in on interval around pAFB,crit

In the second series of runs from the simulation of the RBIM, a detailed analysis of the behaviour of

the proportion P trivial  of produced configurations that belong to the trivial homology class as a

function of the probability p AFB  to have an antiferromagnetic bond was made in the interval

ranging  from p AFB=0.090  to p AFB=0.120 ,  the  interval  where  the  location  of  the  phase

transition is expected according to Dennis et al. [2] and where the phase crossing was observed in

the first series of runs. In contrast to the previous series of runs, this analysis determined the value

of  P trivial  with  a  higher  resolution.  The  distance  between  two  adjacent  p AFB ,  for  which

P trivial  was determined, was  Δ pAFB=0.001 . The accuracy of these  P trivial  determinations

was kept as high as in the previous series of runs with 107 homology class measurements at each
p AFB . This was again done with both variants of the algorithm. The results of the WHO-variant

are shown in Figure 5.2.1, those of the WHAT-variant in Figure 5.2.2.

Both  variants  of  the  algorithm produce  very  similar  results.  These  are  compared  in  detail  in

Section 6. They show the same phase crossing behaviour that was already observed in the results of

the previous series of runs. This time, however, in a better resolution with regard to p AFB  and for

different lattice sizes. It can be seen how for the data sets of each lattice size, the crossing starts in

the first phase for p AFB=0.090 , where the corresponding value of P trivial  is close to 1. Then

for all of them, P trivial  decreases as p AFB  gets larger. And finally, for all of them P trivial  gets

close  to 0.25,  when  p AFB  becomes 0.120.  In  addition  to  that,  it  can  be  observed  that  with

increasing  lattice  size  the  plateaux  of  the  phases  extend  farther.  As  a  consequence,  the  phase

crossing has to occur in a smaller interval. This causes the value of P trivial  to drop steeper during

the  phase  crossing  for  increasing  lattice  sizes.  Furthermore,  it  can  be  seen  that  at  the  point
p AFB=0.109±0.001  (WHO) respectively  p AFB=0.108±0.001  (WHAT) the graphs from the

different lattice sizes intersect each other.

The  analysis  of  these  results  is  done  sophisticatedly  and  thus  performed  separately  in

Subsection 5.3.
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Figure 5.2.1: Diagram illustrating the results of the numerical calculations of the "zoom-in at 0.090<=q<=0.120" series of runs

performed using the "wormhead only" variant of the algorithm in the simulation of the RBIM. The horizontal axis represents the

probability pAFB  to  have  an  antiferromagnetic  bond.  The  vertical  axis  represents  the  proportion P trivial
of  produced

configurations that belong to the trivial homology class. Five different data sets were created. Each one used a square lattice of a

different size, namely a side length of 20 (dark blue), 40 (pink), 60 (yellow), 80 (light blue), respectively 100 (purple) links.

These  results  show  how  P trivial
 behaves  as  a  function  of  pAFB  in  the  interval  between  pAFB=0.090  and

pAFB=0.120 . Note the small size of the error bars due to the high accuracy of the results due to the large number of worm

algorithm applications.

WHO: Zoom-In at 0.090<=p_AFB<=0.120

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.090 0.095 0.100 0.105 0.110 0.115 0.120

p_AFB

P
_
tr

iv
ia

l

L=20

L=40

L=60

L=80

L=100

Figure 5.2.2: Diagram illustrating the results of the numerical calculations of the "zoom-in at 0.090<=q<=0.120" series of runs

performed using the "wormhead and -tail" variant of the algorithm in the simulation of the RBIM. The horizontal axis represents

the probability pAFB  to have an antiferromagnetic bond.  The vertical axis represents the proportion P trivial
of  produced

configurations that belong to the trivial homology class. Five different data sets were created. Each one used a square lattice of a

different size, namely a side length of 20 (dark blue), 40 (pink), 60 (yellow), 80 (light blue), respectively 100 (purple) links.

These  results  show  how  P trivial
 behaves  as  a  function  of  pAFB  in  the  interval  between  pAFB=0.090  and

pAFB=0.120 . Note the small size of the error bars due to the high accuracy of the results due to the large number of worm

algorithm applications.
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5.3. Analysis of the results

The "zoom-in at 0.090<=p_AFB<=0.120" series of runs faced the same problem in regard to the

method of using the start and the end of the phase crossing to determine the interval in which
p AFB ,crit  is located as the "zoom-in at 0.405<=q<=0.420" series of runs in the simulation of the

SIM, the phase crossing starts  and ends approximately at the same positions as in the previous

series of runs and thus the interval keeps its length. Therefore, also here an alternative approach

needed to be used. Since the performance of this series of runs was already very time consuming,

the  simulation  on  a  lattice  of  significantly larger  size  to  narrow down the  width  of  the  phase

crossing was not an option, as this would have increased the calculation time into an unrealisable

range. Hence, the same method as for the analysis of the "zoom-in at 0.405<=q<=0.420" series of

runs in the simulation of the SIM was used:

The direct view of these results reveals that with increasing lattice size, the graphs of  P trivial

become  steeper,  that  these  graphs  intersect  near  p AFB=0.109±0.001  (WHO)  respectively

p AFB=0.108±0.001  (WHAT) and that  in  the  vicinity  of  this  intersection  point  these  graphs

behave almost linearly. Thus all the requirements are fulfilled to draw conclusions on the critical

value of  p AFB  by analysing the intersections of the linear regressions of these graphs in this

vicinity. These linear regressions are shown in Figure 5.3.1 for the WHO- and Figure 5.3.2 for the

WHAT-variant  of  the  algorithm.  Each of  the  regression  lines  intersects  with  the  other  ones  at

distinct points, no intersection points overlap, as it can be seen in Table 5.3.1, where the positions of

these intersections are presented. Hence, it is assumed that these intersection points stochastically

distribute around  p AFB ,crit .  Therefore, their mean value can be used to determine  p AFB ,crit ,

together with their standard deviation for its error. For the WHO-variant of the algorithm, these are

p AFB ,crit ,WHO=0.1081±0.0007  (5.3.1)

and for the WHAT-variant

p AFB ,crit ,WHAT =0.108±0.001.  (5.3.2)

Analogously,  the  value  of  P trivial  at  p AFB ,crit  and  its  error  can  be  determined.  For  the

WHO-variant of the algorithm, these are

P trivial , WHO( pAFB ,crit )=0.642±0.017  (5.3.3)

and for the WHAT-variant

P trivial , WHAT ( pAFB ,crit )=0.652±0.036 .  (5.3.4)

The two values obtained for  p AFB ,crit  from the two different variants of the algorithm, which

correspond to the accuracy threshold pcrit , lie apart less than 1σ  with respect to the errors of

both  values.  The  same  is  true  for  their  P trivial ( pAFB ,crit )  and  the  corresponding  errors.  This

indicates that the deviation between these values is of a stochastic nature and that thus for this level

of  accuracy  both  variants  of  the  algorithm produce  the  same  results.  This  corresponds  to  the

findings  from  Section 6 that,  although  a  systematic  deviation  was  observed  between  the  two

variants  of  the  algorithm,  in  this  series  of  runs  the  distribution  of  the  differences Δ  of  the

determined values of  P trivial  from the two variants of the algorithm at each data point do not

differ that much from the normal distribution as in other series of runs. The systematic deviation

needs a higher level of accuracy to have an effect.
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Table 5.3.1: Positions of the intersections between the linear regression graphs of the data points around pAFB=0.109  (WHO)

respectively pAFB=0.108  (WHAT) in the "zoom-in at 0.090<=p_AFB<=0.120" series of runs from the simulation of the RBIM.

The left column indicates the different intersections. The two numbers name the lattice sizes of which the linear regression graphs

intersect.  This  occurs  at  the  coordinates  presented  in  the  central  and  right  column  doublet  for  the  WHO-  respectively

WHAT-variant of the algorithm.

Intersection WHO WHAT

L_1;L_2 P_trivial p_AFB P_trivial

20;40 0.10960 0.61080 0.10958 0.61734

20;60 0.10871 0.62514 0.10842 0.63382

20;80 0.10833 0.63110 0.10859 0.63129

20;100 0.10826 0.63231 0.10816 0.63742

40;60 0.10756 0.65857 0.10696 0.67747

40;80 0.10754 0.65898 0.10788 0.65629

40;100 0.10773 0.65453 0.10737 0.66801

60;80 0.10752 0.65957 0.10915 0.61192

60;100 0.10781 0.65131 0.10770 0.65519

80;100 0.10805 0.64102 0.10565 0.73427

p_AFB

Figure 5.3.1:  Diagram showing the linear regression on the result  data sets of  the numerical calculations of the "zoom-in at

0.090<=p_AFB<=0.120" series of runs performed using the "wormhead only" variant of the algorithm in the simulation of the

RBIM. The horizontal axis represents the probability pAFB  to have an antiferromagnetic bond. The vertical axis represents the

proportion P trivial
of produced configurations that belong to the trivial homology class. Five different data sets are shown. Each

one  used  a  square  lattice  of  a  different  size,  namely  a  side  length  of  20  (dark  blue),  40 (pink),  60 (yellow),  80 (light  blue),

respectively 100 (purple) links. The equations of the regression graphs and their coefficients of determination are listed on the top

right. The colours of the equations match those of the individual data sets. Bright colours have a dark background for better

readability.

For the regression only the data points between pAFB=0.103  and pAFB=0.113  were used, because here the behaviour of

P trivial ( pAFB)  was almost linear.
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5.4. Comparison to other reference sources

For  the  toric  code  error  correction,  the  position  of  the  accuracy  threshold pcrit  has  been

determined by Dennis et al. [2]. They describe the analogy between the toric code error correction

and  the  RBIM  and  show  that  the  critical  value p AFB ,crit  of  the  probability  to  have  an

antiferromagnetic  bond  in  the  RBIM  along  the  Nishimori  line  corresponds  to  the  accuracy

threshold pcrit .  Then they cite  Honecker  et  al. [5],  who have simulated the RBIM and there

determined the Nishimori point N  using the numerical method known as  finite size scaling.

According to them, it lies at

pcrit , [5]=0.1094±0.0002 .  (5.4.1)

This  value  lies  1.88σ  (WHO)  respectively  1.27σ  (WHAT)  away  from  the  accuracy

threshold determined in this thesis. There are several possible causes for this deviation:

One possible cause is the systematic deviation between the two variants of the worm algorithm.

Although it did not cause a significant difference between the outcome of the distinct algorithms in

this series of runs, it still indicates that they do not work properly and cause an error, which is of the

same order of magnitude as the deviation observed here. The idea that the worm algorithms do not

work properly is also supported by the fact that they did not produce the correct results for q  at

the periphery of the interval q∈[ 0 ,1 ]  during the tests.

The most plausible cause,  however, is the missing thermalization phase at  the beginning of the

algorithm. Due to its  lack,  the first  data  points that  were determined are autocorrelated.  Since,
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Figure 5.3.2: Diagram showing the linear regression on the result  data sets  of the numerical  calculations of  the "zoom-in at

0.090<=p_AFB<=0.120" series of runs performed using the "wormhead and -tail" variant of the algorithm in the simulation of the

RBIM. The horizontal axis represents the probability pAFB  to have an antiferromagnetic bond. The vertical axis represents the

proportion P trivial
of produced configurations that belong to the trivial homology class. Five different data sets are shown. Each

one  used  a  square  lattice  of  a  different  size,  namely  a  side  length  of  20  (dark  blue),  40 (pink),  60 (yellow),  80 (light  blue),

respectively 100 (purple) links. The equations of the regression graphs and their coefficients of determination are listed on the top

right. The colours of the equations match those of the individual data sets. Bright colours have a dark background for better

readability.

For the regression only the data points between pAFB=0.103  and pAFB=0.113  were used, because here the behaviour of

P trivial ( pAFB)  was almost linear.
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however, all the data points need to be stochastically distributed, this will cause a bias. Although

this bias will decrease with increasing size of the set of data points, it might here still have the small

effect that is observed as this deviation.

Due to the limited scope of this thesis, it was not possible to determine which of these error sources

actually causes this deviation. It is, however, plausible to assume that they all contribute to it to

some  degree.  Thus,  in  order  to  improve  the  method  for  determination  of  the  accuracy

threshold pcrit  presented in this thesis, they all should be eliminated by modifying the algorithm

accordingly. While it is still unclear what exactly causes the systematic deviation between the two

variants of the worm algorithm and hence what exactly needs to be changed, the implementation of

a  thermalization  phase  is  easily  realized  by  letting  the  worm  algorithms  initially  create

configurations  without  evaluating  their  homology  class.  Based  on  the  thermalization  test  data

presented  in  Section 3.3,  omitting  the  first  2⋅10
6

 or  slightly more  configurations  should  be

enough to get rid of the autocorrelation effects.
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6. Comparison of the worm algorithm performance

In order to test for the consistency of the produced results of the numerical simulations, they were

performed  twice,  using  algorithms  that  applied  two  different  variants  of  the  worm algorithm,

namely the  wormhead only (WHO) and the  wormhead and -tail (WHAT) variant. If both worm

algorithms work properly, they should yield the same results, up to a stochastic deviation. However,

if this is not the case and some systematic deviation is observed, it would indicate that the worm

algorithms still contain a methodological or a coding error, which needs to be corrected.

In order to systematically compare the two different variants of the worm algorithm, for every data

point (calculation performed at a distinct input parameter q  respectively p AFB ) of every data

set (different lattice sizes) of every series of runs of each of the two simulations the difference Δ
between the results obtained using the two variants of the worm algorithm was determined. To each

of these results an error si  is associated. According to the laws of error propagation, the error of

the difference sΔ  is thus given by

sΔ=√ sWHO

2+sWHAT

2
 (6.1)

Since both algorithms should produce the same result, their difference should always be 0. Due to

the  probabilistic  nature  of  the  used  method,  the  obtained  values  for  this  difference  should

stochastically distribute around this value with a standard deviation of σ=sΔ . Hence, the values

of the ratio Δ
sΔ

 from the different data sets should distribute normally like shown in Table 6.1.

The results this analysis yields for the different series of runs are depicted in Table 6.2. While in the

"Overview" series of runs of the SIM simulation the values of this difference abide well to the

normal distribution, this is no longer the case for the other series of runs, where the aberration from

the normal distribution is either small (like in the "Zoom-In at 0.220<=q<=0.268" and "Zoom-In at

0.350<=q<=0.450"  series  of  runs  of  the  SIM simulation)  or  extreme (like  in  the  "Zoom-In  at

0.405<=q<=0.420" series of runs of the SIM simulation). A closer look reveals that the aberration

gets stronger the more accurate (in terms of number of worm algorithm applications per data point)

the calculation was performed. This indicates that there is a systematic error source causing a small

but non-vanishing difference between the results  of the different worm algorithm variants.  This

error  was  not  found  within  the  time  available  for  completing  this  thesis.  However,  since  this

difference is small, its effect on the obtained results is small as well. They can thus still be used till a

certain degree of accuracy and it has to be kept in mind that the actual error estimates should be

taken with a grain of salt.
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Table 6.1: Expected normal distribution around 0 of the values of the difference Δ between the results of the two variants of the

algorithm.  Δ/ sΔ  is the value of the deviation from 0 normalized by the corresponding standard deviation. The spectrum of

values it can obtain is divided here in four intervals for reasons of clarity. The distribution below indicates how the deviations

should distribute themselves among these intervals, if their distribution is normal.

0-1 1-2 2-3 >3

Distribution 0.6827 0.2718 0.0428 0.0027

Δ/s
Δ
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Table  6.2:  Distribution  of  the  difference Δ between  the  results  of  the  two  variants  of  the  algorithm  normalized  by  the

corresponding error sΔ  for every data set (lattice size) of every series of runs. The distribution distinguishes if the value of

Δ/ sΔ falls into one of four different intervals. The expected normal distribution is presented in Table 6.1.

As it  can be seen,  only  the "SIM: Overview" distribution matches that  expectation.  The other distributions deviate  from the

expectation with variable severity.

SIM: Overview

0-1 1-2 2-3 >3

L = 20 0.6634 0.3069 0.0198 0.0099

L = 40 0.6832 0.2673 0.0396 0.0099

L = 60 0.7030 0.2574 0.0198 0.0198

L = 80 0.6931 0.2376 0.0495 0.0198

L = 100 0.6535 0.3069 0.0297 0.0099

SIM: Zoom-In at 0.220<=q<=0.268

0-1 1-2 2-3 >3

L = 20 0.6939 0.3061 0.0000 0.0000

L = 40 0.6122 0.3878 0.0000 0.0000

L = 60 0.5918 0.4082 0.0000 0.0000

L = 80 0.6122 0.3878 0.0000 0.0000

L = 100 0.6327 0.3673 0.0000 0.0000

SIM: Zoom-In at 0.350<=q<=0.450

0-1 1-2 2-3 >3

L = 20 0.5941 0.3168 0.0891 0.0000

L = 40 0.6634 0.2772 0.0594 0.0000

L = 60 0.5842 0.3465 0.0495 0.0198

L = 80 0.5644 0.3663 0.0495 0.0198

L = 100 0.6436 0.3366 0.0198 0.0000

SIM: Zoom-In at 0.405<=q<=0.420

0-1 1-2 2-3 >3

L = 20 0.0625 0.3125 0.5625 0.0625

L = 40 0.0000 0.0000 0.0000 1.0000

L = 60 0.0000 0.0000 0.0000 1.0000

L = 80 0.0000 0.0000 0.0000 1.0000

L = 100 0.0000 0.0000 0.0625 0.9375

SIM: Zoom-In at 0.4130<=q<=0.4150

0-1 1-2 2-3 >3

L = 1000 0.4762 0.0952 0.1429 0.2857

RBIM: Overview

0-1 1-2 2-3 >3

L = 100 0.2000 0.6000 0.0000 0.2000

RBIM: Zoom-In at 0.090<=p_AFB<=0.120

0-1 1-2 2-3 >3

L = 20 0.5806 0.3548 0.0645 0.0000

L = 40 0.5484 0.3226 0.1290 0.0000

L = 60 0.4839 0.3548 0.0645 0.0968

L = 80 0.5484 0.1613 0.0645 0.2258

Δ/s
Δ

Δ/s
Δ

Δ/s
Δ

Δ/s
Δ

Δ/s
Δ

Δ/s
Δ

Δ/s
Δ



7. Further findings

This section presents the findings that were made during this thesis in addition to those related to

the determination of the accuracy threshold pcrit :

When looking at the series of runs that contain more than one data set, i.e. were performed on more

than one lattice size, it can be seen that the behaviour of P trivial  becomes steeper during the phase

crossing  with  increasing  lattice  size  and  occurs  over  a  shorter  interval  of  the  link  switch

probability q  respectively  probability p AFB  to  have  an  antiferromagnetic  bond.  This

behaviour corresponds to expectation, since in the infinite-size lattice model the phase transition

occurs  at  one  point,  namely  qcrit  respectively  p AFB ,crit ,  and  the  lattices  of  finite  size

approximate  this  behaviour  more  accurately  the  larger  they  become.  Furthermore,  for  all

probabilities q  respectively p AFB  that have smaller values than the start of the crossover, the

value of  P trivial  is approximately 1. For all  probabilities q  respectively  p AFB  that have

larger  values than the end of  the crossover,  the value of  P trivial  is  approximately 0.25.  This

characterizes nicely the different nature of the two phases in the two-dimensional Ising model. The

differences  to  the  strict  values  of  1  respectively 0.25  in  the  infinite-size  lattice  model  can  be

explained by the finiteness of the lattice sizes that were used, which allows only the approximation

of the infinite-size behaviour,  as well as the approximative nature of the here used method. To

summarize, these findings indicate that the here used algorithms perform well in simulating the

behavioural features of the Ising model respectively the toric code error correction model.

Since on the infinite-size lattice at the critical point q  respectively pcrit  the value of P trivial

instantly drops from 1 to 0.25, its behaviour when passing the phase boundary is discontinuous.

Therefore, this parameter behaves as if the phase transition were of the first order, while actually the

phase transition in the two dimensional Ising model is known to be of the second order.

As derived in Section 3.1, the critical point in the standard Ising model lies at 

qcrit=√2−1≈0.41421... .  (7.1)

For a lattice of infinite size, at this point the phase transition occurs. During this thesis, it was,

however, serendipitously discovered that for all tested lattices out of a large variety of small sizes,
P trivial  had always the same value at this point. The calculations were performed using the brute

force algorithm so that the determined values are accurate. They always yielded

P trivial (qcrit )=0.5  (7.2)

as it can also be seen in the individual results presented in Table 7.1 and Table 7.2.
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Table 7.1: First part of the results from the brute force analysis of P trivial (qcrit )  in the standard Ising model. The two columns on

the left show the different lattice sizes. The four columns on the right show the proportions of the sums of weights of configurations

belonging to a specific homology class for these lattice sizes at q=qcrit=√2−1 . These values have been determined using the

brute force algorithm and can thus be considered accurate up to rounding. The data sets in the first four rows are from square

lattices, thereafter the data sets from non-square lattices are shown.

P_trivial P_horizontal

1 1 0.50000 0.20711 0.20711 0.08579

2 2 0.50000 0.20000 0.20000 0.10000

3 3 0.50000 0.19351 0.19351 0.11299

4 4 0.50000 0.19034 0.19034 0.11933

1 2 0.50000 0.08579 0.35355 0.06066

1 3 0.50000 0.03553 0.43365 0.03082

1 4 0.50000 0.01472 0.47141 0.01388

1 5 0.50000 0.00610 0.48795 0.00595

1 6 0.50000 0.00253 0.49498 0.00250

L_hor L_ver P_vertical P_both
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Table 7.2: Second part of the results from the brute force analysis of P trivial (qcrit )  in the standard Ising model. The two columns

on the  left  show the  different  lattice  sizes.  The  four  columns  on  the  right  show the  proportions  of  the  sums  of  weights  of

configurations belonging to  a specific  homology class  for  these lattice  sizes  at  q=qcrit=√2−1 .  These values have been

determined using the brute force algorithm and can thus be considered accurate up to rounding. The data sets in the rows continue

to be from non-square lattices.

P_trivial P_horizontal

1 7 0.50000 0.00105 0.49791 0.00104

1 8 0.50000 0.00043 0.49913 0.00043

1 9 0.50000 0.00018 0.49964 0.00018

1 10 0.50000 7.434E-5 0.49985 7.432E-5

1 11 0.50000 3.079E-5 0.49994 3.079E-5

1 12 0.50000 1.275E-5 0.49997 1.275E-5

1 13 0.50000 5.283E-6 0.49999 5.283E-6

1 14 0.50000 2.188E-6 0.50000 2.188E-6

1 15 0.50000 9.064E-7 0.50000 9.064E-7

1 16 0.50000 3.755E-7 0.50000 3.755E-7

1 17 0.50000 1.555E-7 0.50000 1.555E-7

1 18 0.50000 6.442E-8 0.50000 6.442E-8

1 19 0.50000 2.668E-8 0.50000 2.668E-8

2 1 0.50000 0.35355 0.08579 0.06066

2 3 0.50000 0.12203 0.28619 0.09179

2 4 0.50000 0.07895 0.35088 0.07018

2 5 0.50000 0.05212 0.39824 0.04964

2 6 0.50000 0.03448 0.43172 0.03379

2 7 0.50000 0.02272 0.45474 0.02253

2 8 0.50000 0.01490 0.47025 0.01485

2 9 0.50000 0.00973 0.48055 0.00972

3 1 0.50000 0.43365 0.03553 0.03082

3 2 0.50000 0.28619 0.12203 0.09179

3 4 0.50000 0.14074 0.25114 0.10813

3 5 0.50000 0.10672 0.29968 0.09360

4 1 0.50000 0.47141 0.01472 0.01388

4 2 0.50000 0.35088 0.07895 0.07018

4 3 0.50000 0.25114 0.14074 0.10813

5 1 0.50000 0.48795 0.00610 0.00595

5 2 0.50000 0.39824 0.05212 0.04964

5 3 0.50000 0.29968 0.10672 0.09360

6 1 0.50000 0.49498 0.00253 0.00250

6 2 0.50000 0.43172 0.03448 0.03379

6 3 0.50000 0.34048 0.08238 0.07714

7 1 0.50000 0.49791 0.00105 0.00104

7 2 0.50000 0.45474 0.02272 0.02253

8 1 0.50000 0.49913 0.00043 0.00043

8 2 0.50000 0.47025 0.01490 0.01485

9 1 0.50000 0.49964 0.00018 0.00018

9 2 0.50000 0.48055 0.00973 0.00972

10 1 0.50000 0.49985 7.434E-5 7.432E-5

11 1 0.50000 0.49994 3.079E-5 3.079E-5

12 1 0.50000 0.49997 1.275E-5 1.275E-5

13 1 0.50000 0.49999 5.283E-6 5.283E-6

14 1 0.50000 0.50000 2.188E-6 2.188E-6

15 1 0.50000 0.50000 9.064E-7 9.064E-7

16 1 0.50000 0.50000 3.755E-7 3.755E-7

L_hor L_ver P_vertical P_both



8. Conclusions

The two variants of the algorithm used to determine the accuracy threshold pcrit  based on the

analogy to the random-bond Ising model yielded the following results:

pcrit , WHO=0.1081±0.0007  (8.1)

respectively

pcrit , WHAT=0.108±0.001  (8.2)

These values are close to the reference value provided by Dennis et al. [2]. The deviation between

them lies between 1σ  and 2σ , so the obtained results are not significantly different from the

reference value. However, that the deviation is larger than 1σ  might indicate that the method,

which is applied in this thesis, produces a systematic error that slightly biases the results. Possible

sources for this error are the improper functioning of the worm algorithms (as it is also indicated by

the deviation between the results, which the two variants produce for the same input parameters)

and the omission of a thermalization phase. How much these different sources contribute to the bias

and whether there are further sources has not yet been determined and shall be the subject of future

research.
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